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A B S T R A C T

While traditional laboratory methods of determining soil organic carbon (SOC) content are generally simple, this
becomes more challenging when carbonates are present in the soil; such is commonly found in semi-arid areas.
Additionally, soil inorganic carbon (SIC) content itself is difficult to determine. This study uses visible near
infrared (VisNIR) spectra to predict SOC and SIC contents of samples, and the impact of including soil pH and soil
total carbon (STC) data as predictor variables was evaluated. The results indicated that combining available soil
pH and STC content data with VisNIR spectra dramatically improved prediction accuracy of the Cubist models.
Using the full suite of predictor variables, Cubist models trained on the calibration dataset (75%) could predict the
validation dataset (25%) for SOC content with a Lin’s concordance correlation coefficient (LCCC) of 0.94, and an
LCCC of 0.83 for SIC content. This is compared to an LCCC of 0.81 and 0.35 for SOC and SIC content, respectively,
when no ancillary soil data was included with VisNIR spectra as predictor variables. These results suggest that
there may be promise for using other readily available soil data in combination with VisNIR spectra to improve the
predictions of different soil properties.

� It can be laborious and expensive to measure soil organic and inorganic carbon content with traditional
laboratory methods, and there has been recent focus on using spectroscopic techniques to overcome this.

� This study demonstrates that combining ancillary soil data (pH and total carbon content) with these
spectroscopic techniques can considerably improve predictions of SOC and SIC content.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

A R T I C L E I N F O
Method name: Soil carbon measurement with visible near infrared spectroscopy
Keywords: Visible near-infrared spectroscopy, Ancillary soil data, Organic carbon, Inorganic carbon, Carbonate, Cubist
Article history: Received 7 March 2018; Accepted 20 May 2018; Available online 2 June 2018

* Corresponding author.
E-mail address: patrick.filippi@sydney.edu.au (P. Filippi).

https://doi.org/10.1016/j.mex.2018.05.019
2215-0161/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

MethodsX 5 (2018) 551–560

Contents lists available at ScienceDirect

MethodsX

journal homepage: www.elsevier.com/locate/mex

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2018.05.019&domain=pdf
mailto:patrick.filippi@sydney.edu.au
https://doi.org/10.1016/j.mex.2018.05.019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.mex.2018.05.019
http://www.sciencedirect.com/science/journal/22150161
www.elsevier.com/locate/mex


M

o
s
s
t
c
b

c
a
p
a
a
c
p
t
a
a
t
a

M

S

s
fl

g
o
s
i
i

c
u
g
g
0
c

5

Specifications Table
Subject Area Agricultural and Biological Sciences
More specific subject area: Soil Science
Method name: Soil carbon measurement with visible near infrared spectroscopy
Name and reference of
original method

McCarty, G.W., Reeves, J.B., Reeves, V.B., Follett, R.F. and Kimble, J.M., 2002. Mid-infrared
and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil
Science Society of America Journal,66(2), pp.640–646.

Resource availability NA

ethod details

In soils that do not contain soil inorganic carbon (SIC), traditional laboratory methods of soil
rganic carbon (SOC) content determination are generally simple, and usually analogous to those for
oil total carbon (STC) content determination. However, when carbonates are present in soil samples,
uch as in arid and semi-arid regions, the determination of SOC content becomes more challenging. As
he sum of SOC and SIC content is equal to the STC content of a sample, at least two of the three
omponents must be determined. However, due to the costly nature of measuring SOC and SIC content
y traditional laboratory methods, this is often unfeasible.
The use of spectroscopic tools, such as visible near infrared (VisNIR), to predict the different

