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Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons 

throughout the brain and spinal cord progressively degenerate resulting in muscle atrophy, 

paralysis and death. Recent studies using animal models of ALS implicate multiple cell-types 

(e.g., astrocytes and microglia) in ALS pathogenesis in the spinal motor systems. To ascertain 

cellular vulnerability and cell-type specific mechanisms of ALS in the brainstem that orchestrates 

oral-motor functions, we conducted parallel single cell RNA sequencing (scRNA-seq) analysis 

using the high-throughput Drop-seq method. We isolated 1894 and 3199 cells from the 

brainstem of wildtype and mutant SOD1 symptomatic mice respectively, at postnatal day 100. 

We recovered major known cell types and neuronal subpopulations, such as interneurons and 

motor neurons, and trigeminal ganglion (TG) peripheral sensory neurons, as well as, previously 

uncharacterized interneuron subtypes. We found that the majority of the cell types displayed 

transcriptomic alterations in ALS mice. Differentially expressed genes (DEGs) of individual cell 

populations revealed cell-type specific alterations in numerous pathways, including previously 

known ALS pathways such as inflammation (in microglia), stress response (ependymal and an 

uncharacterized cell population), neurogenesis (astrocytes, oligodendrocytes, neurons), synapse 

organization and transmission (microglia, oligodendrocyte precursor cells, and neuronal subtypes), 

and mitochondrial function (uncharacterized cell populations). Other cell-type specific processes 

altered in SOD1 mutant brainstem include those from motor neurons (axon regeneration, voltage
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gated sodium and potassium channels underlying excitability, potassium ion transport), trigeminal 

sensory neurons (detection of temperature stimulus involved in sensory perception), and cellular 

response to toxic substances (uncharacterized cell populations). DEGs consistently altered across 

cell types (e.g., Malat1), as well as cell-type specific DEGs, were identified. Importantly, DEGs 

from various cell types overlapped with known ALS genes from the literature and with top hits 

from an existing human ALS genome-wide association study (GWAS), implicating the potential 

cell types in which the ALS genes function with ALS pathogenesis. Our molecular investigation 

at single cell resolution provides comprehensive insights into the cell types, genes and pathways 

altered in the brainstem in a widely used ALS mouse model.
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1. Introduction

Amyotrophic lateral sclerosis (ALS), commonly referred to as Lou Gehrig’s disease, is 

a devastating motor neuron disease that currently has no cure, and the mechanisms for 

initiation and progression of the disease are still poorly understood (Chia et al., 2018). 

Most previous studies have focused on motor neurons, but it is now clear that the 

disease is not strictly cell autonomous, and other cell types, including interneurons and 

non-neuronal cells such as astrocytes and microglia (Baufeld et al., 2018; Maniatis et 

al., 2019; Taylor et al., 2016), contribute to the disease. To provide further insight into 

the ALS pathology and to identify new cellular/molecular targets that could be used for 

more effective therapeutic treatment strategies than presently exist, one must determine, 

for all cell types, the unique sets of expressed genes (the transcriptome) responsible 

for cell function and phenotype during the progression of ALS. Furthermore, we must 

characterize, quantitatively, the differentially expressed genes (DEGs) using various animal 

models representative of different mutational causes, and the pathways they regulate, 

to fully reveal disease mechanisms (Gama-Carvalho et al., 2017; Poulin et al., 2016). 

Therefore, an objective, comprehensive understanding of all the vulnerable cell types, cell

cell interactions, as well as, the causal genes and cellular pathways altered during ALS 

progression is necessary to guide the development of more effective therapeutic strategies.

To explore the molecular mechanisms underlying ALS, previous transcriptomic studies 

characterized changes in gene expression profiles and cellular pathways affected in 

susceptible CNS regions such as spinal cord and brainstem that could contribute to the 

complicated pathology of the disease in a variety of cell types (Heath et al., 2013; Krokidis 

and Vlamos, 2018; Taylor et al., 2016). The majority of those studies sequenced RNA 

samples from whole tissue that inevitably contained mixed cell types (Ferraiuolo et al., 

2007), or targeted specific cells within a CNS nucleus, such as motor neurons, using laser 

capture methods (Bandyopadhyay et al., 2013). However, most anatomically defined nuclei 

within the spinal cord and brainstem are heterogeneous, including motor nuclei (Kanning et 

al., 2010), with varied genetic profiles and susceptibility to disease (Hedlund et al., 2010). 
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Although important information has emerged, those studies that sequenced RNA from 

sampled aggregates of cells, as opposed to each individual cell, produced a type of “average” 

of the gene expression profiles, thus masking the cellular heterogeneity and origin, and 

possibly confounding the interpretation of the results.

In this study, we report for the first time the results obtained from single cell RNA 

sequencing (scRNA-seq) technology, Drop-seq (Macosko et al., 2015), applied to pontine 

brainstem from an established ALS transgenic mouse model. Most of the previous studies 

on ALS focused on spinal cord (Krokidis and Vlamos, 2018). However, in the present 

study we sample tissue from pontine brainstem since this region contains neuronal circuitry 

responsible for oral-motor functions (Chandler and Tal, 1986; Kogo et al., 1996; Westberg 

and Kolta, 2011), which are affected during ALS (Riera-Punet et al., 2018). Furthermore, 

we (Seki et al., 2019; Venugopal et al., 2015) and others (Lever et al., 2009) showed, 

previously, significant changes in either physiological or anatomical properties of trigeminal 

motor and proprioceptive sensory neurons using the well-established SOD1 mouse model. 