omponents of soil carbon (SOC and SIC) has been extensively studied in recent years due to the cost
nd labour savings that come with these approaches [1]. Both SIC and SOC content are generally well
redicted by these approaches [2], as there are specific VisNIR wavelengths that are heavily
ssociated with these different components of soil carbon [3]. Most studies solely use VisNIR spectra
s input variables for predicting SOC and SIC content [2], however, there are opportunities to
ombine VisNIR spectra with other useful and readily available soil information to further improve
redictions. For example, soil pH data is commonly available as it can be easily determined by
raditional laboratory methods, and including this information as a predictor variable could be
dvantageous due to the relationship that pH has with both SOC and SIC content. In this study, SOC
nd SIC content of samples in a semi-arid region in Australia are predicted using Cubist models, and
he impact of combining VisNIR spectra data with soil pH and STC data as predictor variables is
nalysed.

aterials and methods

tudy are and soil dataset

This study uses soil data collected from a semi-arid area surrounding the township of Hillston, in
outh-west NSW. The study area is �2500 km2 in size, and primarily consists of largely flat alluvial
oodplains, with some rocky outcrops at higher elevation. The soils on the floodplain are mainly
rey, brown and red Vertisols (IUSS Working Group WRB 2014), with sandier soils of largely aeolian
rigin at the higher points. Rainfall at Hillston is low, with a mean annual rainfall of 372 mm. The
tudy area is subject to hot summers and cool winters, with a mean minimum temperature of 17.7 �C
n summer and 4.5 �C in winter, and mean maximum temperatures of 31.2 �C in summer and 15.9 �C
n winter [4].

Soil samples from 80 locations from a soil survey conducted in 2002 are used, as well as 140 soil
ores from a soil survey from 2015 [5]. Samples were extracted from soils under a variety of land
ses, including irrigated and dryland cropping, irrigated perennial horticulture, and rangeland
razing. Many of the same sites were sampled in both surveys (n = 70), as the locations were
eoreferenced. The subsampling intervals in the surveys differed, with the 2002 survey sampled at 0–
.2 and 0.3–0.4 m, and the 2015 sampled at 0–0.1, 0.1–0.3 and 0.3–0.5 m. In total, the soil dataset
onsists of 399 soil samples.
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Traditional laboratory methods

All of the soil samples were air-dried and then ground through a 2 mm sieve. Prior to laboratory
analysis, all samples were tested for the presence of soil inorganic carbon (SIC). A �1 g subsample of
ground soil was placed on a ceramic plate and a few drops of 1 M hydrochloric acid (HCl) were placed
directly onto the sample. Any sample that showed an effervescence reaction was considered to contain
calcium carbonate, the most prominent form of SIC in these soils. An additional subsample (�10 g) was
then taken and finely ground (<53 mm) using a Fritsch Mortar Grinder Pulverisette 2 (Fritsch,
Germany) for 4 min at 50–60 Hz frequency. Soil total carbon (STC) content was determined by the
combustion method with the Leco1 CHN analyser for 2002 samples, and the Elementar vario MAX CNS
for 2015 samples. The Elementar vario MAX CNS and the Leco1 CHN analyser are very similar in their
analytical approach, and both use the combustion technique. Soil organic carbon content for 2002
samples was determined by treating samples with 2 M HCl to remove inorganic carbon, and then
analysing by the Leco1 CHN analyser [6]. For 2015 samples, SOC content was determined by the
Walkely-Black method, which is a wet oxidation technique that uses chromic acid [7]. The Walkely-
Black method was used, as it is one of the more rapid traditional laboratory methods of measuring SOC
content. To estimate SIC content, the difference between STC and SOC contents was used. For
2002 samples, the SOC content was determined immediately, however, STC was determined from
archived samples 13 years after sampling. While there may be potential drawbacks of analysing soil
samples that have been archived for many years, most studies in the literature that have analysed the
impact of archiving on soil carbon levels have found that this is negligible (e.g [8].).