The advantage of scRNA-seq is that it uses parallel sequencing of thousands of cells in an 

unbiased manner from a defined region of brainstem to uncover both known and novel cell 

types, as well as, the differentially expressed genes in ALS SOD1(G93A) transgenic mice. 

Furthermore, as opposed to sampling one cell type from a defined nucleus, we can profile 

numerous cell types from a region of CNS simultaneously. To exploit this methodology, we 

focus on a comparison between wildtype and ALS mice at postnatal day 100 (p100), a time 

when animals are symptomatic for the disease (Gurney et al., 1994) and would be expected 

to display changes in gene expression profiles in not only motor neurons, but other cell types 

as well.

Our cell type specific investigation of mutant SOD1 mice forms the foundation for 

developing a comprehensive map of the cell types, genes, and pathways altered in this 

classic ALS model in a defined region of brainstem involved in oral-motor control, 

and will serve as a basis for comparison with changes in varied spinal cord cell types 

(Bandyopadhyay et al., 2013; Maniatis et al., 2019) and in other ALS models in future 

studies.

2. Material and methods

2.1. SOD1 mice and tissue dissection

Transgenic mice expressing high levels of human SOD1(G93A) (mutant) and their age

matched non-carrier wild-type (WT) controls were used for the experiments (JAX Strain: 

002726 B6SJL-Tg (SOD1*G93A)1Gur/J) (Gurney et al., 1994). All animal protocols were 

approved by the Institutional Animal Care and Use Committee at UCLA. Experiments were 

performed in two symptomatic and two non-transgenic WT female animals at P100 in 

parallel. The genotype of mice was determined using a standard PCR technique from tail 

samples (Laragen, Inc., CA). Mice were anesthetized using isoflurane vapor inhalation, and 

decapitated. The head was immediately immersed in carboxygenated (95% O2, 5% CO2), 

ice-cold modified ACSF (artificial cerebrospinal fluid) composed of (in mM): 124 NaCl, 

4.5 KC1, 1.2 NaH2PO4, 26 NaHCO3, 10 glucose, 2 CaCl2, 1 MgCl2, with pH 7.28 ± 

0.2. The pontine brainstem was rapidly extracted and adhered to the cutting chamber of 
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a vibratome platform at the rostral end (DSK Microslicer; Ted Pella, Redding, CA); the 

brainstem was vertically supported by an agar block. The cutting chamber was filled with 

ice-cold carboxygenated ACSF as above. Beginning at the caudal level where the exit of 

the facial nerve was markedly visible, a pontine brain block was cut (~1200 μm thick) and 

was collected. This section contained trigeminal sensory, interneuronal, and motor nuclei 

essential for rhythmical jaw movements (Kogo et al., 1996). Additionally, the peripheral 

sensory nuclei in the trigeminal ganglia (TG) were also extracted and collected along 

with the brainstem sample. The TG were bilaterally removed with the aid of a dissection 

microscope and transferred into ice-cold (4 °C) carboxygenated ACSF with composition as 

above. With the aid of a dissection microscope, the ganglia were carefully dissected and 

separated from the nerve roots and collected and placed along with the brainstem section 

in RNAase free 1 × phosphate buffered saline (PBS) in 1 ml vials. Subsequent tissue 

dissociation protocols were then immediately performed.

2.2. Tissue dissociation for Drop-seq

Single cells within the pontine brainstem containing masticatory related neurons (Kogo 

et al., 1996; Westberg and Kolta, 2011) were dissociated using a modified version of a 

previously published protocol (Brewer and Torricelli, 2007). In brief, each tissue was finely 

dissected and incubated in Hibernate A without calcium (BrainBits, Springfield, IL, USA) 

supplemented with 12 mg papain (Worthington, Lakewood, NJ, USA). This solution is then 

transferred to a shaker-incubator (set to 30 °C and 60 rpm) for 30 min. After 30 min, using a 

Pasteur pipette, the solution is triturated three times to release cells from the tissue remnants, 

and transferred to a new collection tube. The media containing the cells is then gently added 

to the OptiPrep density gradient (Sigma Aldrich, St. Louis, MO, USA) and centrifuged at 

800 g for 15 min at 22 °C. The layers consisting of cells were collected, and this solution 

was passed through a 40-μm strainer (Fisher Scientific, Hampton, NH, USA). The cells were 

counted and suspended at a concentration of 100 cells/μl in 0.01% BSA-PBS.

2.3. Drop-seq single cell barcoding and library preparation

Barcoded single cells, or STAMPS (single-cell transcriptomes attached to microparticles), 

and cDNA libraries were prepared as described previously (Macosko et al., 2015) and in 

version 3.1 of the Drop-Seq Laboratory Protocol available online (http://mccarrolllab.com/

download/905/). Briefly, single cell suspensions at 100 cells/μl, EvaGreen droplet 

generation oil (BIO-RAD, Hercules, CA, USA), and ChemGenes barcoded microparticles 

(ChemGenes, Wilmington, MA, USA) which contain unique molecular identifiers 

(UMIs) and cell barcodes were co-flowed through a FlowJEM aquapel-treated Drop-seq 

microfluidic device (FlowJEM, Toronto, Canada) at recommended flow speeds (oil: 

15,000 μl/h, cells: 4000 μl/h, and beads 4000 μl/h) to generate STAMPS. The following 

modifications were made to the online protocol to obtain sufficient cDNA as quantified by 

a high sensitivity BioAnalyzer (Agilent, Santa Clara, CA, USA) to continue the protocol: 

(1) 6000 beads were apportioned into each PCR tube, (2) the number of PCR cycles was 

4 + 11 cycles. (3) multiple PCR tubes were pooled. The libraries were then checked on 

a BioAnalyzer high sensitivity chip (Agilent, Santa Clara, CA, USA) for library quality, 

average size, and concentration estimation. The samples were then tagmented using the 

Nextera DNA Library Preparation kit (Illumina, San Diego, CA, USA) and multiplex indices 
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were added. After another round of PCR, the samples were checked on a BioAnalyzer high 

sensitivity chip for library quality check before sequencing.