Spectral predictions

VisNIR spectral acquisition and processing
Archived soil samples from both the 2002 and 2015 soil surveys (n = 399) were scanned by visible

near infrared (VisNIR) with an Agrispec portable spectrophotometer with a contact probe attachment
(Analytical Spectral Devices, Boulder, Colorado) on the dried and ground soil samples. To reduce
signal-to-noise ratios of the spectra, three scans of each sample were performed, from which an
averaged reflectance spectrum was derived. Calibration of the instrument was made with a Spectralon
white tile and was re-calibrated after every 15 scans, or five samples.

Pre-processing of the VisNIR spectra was performed, which included splicing the discontinuities at
VisNIR detector junctions (1000 and 1800 nm), and then converting reflectance to absorbance.
Smoothing of the spectra was then performed using a Savitzky-Golay filter (Savitzky and Golay, 1964),
and wavelengths of VisNIR outside the 500–2450 nm were removed, and the remaining wavelengths
were resampled at 10 nm intervals to reduce data quantity. A Standard Normal Variate (SNV) baseline
correction (Barnes et al. 1989) was then performed on the remaining spectra.

Prediction models
Along with the VisNIR spectra, the mid-depth of the sample was included as a predictor variable in the

models, to ensurethat the depth was taken into account whenpredicting. In addition tothese, soil pH and
STC content (measured by traditional laboratory approaches described in the methodology above) were
included as predictor variables, as this data was available for all samples. For each soil property (SOC and
SIC), five variations of model inputs was tested. These included VisNIR and mid-depth (model A); VisNIR,
mid-depth and pH (model B); VisNIR, mid-depth and STC content (model C); VisNIR, mid-depth, pH and
STC content (model D); and finally mid-depth, pH and STC content without VisNIR spectra (model E).

Cubist models were used to predict SOC and SIC content, with each of the five combinations of
predictor variables. Cubist is a regression rule technique that essentially functions by creating one or
more rules, where each rule is a linear model of the predictor variables [9]. To test prediction quality, 75%
of the dataset was used as calibration, and the remaining 25% was used as validation. These datasets were
selected by performing a Latin hypercube sampling of the VisNIR spectra, pH, STC, mid-depth, and the
response variables to ensure that both the validation and calibration datasets were appropriately
represented. The maximum number of rules used in the Cubist models was 10. The bagging, or bootstrap
aggregating, method was used to generate different models from varying realisations of the calibration
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ataset with the aim to enhance the prediction and also estimate uncertianty of the model [18]. This
pproach uses repeated random sampling, where the calibration dataset of size N is replaced to calculate
he B bootstrap. Each bootstrap has the same size as the calibration dataset, but does not contain the
ame samples. In total, there were 50 bootstraps, meaning that 50 Cubist models were generated
or each soil property and each combination of predictor variables. The mean was then calculated from
he 50 soil property predictions for each sample in the calibration dataset. The statistics used to test the
odel quality included Lin’s concordance correlation coefficient (LCCC), root mean square error

RMSE), bias (mean of the residuals), and R2, with this being tested on both the calibration and validation
atasets. All statistical analyses were performed in the statistical program R [10].

esults

ummary statistics of laboratory-measured soil properties

Overall, SOC contents of the soil samples are low, with a mean value of 0.58% and values ranging from
.09 to 1.77% (Table 1). The SIC contents were quite variable,with a minimum of0, a maximum of 1.60%, and

 mean of 0.04%. The STC content of samples ranged from 0.63 to 1.85%, and possessed a mean of 0.63%. The
ean pH of all samples was slightly alkaline at 7.57, but ranged considerably from 5.02 to 9.62 (Table 1).

isible near infrared (VisNIR) spectroscopy predictions

Both SOC and SIC content of samples displayed a mild to strong relationship (Pearson’s correlation)
ith the predictor variables of STC content and soil pH (Table 2). The independently-validated
tatistics also showed that both SOC and SIC content of samples could be predicted with high accuracy
sing spectroscopic techniques (Figs. 1 and 2; Table 3). Overall, SOC content was predicted with
reater accuracy than SIC content, and the different combinations of model inputs had a clear impact
n the prediction quality for both SOC and SIC content. The LCCC was primarily used for the
ssessment of model quality, as it is the fit of the 1:1 line of the observed and predicted values. It is also
nit less, which makes it useful for comparing different models of the same soil property, as well as
omparing models for different soil properties.
For SOC content, it was clear that the inclusion of additional soil property data improved prediction

esults considerably, improving the predictions on the validation dataset from an LCCC of 0.81 for the
odel without ancillary soil data (model A), to an LCCC of 0.94 for the model that included all

able 1
ummary statistics of laboratory-measured soil organic carbon (SOC), soil inorganic carbon (SIC), and soil total carbon (STC)
ontent (%), and soil pH of all samples at all sampling depths and all time points.

SOC % SIC % STC% pH

Mean 0.60 0.04 0.63 7.57
Median 0.58 0 0.60 7.49
Minimum 0.09 0 0.09 5.02
Maximum 1.77 1.60 1.85 9.62
Standard deviation 0.279 0.139 0.289 0.935
n 399 399 399 399

able 2
earson’s correlation (r) between response variables (SOC and SIC content) and predictor variables (STC content and pH).

SOC SIC STC pH

SOC 1 – – –

SIC �0.15 1 – –

STC 0.86 0.35 1 –

pH �0.36 0.39 �0.18 1
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predictor variables (model D) (Table 3; Fig. 1). It can be seen in Fig. 1 that model D predicted SOC to
�100% accuracy for multiple soil samples (where the points lie exactly on the 1:1 line) in both the
calibration and validation plot, whereas this did not occur for model A. For SOC content, the inclusion
of pH alone with VisNIR and mid-depth (model B) did not improve predictions, but the inclusion of STC
content with VisNIR and mid-depth (model C) improved predictions significantly. Organic carbon
content had a particularly high positive correlation (r) with total carbon content (0.86) and a weaker

Fig. 1. Observed vs. predicted soil organic carbon (SOC) content (%) values of calibration (left) and validation (right) datasets
predicted with VisNIR spectra and mid-depth (top); and VisNIR spectra, mid-depth, soil pH and soil total carbon contents
(bottom) as predictor variables in Cubist models.

P. Filippi et al. / MethodsX 5 (2018) 551–560 555
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egative correlation with pH (�0.36), which explains their relative importance in the prediction of
OC content (Table 2). Overall, the inclusion of both pH and STC content together with VisNIR and mid-
epth (model D) resulted in the best model. Interestingly, the second best model for predicting SOC
ontent was with the model that contained no VisNIR spectra and only ancillary soil information as
redictor variables (model E), with an LCCC of 0.92 on the validation dataset (Table 3). This indicates
he high value of the ancillary soil information in predicting SOC content.

ig. 2. Observed vs. predicted soil inorganic carbon (SIC) content (%) values of calibration (left) and validation (right) datasets
redicted with VisNIR spectra and mid-depth (top); and VisNIR spectra, mid-depth, soil pH and soil total carbon contents
bottom) as predictor variables in Cubist models.
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While SOC content could be predicted to higher accuracy, the inclusion of STC content and pH data as
predictor variables with VisNIR and mid-depth was even more effective in improving SIC content
predictions with Cubist models (Table 3; Fig. 2). For SIC content, VisNIR and mid-depth only models
(model A) predicted the validation dataset very poorly, with an LCCC of 0.35, whereas the model with the
full suite of input variables (model D) predicted the validation dataset to an accuracy of 0.83 LCCC
(Table 3). While the inclusion of pH alone (model B) did not improve SOC content predictions, it made a

Table 3
Model quality statistics for SOC and SIC content predictions from Cubist models with varying combinations of input variables.