2.4. Illumina high-throughput sequencing of Drop-seq libraries

The Drop-seq library molar concentration was quantified by Qubit Fluorometric 

Quantitation (ThermoFisher, Canoga Park, CA, USA) and library fragment length was 

estimated using a Bioanalyzer. Sequencing was performed on an Illumina HiSeq 4000 

(Illumina, San Diego, CA, USA) instrument using the Drop-seq custom read 1B primer 

(GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC) (IDT, Coralville, IA, USA). 

100 bp paired-end reads were generated with an 8 bp index read for multiplexing. Read 1 

consisted of the 12 bp cell barcode, followed by the 8 bp UMI. Read 2 was comprised of the 

single cell transcripts.

2.5. Drop-seq data pre-processing and quality control

A total of 131,035,487 sequencing reads were generated from Drop-seq. Fastq files 

were converted to BAM format and cell and molecular barcodes were tagged. Reads 

corresponding to low quality barcodes with quality score less than 10 was removed using 

DropSeq Tools version 1.12 (http://mccarrolllab.com/download/922/). Next, any occurrence 

of the SMART adapter sequence or polyA tails found in the reads was trimmed, yielding 

113,432,674 cleaned reads. These cleaned reads were converted back to fastq format and 

were aligned to the mouse reference genome mm10 using STAR-2.5.0c (Dobin et al., 

2013). A percentage of the Chemgenes barcoded beads which contain the UMIs and cell 

barcodes were anticipated to have synthesis errors, which were assessed using the function 

DetectBeadSynthesisErrors in DropSeq Tools. The bead synthesis error rate was estimated 

to be 5–10%, within the acceptable range. Finally, a digital gene expression matrix for each 

sample was generated using DropEst (Petukhov et al., 2018), where each row is the read 

count of a gene and each column is a unique single cell.

The transcript counts of each cell were normalized by the total number of UMIs for that 

cell. These values were then multiplied by 10,000 and log10 transformed. Gene counts were 

obtained by summing up the counts of transcripts for that gene. Transcript and gene counts 

were evaluated for each potential cell to filter out cells that i) might represent background 

noise due to ambient RNAs by using a threshold of at least 200 genes and 500 transcripts, 2) 

undergo apoptosis or cell death or contain ambient mRNAs using the following thresholds: 

mitochondrial gene percentage more than 0.2, ribosomal percentage higher than 0.075, and 

predicted gene percentage less than 0.03. Digital gene expression matrices from the four 

samples (2 wildtype and 2 mutant samples) were combined to create three different pooled 

digital gene expression matrices for: 1) all wildtype samples containing 1894 cells, 2) 

all mutant samples containing 3199 cells, and 3) combined wildtype and mutant samples 

containing 5093 cells.

2.6. Identification of major cell clusters and neuronal sub-clusters

The Seurat R package (version 3; https://github.com/satijalab/seurat) was used to project all 

sequenced cells onto two dimensions using t-SNE (Van Der Maaten and Hinton, 2008), and 

assign clusters by Louvain clustering. To further refine the neuronal cell clusters that express 
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classic neuronal markers, we used the self-projection method in the reference component 

analysis (RCA) package (Li et al., 2017), which can distinguish cell types not captured 

by traditional t-SNE-based approaches. Briefly, single-cell gene expression count profiles 

were first normalized using pseudo-counted quantile (pQ) normalization (Sengupta et al., 

2016) and then loglO transformed. Then, genes that were highly expressed (i.e., each gene’s 

expression was greater than log10 50 and also greater than its own median expression value 

across all cells) in at least one of every 15 cells were selected as features. The counts of the 

feature genes of each single cell were projected onto the entire set of cells by calculating 

the Pearson correlation coefficient between the respective expression vector. The vector 

of correlation coefficients for each cell was z-score transformed to define its projection 

vector. Single cells were clustered using average-linkage hierarchical clustering of their 

projection vectors. The cell type clusters within the resulting dendrogram were identified 

by the cutreeDynamic function from the WGCNA (Langfelder and Horvath, 2008) package, 

with deepSplit = 2 and minimum group size (the number of cells in each group) = 10.

2.7. Identification of marker genes of individual cell clusters

We defined cell-cluster specific marker genes from our Drop-seq dataset using a Wilcoxon 

rank sum test (Wilcoxon 1945). Single cells were split into two groups for each test: the cell 

cluster of interest and all remaining single cells. To be considered in the analysis, the gene 

had to be expressed in at least 10% of the single cells from the cluster of interest and there 

had to be at least 1.3-fold higher expression in the cell cluster of interest than in other cells. 