Attribute Model Input variables Dataset LCCC R2 RMSE (%) bias

Soil
Organic Carbon
(SOC)

A VisNIR + mid-depth Calibration 0.93 0.90 0.10 0.00
Validation 0.81 0.67 0.14 0.01

B VisNIR + mid-depth + pH Calibration 0.93 0.89 0.10 0.00
Validation 0.81 0.67 0.14 0.01

C VisNIR + mid-depth + STC Calibration 0.97 0.96 0.06 0.00
Validation 0.90 0.84 0.09 0.02

D VisNIR + mid-depth + pH + STC Calibration 0.98 0.98 0.05 0.00
Validation 0.94 0.89 0.07 0.00

E mid-depth + pH + STC Calibration 0.98 0.98 0.04 0.00
Validation 0.92 0.86 0.11 0.01

Soil Inorganic Carbon (SIC) A VisNIR + mid-depth Calibration 0.83 0.85 0.07 0.00
Validation 0.35 0.14 0.12 0.02

B VisNIR + mid-depth + pH Calibration 0.86 0.87 0.06 0.00
Validation 0.52 0.29 0.11 0.01

C VisNIR + mid-depth + STC Calibration 0.94 0.97 0.04 0.00
Validation 0.82 0.73 0.06 0.01

D VisNIR + mid-depth + pH + STC Calibration 0.97 0.98 0.03 0.00
Validation 0.83 0.70 0.07 0.01

E mid-depth + pH + STC Calibration 0.95 0.95 0.04 �0.00
Validation 0.78 0.66 0.06 �0.00

Table 4
Important predictor variables for each Cubist model, showing the attribute usage (%) for conditions and the models.

Soil organic carbon Soil inorganic carbon

Important Variable Conditions (%) Model (%) Important Variable Conditions (%) Model (%)

Model A Depth 97 32 570 nm 62 65
1900 nm 47 94 Depth 47 12
1400 nm 47 52 2220 nm 44 66
2140 nm 43 50 720 nm 32 66
570 nm 43 94 690 nm 10 66

Model B Depth 97 49 pH 83 26
1400 nm 47 100 1170 nm 51 25
1900 nm 47 98 810 nm 29 23
2140 nm 43 97 1480 nm 20 30
1890 nm 32 98 1390 nm 10 9

Model C STC 76 100 570 nm 86 84
570 nm 58 37 Depth 51 47
Depth 52 37 STC 35 63
2110 nm 22 27 2270 nm 29 –

610 nm 18 38 1080 nm 28 99
Model D pH 97 50 pH 100 20

STC 48 100 1490 nm 46 27
1380 nm 10 52 STC 24 28
1760 nm 4 46 790 nm 9 28
660 nm 3 1 1540 nm 9 27

Model E pH 100 46 pH 100 61
STC 53 98 STC 17 61
Depth 24 29 Depth – 63
– – – – – –

– – – – – –

P. Filippi et al. / MethodsX 5 (2018) 551–560 557
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oteworthy improvement from the simplest model (model A) in SIC content predictions to predict the
alidationdatasettoanaccuracyof0.52LCCC (Table3).Therewasaslightly higherabsolutecorrelation (r)
ith pH and SIC content (0.39) than therewas with pH and SOC content (-0.36), although the correlation
ith STC and SIC contents was much weaker (0.35) than with STC and SOC contents (0.86) (Table 2).
verall, the Cubist models that included VisNIR spectra, mid-depth, pH and STC content as predictor
ariables proved to be the most accurate at predicting SIC content. Similarly to SOC content predictions,
he model with mid-depth, soil pH and STC data and without VisNIR spectra was the second best model
or predicting SIC content, with and LCCC of 0.78 when predicting on the validation dataset (Table 3).

Table 4 shows the five most important predictor variables for each Cubist model, giving the
ercentage of times where the variable was used in a condition, and the percentage of times it was
sed in a linear model. It was clear that the ancillary soil data played a significant role in both the
onditions, and the models (Table 4). For example, in the model that contained the full-suite of
redictors (model D), pH and STC were the most important variables for SOC content, and in the top
hree for SIC content (Table 4). In terms of important wavelengths for the different SOC models; 1400,
900, and 2140 nm were important in both model A and B, and 570 nm was important in models A and
. For the SIC models, wavelength 570 nm appeared in both models A and C, 1480–90 nm in B and D.
igher wavelengths at 2220 nm for model A and 2270 nm for model C were also important predictors
or SIC content (Table 4).

iscussion

oil property predictions and predictor variable importance

Overall, both SOC and SIC contents of samples from the semi-arid region of Hillston could be
ccurately predicted with spectroscopic techniques. It was clear from the results that combining soil
H and STC content data as predictor variables with VisNIR spectra substantially improved the
ccuracy of both SOC and SIC content predictions compared to solely using VisNIR spectra.
In particular, SOC content was predicted with very high accuracy by the model that included

isNIR, mid-depth, pH and STC (model D), with an LCCC of 0.94 when predicted on the validation
ataset compared to an LCCC of 0.81 for the model that contained only VisNIR and mid-depth (model
). This is logical, as SOC content is highly positively correlated (r) with STC content (0.86), and mildly
egatively correlated with pH (�0.36). The importance of these ancillary data in predictions of SOC
ontent was demonstrated in the model that only contained mid-depth, pH and STC (model E), where
espite no VisNIR spectra being included in the model, the calibration dataset could still predict the
alidation dataset to an accuracy of 0.92 LCCC (Table 3). When predicting on both the calibration and
alidation datasets with model D, it was apparent that SOC content was predicted with �100%
ccuracy for several samples, as can be seen in Fig. 1. These very accurate predictions can be logically
xplained. It is likely that the Cubist model is detecting that there is no inorganic carbon in the sample,
nd because Cubist models are essentially rule-based decision trees, the model is simply assigning the
nputted STC value as the SOC content prediction. There are particular VisNIR wavelengths that are
ssociated with SIC [11], and if these wavelengths of the scanned sample do not possess the
ppropriate reflectance, the model is likely determining that there is no SIC present in the sample.
hile the inclusion of soil pH alone with VisNIR and mid-depth did not improve SOC predictions

model B), when this was included in combination with STC (model D), the predictions were slightly
etter than model C (VisNIR, mid-depth and STC), suggesting that there is an advantageous interaction
ccurring with STC and pH in these models.
Studies have reported that the accuracy of predicting SOC and SIC content of samples with VisNIR is

enerally quite similar [12,13], although this depends on a number of factors. In our study, this was not
he case, and the best combination of covariates (model D) predicted the validation dataset with an
CCC of 0.94 for SOC content, and 0.83 for SIC content (Table 3). Again the value of ancillary soil data
as exemplified, with the model that contained mid-depth, pH and STC, and no VisNIR spectra (model
) showing relatively high predictions of SIC content, with an LCCC of 0.78 on the validation dataset. A
ossible reason for the poorer predictions of SIC content compared to SOC content is due to the nature
nd distribution of the SIC dataset. The SIC dataset in our study is zero-inflated (contains many zero
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values), and consequently there are fewer samples that contain some amount of SIC in the training
dataset. In addition, SIC content of samples was not directly measured by laboratory methods, and was
determined by the difference between measured SOC and STC content, which includes a greater
amount of error. While there were multiple occurrences of SOC content being predicted to �100%
accuracy, this was not the case for SIC content. This is logical, as all soil samples in the study contain
some amount of SOC, even if it is a very small amount, but not all samples contain SIC. As a result, the
model could not simply assign the SIC value as the STC value.