Multiple testing was corrected using the Benjamini–Hochberg method and genes with a false 

discovery rate (FDR) < 0.05 were defined as cell marker genes. The use of both FDR and 

1.3-fold change cutoffs help select significant markers with reasonable specificity to each 

cell cluster.

2.8. Resolving cell identities of the cell clusters

We used two methods to resolve the identities of the cell clusters. First, known cell-type 

specific markers from previous studies were curated and checked for expression patterns 

in the cell clusters identified in our study. Known markers for major brain cell types and 

neuronal subtypes were retrieved from previous studies ((Habib et al., 2016; Nguyen et al., 

2017; Rosenberg et al., 2018; Zeisel et al., 2015); http://mousebrain.org) and the Allen Brain 

Atlas (Hawrylycz et al., 2012). A cluster showing distinct high expression levels of a known 

marker gene specific for a particular cell type was considered to carry the identity of that 

cell type. These markers were sufficient to define all major cell types as well as neuronal 

subtypes.

Second, we evaluated the overlap between known marker genes of previously characterized 

cell types with the marker genes identified in our cell clusters as described in the previous 

section. Overlap was assessed using a Fisher’s exact test and significance was set to p < 

.05. A cluster was considered to carry the identity of a cell type if the cluster marker genes 

showed significant overlap with known markers of that cell type. The two methods showed 

consistency in cell identity determination.
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2.9. Detecting vulnerable cell types in ALS based on global transcriptomic shifts

We adopted the Euclidean distance method (Arneson et al., 2018) to compare the mutant 

cells with wildtype ones for each cell cluster regarding the vulnerability to the SOD1 

mutation based on the global transcriptomic shifts between groups. For each cell type, we 

generate two representative cells, one for the SOD1 mutant group and the other for the 

wildtype condition by calculating the average gene expression of each gene for each group 

within that cell type. We then calculate the Euclidean distance in gene expression between 

these representative cells as a metric to quantify the effect of SOD1 mutant on each cell 

type. To determine if the observed Euclidean distance between mutant and wildtype cells 

within each cell type is significantly larger than that of random cells, we estimated a null 

distribution by calculating the Euclidean distance between randomly sampled cells of the 

given cell type. This permutation approach is repeated for a total of 1000 times to generate 

the null distribution, which is compared to the Euclidean distance generated from the true 

mutant and wildtype groups to determine an empirical p value. To correct for multiple 

testing across all the cell types tested, we applied a Bonferroni correction to retrieve adjusted 

p values.

To visualize the differences between wildtype and mutant cells for individual cell types, the 

fold change (FC) in the Euclidean distance of mutant cells compared with WT cells in each 

cell type was normalized by dividing the empirical Euclidean distance of that cell type by 

the median Euclidean distance of the null distribution of that cell type. The log10(FC) vs. 

−log10(p value) of each cell type were then plotted to visualize and rank the vulnerable cell 

types in ALS.

2.10. Identification of differentially expressed genes and pathways between wildtype and 
mutant cells within each cell type

To identify DEGs within each identified cell type, WT and mutant cells were compared 

for differential gene expression using a Wilcoxon rank sum test. To be considered in the 

analysis, a gene had to be expressed in at least 10% of the single cells from at least one 

of the two groups for that cell type and there had to be at least 1.1-fold change in gene 

expression between the groups. A 1.1-fold change threshold rather than a higher threshold 

was used here to help avoid missing genes with subtle yet biologically important changes 

between WT and mutant (Ben-Shaul et al., 2005; Pedotti et al., 2008). Multiple testing 

correction was done using the Benjamini–Hochberg method to estimate FDR.

The DEGs were then subject to pathway annotations. Because limited numbers of cells were 

captured for certain cell types, using a stringent FDR cutoff yielded few DEGs which limits 

the statistical power for downstream pathway analysis. Previous studies (Bayerlova et al., 

2015) showed that pathway enrichment analysis is less sensitive to random noise because the 

random chance to have multiple genes from the same pathway to be DEGs is low, making 

a less stringent DEG p-value cutoff feasible for pathway analysis. For this reason, we used 

DEGs with a p value < .01 for major cell types, and DEGs with a p value <.05 for neuron 

subtypes (fewer cells in subtypes and hence lower statistical power) in pathway enrichment 

analyses to identify suggestive pathways. Pathways from KEGG, Reactome, BIOCARTA, 

and GO Biological Processes were assessed for overlap with the DEGs using Fisher’s exact 
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test, followed by multiple testing correction with the Benjamini–Hochberg method to obtain 

FDRs. FDR < 5% was used as the cutoff for significance of the pathways.

2.11. Comparison of cell type-specific DEGs with ALS GWAS top hits

Recent ALS GWAS studies have revealed numerous genetic loci associated with ALS 

(Nicolas et al., 2018; van Rheenen et al., 2016). To assess whether the DEGs identified in 

our mouse study implicated similar genes as revealed in human GWAS studies, we retrieved 

the genetic association summary statistics of a recent large scale ALS GWAS (van Rheenen 

et al., 2016) involving meta-analysis of three cohorts: whole-genome sequenced patients 

with ALS (n = 1246) and controls (n = 615), GWAS of 12,577 cases and 23,475 controls in 

a second cohort, and GWAS of 2579 cases and 2767 controls in a third independent cohort. 

The summary statistics from the linear mixed model analysis from this meta-analysis study 

was used in our analysis.

To compare our cell type-specific DEGs with the top genetic hits from this ALS GWAS 

(van Rheenen et al., 2016), we used a previously established method, Mergeomics (Shu 

et al., 2016), to assess enrichment of top ALS GWAS hits among our DEGs from the 

SOD1 model. We first extracted the top 10% single nucleotide polymorphisms (SNPs) from 

the ALS GWAS and then used a marker dependency filter (MDF) in Mergeomics (Shu 

et al., 2016) to obtain independent SNPs by filtering out redundant SNPs with linkage 

disequilibrium r2 > 0.5. To map these filtered top GWAS SNPs to genes, we used the union 

of the following criteria: 1) the distance between GWAS SNPs and the mapped genes are 

within 100 kb, 2) functional connections between SNPs and genes based on the ENCODE 

(ENCODE, 2012) regulatory elements database (https://www.encodeproject.org/), and 3) 

expression quantitative trait loci (eQTL) from brain tissues examined in Gene by Tissue 

Expression (GTEx) (Consortium, 2015) (https://gtexportal.org/home/). The genes mapped 

to human GWAS top SNPs were compared with the DEGs from individual cell types 

of our brainstem single cell study to assess for overlap using the Marker set enrichment 

analysis (MSEA) in Mergeomics (Shu et al., 2016). In MSEA, significance of enrichment 

was evaluated using a chi-square-like statistics and multiple testing was corrected using the 

Benjamini–Hochberg method.

2.12. Comparison of cell type-specific DEGs and pathways with known ALS genes and 
pathways from the literature

We curated 29 known ALS genes reviewed by Chia et al. (Chia et al., 2018). Known ALS 

pathways were collected based on literature review of those previously implicated in ALS 

(Chia et al., 2018; Krokidis and Vlamos, 2018). These known ALS genes or pathways were 

intersected with the DEGs and pathways derived from the current single cell study.

3. Results

3.1. Quality assessment of Drop-seq data

Using Drop-seq (Macosko et al., 2015), we sequenced 1894 and 3199 brainstem cells 

(5093 in total) from wildtype and mutant SOD1 pi00 symptomatic mice, respectively. All 

samples were processed in parallel to exclude batch effects. As shown in Supplementary Fig. 
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1a–d, the Drop-seq library statistics and quality control features were typical of Drop-seq 

and comparable among the four samples. The gene-gene correlations between biological 

samples for individual cell types indicated overall agreement of cell populations in their 

main transcrip tomic features across samples (Supplementary Fig. 1e).

3.2. Drop-seq recovered major cell types in brainstem

We detected 11 cell clusters each containing cells sharing similar gene expression patterns 

using t-SNE based on the digital gene expression matrix across the four biological samples 

(detailed in Methods). Each of the cell clusters was represented by cells from all four 

samples (Fig. 1a). To resolve the cell-type identities for each of the cell clusters, we first 

obtained cluster-specific marker genes, which represent uniquely and highly expressed genes 

in each cluster compared to cells in all the other clusters (Supplementary Table 1). We then 

compared these cell cluster markers to known reference cell type markers (Supplementary 

Table 2) of brain and spinal cord cell types derived from previous single cell studies and 

in situ hybridization images in Allen Brain Atlas (details in Methods). We found distinct 

patterns of overlap between our cell cluster markers and known markers of brain cell types 

(Fig. 1b), allowing us to label the cell clusters with their corresponding cell identities. 

Notably, two clusters expressed classic neuronal markers, and, therefore, were labeled 

as “Neurons1” and “Neurons2”, respectively. Examination of specific cell type markers 

confirmed their distinct cluster-specific expression patterns, such as Aldoc, Aqp4, and Agt 
for astrocytes (Fig. 1c). These analyses support the contention that our data-driven approach 

reliably recovered and distinguished major known cell types in brainstem including neurons, 

oligodendrocytes, microglia, endothelial cells, astrocytes, ependymal cells, vascular and 

leptomeningeal cells (VLMCs), and Schwann cells in TG. We labeled a cell population 

which expressed marker genes that did not overlap with those of known cell types as 

“Unknown”. The heatmap on the top 50 cell-type markers for each cell cluster confirmed 

their cluster-specific expression patterns (Fig. 1d).

3.3. Refinement of the neuronal cell population into 8 sub-clusters

To further characterize neuronal diversity within the brainstem cells, we pooled the cells 

from the Neurons1 and Neurons2 clusters in Fig. 1a, which express classic neuronal 

markers, resulting in 254 mutant cells and 141 wildtype cells. We used a more sensitive 

clustering method, RCA (Li et al., 2017), to detect 8 neuronal sub-clusters (Fig. 2a). 

Annotation with curated neuronal marker genes (Methods), as well as with in situ 

hybridization images in Allen Brain Atlas, helped resolve motor neurons, TG sensory 

neurons, GABAergic interneurons, cerebellar neurons (Purkinje neurons and Gabra6 
expressing cerebellar neurons).

Distinct expression patterns of the various cell type markers in our 8 sub-clusters were 

observed (Fig. 2b). For example, motor neuron populations were identified by the classic 

motor neuron markers Chat, Chodl, Spp1 and Slc5a7 (Fig. 2b). GABAergic interneurons 

were identified by the known markers Gad1, Gad2 and Slc6a5. TG sensory neurons were 

identified based on the expression patterns of known sensory neuron markers Piezo2, 
Mrgprd, Calca, and Nefm (Nguyen et al., 2017) (Fig. 2b). Cerebellar purkinje neurons 
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were identified by known markers Slcla6, Slc9a3, and Car8 ((Rosenberg et al., 2018); http://

mousebrain.org) (Fig. 2b).