While the inclusion of soil pH as a predictor variable with VisNIR and mid-depth (model B) did
not improve the SOC content predictions, it made a significant improvement in SIC content
predictions. Soil pH was found to be positively correlated (r) with SIC content (0.39) and it is known
that very alkaline pH levels indicate the presence of considerable amounts of carbonate in a soil. Soils
that possess a pH of less than 7 (1:5 H2O) also commonly do not contain SIC (Wang et al. 2015).
Although the correlation (r) of SIC with STC content was relatively weak (0.35), including STC content
as a predictor improved predictions on the validation dataset from an LCCC of 0.35 for model A to
0.82 for model C. While combining pH with spectra improved SIC content predictions, this positive
impact seemed to be masked when both pH and STC content were included as predictor variables
together, with the LCCC of predictions on the validation dataset for model D only slightly better at
0.83.

The analysis of variable importance of the different models of SOC and SIC content showed that the
ancillary soil data played a significant role in both the conditions and the models (Table 4). As
expected, the most important wavelengths of the VisNIR spectra for the different models for both SOC
and SIC content varied, however, there were a few wavelengths that were important for several
models. In particular, 570 nm was in the top five most important predictors in model A and B for both
SOC content and SIC content. Other studies have reported similar results, such as Viscarra Rossel et al.
[2], where 570 nm was identified as an important predictor for SOC content, and Ostovari et al. [14],
where 571 nm was an important predictor for calcium carbonate (CaCO3). For SIC content, higher
wavelengths at 2220 nm for model A and 2270 nm for model C were identified as important
predictors, which is also commonly reported by other similar studies (e.g [11,14,15].).

Limitations and opportunities

It must be acknowledged that including STC content data with VisNIR spectra to predict the SOC
content of a sample is likely impractical and unnecessary for many studies. The prediction of SOC content
with spectra alone was of high quality in our study, and this has been the case for many other studies [2].
Our study, however, demonstrates that there is considerable benefit in measuring STC content and
including this in model predictions with VisNIR to predict SIC content. Although inorganic carbon is not
foundin all soils, this approach could be particularlyappropriate forareasthat typically possesssoilswith
carbonates, such as arid and semi-arid areas. Our results also suggest that there is considerable benefit in
including soil pH data with VisNIR spectra to predict SIC content. Soil pH data is also typically more
available than STC content data, as it can be rapidly and cheaply measured by traditional laboratory
methods. As soil pH is often correlated with different soil attributes such as nutrient availability, this also
shows promise for combining soil pH data with spectra to predict other soil properties.

This also opens the discussion as to the possible benefits of combining other cheaply-measured and
readily available soil data with VisNIR spectra to predict different soil properties, as there are many soil
properties that are highly correlated with each other. For example, soil electrical conductivity (EC) is
easily measured by traditional laboratory methods and hence this data is often available. It is known
that EC is well correlated with other soil properties that are typically laborious to measure, such as soil
particle size, and cation exchange capacity [16]. While studies often use ancillary soil data combined
with pedotransfer functions to estimate the value of a soil property [17], there are no studies, to our
knowledge, that use ancillary soil data in combination with spectra to predict another soil property.
There are some limitations to adopting this approach, as including additional soil property data with
spectra in predictive models requires that both the training dataset and prediction dataset possess a
value for that soil property. Despite this, when ancillary soil data is available, it could be very useful in
improving the quality of soil spectroscopic predictions.

P. Filippi et al. / MethodsX 5 (2018) 551–560 559
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onclusions and future directions

It was clear from the results in this study that the inclusions of soil pH and STC content as predictor
ariables substantially improved the prediction of both SOC and SIC content when combined with
isNIR wavelengths of the scanned soil samples. When combined with VisNIR spectra, soil pH data
arkedly improved the prediction of SIC content, which is a particularly significant finding as SIC
ontent is difficult to measure by traditional laboratory techniques, whereas soil pH information is
ften readily available. The overall results from this study suggest that there is promise for including
ther readily available soil data with VisNIR to predict different soil properties, particularly when the
oil property used as a predictor is correlated with the soil property to be predicted.
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