Interestingly, three clusters could not be annotated based on known neuronal subtype 

markers. These clusters might represent potential novel neuronal subtypes or states. We 

labeled these clusters as “Interneuron 1 (INT1)”, “Interneuron 2 (INT2)” and “Interneuron 

3 (INT3)”. The marker genes for each of the neuronal sub-clusters are also listed in 

Supplementary Table 1 to facilitate future functional examination of these neuronal clusters. 

The heatmap based upon the top 50 cell type markers for each of the 8 neuron sub-clusters 

confirmed their cluster-specific expression patterns (Fig. 2c).

3.4. Identification of sensitive cell types in ALS

We examined the shifts in global transcriptome patterns within each cell type from both the 

general clusters (Fig. 1a) and the neuronal sub-clusters (Fig. 2a) by testing if the Euclidean 

distance of gene expression profiles of cells between the ALS and wildtype groups is 

larger than expected by random chance (details in Methods). This analysis revealed that the 

majority of the cell types including astrocytes, oligodendrocytes, oligodendrocyte precursor 

cells (OPCs), Schwann cells, microglia, ependymal, endothelial, and neurons, demonstrated 

significant global transcriptomic shifts between mutant and wildtype cells (Fig. 3a). Among 

the neuronal subpopulations, two uncharacterized neuronal populations, INT1 and INT2, 

showed significant global transcriptomic shifts. This analysis indicates that transcriptional 

programs were altered in the majority of brainstem cell types of SOD1 mutant mice.

3.5. Identification of genes related to ALS in individual cell types

To determine specific genes that may be involved in ALS pathogenesis in each cell type and 

to further refine the sensitive cell types, we identified differentially expressed genes (DEGs) 

between mutant and WT cells within each cell cluster (summary of DEGs in Table 1; all 

DEGs listed in Supplementary Table 3). At p < .01, the cell types that had hundreds of DEGs 

between mutant and WT cells are ranked based on the number of DEGs over the number 

of expressed genes of that cell type, in the following order: astrocytes (4.72% of expressed 

genes as DEGs) > oligodendrocytes (3.73%) > Microglia (1.63%) > Neurons2 (1.58%) 

> OPC (1.52%) > endothelial (1.49%) > unknown (1.35%) > Schwann Cells (0.97%) > 

Neurons1 (0.85%) > Ependymal (0.39%) (Table 1). When neuronal subpopulations were 

considered, based on the percentages of DEGs among expressed genes at p < .01, cellular 

sensitivity was ranked in the following order: GABAergic (1.77%) > INT3 (1.17%) > INT1 

(1.03%) > cerebellar neurons (0.85%) > TG sensory (0.39%) > INT 2 (0.13%) (Table 2). 

At a stringent cutoff FDR < 5%, much fewer DEGs were identified due to multiple testing 

penalties and statistical power issue particularly for neuronal subpopulations. The heatmap 

based upon the top 50 cell-type specific DEGs confirmed their discrimination between 

mutant and WT cells (major cell types in Fig. 3c, neuron subtypes in Fig. 3d).

3.6. Pathways altered in ALS in individual cell populations

We next annotated the DEGs with curated biological pathways from KEGG, Reactome, 

BIOCARTA, and Gene Ontology databases to identify key pathways that could explain 
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fundamental aspects of the ALS pathology and the cell types involved (Tables 1 and 2; full 

pathway list in Supplementary Table 4).

Among the known pathways previously implicated in ALS (Chia et al., 2018; 

Krokidis and Vlamos, 2018), our cell-type specific DEGs recapitulated immune 

system (microglia), neurogenesis (astrocytes, oligodendrocytes, Neurons2), and synaptic 

organization/transmission (oligodendrocytes, Neurons1) related pathways (Table 1).

More importantly, our analysis revealed potential novel ALS pathways from the major 

cell types, such as “regulation of RAC protein signal transduction and peptidyl lysine 

modification” in microglia, “toxin transport and cell differentiation” in ependymal cells, 

“response to organophosphorus” in Schwann cells within TG, and “collagen formation” in 

VLMC.

For the neuronal subtypes (Table 2), GABAergic DEGs are related to “response to 

temperature stimulus” pathway (Sod1, St8sla1, Ano3, Trpv2, Stac, Pirt, Eif2b5, Nfkbia). 

DEGs from motor neurons were enriched for voltage-gated potassium channels/potassium

calcium transporter (Kcnc3, Kcna1, Slc24a2) and axon regeneration (Nefl, Chl1) pathways. 

TG sensory neurons showed alterations in “intermediate filament based process” pathway 

(Sod1, Ndel1, Dst), “negative regulation of myeloid leukocyte differentiation” (Calca, 
Cartpt, Runx1), and “detection of temperature stimulus involved in sensory perception” 

(Calca, Lxn) pathways. Specific pathways were also identified for the unknown neuronal 

subpopulations: “Endocardium development and positive regulation of ERBB signaling” 

pathway in INT1 subtype; “cellular response to toxic substance” in INT2; “positive 

regulation of dendritic spine development” in INT3. These additional cell-type specific 

pathways may also participate in ALS pathogenesis or protection, and warrant further 

validation.

3.7. Prioritization of global and cell-type specific DEGs

As numerous DEGs were identified from individual cells, prioritization of the DEGs is 

necessary to pinpoint potential targets, as demonstrated in our previous single cell study 

(Arneson et al., 2018). To this end, we evaluated the cell-type specificity of DEGs to 

prioritize genes that either show consistent alterations across cell types or demonstrate 

cell-type specificity. The genes that are consistently perturbed in brainstem, regardless of 

cell types, could serve as general targets in a global manner, whereas the cell type-specific 

DEGs could facilitate precise targeting of pathogenic pathways in specific cell types in ALS.

Notably, and as expected, the most consistent DEG across cell types was SOD1, confirming 

it is the major genetic perturbation in mutant mice (Table 3 for major cell types and Table 

4 for neuronal subtypes). In addition to SOD1, numerous genes (e.g., Malat1, mt-Cytb, 
mt-Rnr2) also showed significant differential expression in many cell types with mostly 

consistent directional changes across cell types. There were also DEGs that were highly 

cell-type specific, indicating unique alterations in individual cell types as exemplified in 

Tables 3 and 4 (full list in Supplementary Table 5 and 6). For example, Tmem255a is a TG 

sensory-specific DEG and Scn2a1 is a motor-specific DEG.
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3.8. Overlap of cell-type specific DEGs from the SOD1 mutants with known ALS genes 
and GWAS top hits in humans

To assess the relevance of the DEGs identified in our mouse study to human ALS, we 

compared our DEGs with curated ALS genes from the literature (Comley et al., 2015; 

Darmanis et al., 2015; Poulin et al., 2016), as well as candidate genes mapped to ALS 

GWAS top hits in human studies (van Rheenen et al., 2016).

As shown in Tables 1 and 2, out of the 29 known ALS genes (Chia et al., 2018), 14 were 

among our cell-type specific DEGs. These include Sod1, Hnrnpa2b1, Pfn1, Fus, Vcp, Matr3, 
Nek1, Nefh, Ubqln2, Atxn2, Chmp2b, Tuba4a, Spg11, and Optn. Interestingly, several of 

the known ALS genes (Nek1, Spg11, Tuba4a and Chmp2b) were DEGs in uncharacterized 

neuronal cell populations. These neuronal populations might be where these genes function 

and play a role in ALS pathogenesis (Table 2).

Comparison of our DEGs with the recent human ALS GWAS top hits (shown in Table 5; 

all results shown in Supplement Table 7) also revealed numerous overlaps, which mostly 

showed down-regulation in our study. Additionally, there was a statistically significant 

over-representation of DEGs from endothelial cells, Neurons2 and neuronal subpopulations 

(TG sensory and INT1) among the top human ALS GWAS signals.

The above comparisons between the DEGs and human ALS genes support the contention 

that some of the DEGs uncovered in the present study using the SOD1 mouse model have 

biological relevance to human ALS pathogenesis.

4. Discussion

To better understand the molecular alterations in ALS in individual cell populations in 

the brainstem, we conducted a single cell investigation using SOD1(G93A) mice, a well

established ALS mouse model (Gurney et al., 1994). This is the first study to investigate 

single cell RNA expression within pontine brainstem using this high-throughput high

resolution approach. We were able to not only capture most major cell types and neuronal 

subtypes present in brainstem, but also detect previously uncharacterized cell types, thus 

exploiting the power of the scRNA-seq method. Based on the overall transcriptomic shifts, 

as well as DEGs in individual cell clusters, we found that most of the major cell populations 

(e.g., astrocytes, oligodendrocytes, microglia, Schwann cells, ependymal cells, neurons) and 

several neuronal subpopulations (e.g., uncharacterized neuronal subtypes INT1 and INT2) 

show alterations in their gene expression patterns, suggestive of sensitivity in ALS. We 

further identified numerous genes and pathways altered in the mutant mice in individual 

cell types, recovering not only previously known ALS genes and pathways, such as immune 

functions, neurogenesis and synaptic transmission, but new genes and biological processes 

in specific brainstem cell types such as toxin transport in ependymal cells and response to 

organophosphorus in Schwann cells. Many DEGs were consistently altered across cell types 

(e.g., Malat1, mt-Cytb, mt-Rnr2, Grid2), while others were cell type specific (e.g., motor 

neuron-specific DEG Scn2a1). Our DEGs also overlapped with human GWAS of ALS genes 

and thus, supports the relevance of our findings from mice to human disease. Overall, our 

cell-type specific investigation of the mutant SOD1 mice forms a comprehensive map of the 
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cell types, genes, and pathways altered in this ALS model in a defined region of brainstem 

involved in control of jaw movements, and will serve as a basis for comparison with spinal 

cord cell types.

Previous ALS studies focused, predominately, on spinal cord and brainstem motor neurons 

and the genes and pathways altered at different stages of the disease (Krokidis and Vlamos, 

2018; Van Damme et al., 2017). More recently, supporting cell types have been studied as 

well (Serio and Patani, 2018). However, to fully understand the origin of, and underlying 

mechanism(s) for progression of ALS, as well as the molecular basis for changes in 

neurons and supportive cells, a more comprehensive catalog of cell types affected within 

the CNS is necessary. scRNA-seq methodology provides this opportunity (Chen et al., 2017; 

Sathyamurthy et al., 2018; Saunders et al., 2018; Zeisel et al., 2015). In the present study 

we examined transcriptional changes at single cell resolution within a defined region of 

brainstem containing cells involved in jaw movements (Tanaka et al., 1999; Westberg and 

Kolta, 2011). Previously, we showed significant early alterations in membrane excitability at 

presymptomatic ages (P8–12) in both masticatory motor neurons and proprioceptive sensory 

neurons of jaw closer spindle origin (Trigeminal Mesencephalic V (Mes V neurons)) from 

ALS mice (Seki et al., 2019; Venugopal et al., 2015). Furthermore, we observed that in 

symptomatic SOD1 mice, at P90 there is severe vacuolization, and reduced motor neuron 

count in the trigeminal motor nucleus (unpublished observation). Clinically, 20–30% of 

the ALS cases present with progressive bulbar palsy (Riera-Punet et al., 2018) affecting 

facial, masticatory and swallowing functions. However, most human ALS cases, regardless 

of the form of ALS, will involve, eventually, reduction in jaw muscle force production 

and movement capabilities (Riera-Punet et al., 2018). A benefit of studying this region of 

brainstem is that the extensively studied sensory, motor and interneuronal nuclei involved in 

jaw movements (Kogo et al., 1996; Westberg and Kolta, 2011) are well defined, and the use 

of scRNA-seq provides the opportunity to unravel and sub-classify neurons and supporting 

cells according to gene expression profiles within these heterogeneous nuclei.

Motor neuron degeneration in ALS most likely has a cell autonomous and non-autonomous 

contribution from glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) to 

the disease process (Rizzo et al., 2014; Serio and Patani, 2018). Our study confirmed 

the involvement of these cell types in ALS as demonstrated by the global shifts in their 

transcriptome and the large numbers of DEGs and pathways identified. For example, in 

mutant SOD1 models, oligodendrocytes are implicated in initiation of disease (Kang et al., 

2013), and we found that pathways related to neuron ensheathment and neurogenesis were 

altered in ALS oligodendrocytes, which could explain how this cell type may contribute to 

ALS development. We also found that immune pathway genes were perturbed in microglia, 

which agrees with previous spinal cord data on how inflammatory events elicited by 

microglia may drive disease progression (Boillée et al., 2006; Frakes et al., 2014; Yamanaka 

et al., 2008). More importantly, we found that the majority of the brainstem cell types 

and neuronal subtypes, including previously uncharacterized cell populations, exhibit global 

transcriptomic shifts and/or significant DEGs. These results significantly broaden the scope 

of the cell types that may participate in ALS pathogenesis, and open the possibility for 

investigating the specific roles of each cell type in ALS pathology and for designing targeted 

treatments more precisely against individual vulnerable cell types.
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Previous studies suggested neuronal hyperexcitability and excitotoxicity in upper and 

lower motor neurons, and subsequent internal calcium dysregulation, as potential causative 

mechanisms for neuronal death depending on motor neuronal type (slow vs. fast motor 

units) (reviewed in (Fogarty, 2018)), although this is contentious (Leroy and Zytnicki, 2015). 

A novel finding in the motor neuron cluster from ALS mice in the present study was 

the upregulation of the sodium channel gene Scn2a, which codes for the sodium channel 

protein NaV 1.2 (de Lera and Kraus, 2015), and downregulation of the potassium channel 

genes, Kcna1 and Kcnc3 (Fig. 4b), important genes which code for the delayed rectifier 

and transient A type channels, respectively, and contribute to resting potential and spike 

repolarization, as well as control of discharge frequency. Such changes in both sodium 

and potassium ion channel function could account for hyperexcitability observed in motor 

neurons in ALS. The present data provide a molecular basis for previous electrophysiology 

data regarding hyperexcitability observed in both animal models and patient-derived cellular 

models of ALS (Fogarty, 2018; Nakata et al., 2006; Wainger et al., 2014), as well as 

our previous electrophysiological data from postnatal stage of SOD1 mouse (Venugopal 

et al., 2015) demonstrating hyperexcitability in trigeminal motor neurons, albeit obtained 

in presymptomatic ALS mice. Additionally, we found Slc24a2, a DEG related to Ca2+ 

transport and control of internal Ca2+ concentration, was also downregulated in the motor 

cluster (Fig. 4b), and a number of DEGs relating to synaptic function and calcium ion 

homeostasis in the GABA interneuron subcluster were altered as well (Fig. 4a). Changes in 

ion channel function related to control of membrane excitability, synaptic transmission, and 

calcium homeostasis are likely contributors to ALS pathogenesis (Seki et al., 2019; Starr and 

Sattler, 2018; Venugopal et al., 2015; Wainger et al., 2014).

Among the DEGs revealed in individual cell types, many were previously known ALS 

genes. For example, 14 out of the 29 known ALS genes (Comley et al., 2015; Darmanis 

et al., 2015; Poulin et al., 2016) were among our DEGs in brainstem cell populations. 

Interestingly, known ALS genes Nek1, Spg11, Tuba4a and Chmp2b were altered in 

previously uncharacterized neuronal populations in our mouse model. These findings help 

point to the specific cell populations in which these ALS genes might function and set the 

stage for future characterization of these neuronal populations, as well as the functions of the 

ALS genes in these cell types. Additionally, the DEGs from various cell types, including 

astrocytes, endothelial cell, mature oligodendrocytes, and neuronal subpopulations (TG 

neurons and the uncharacterized neuronal sub-population INT1), also showed overlap with 

human ALS GWAS hits. For example, See13, a GWAS gene related to vesicle-mediated 

transport and signaling by Rho GTPases, is downregulated in INT1 neurons. Similarly, 

GWAS candidate gene Sez6l, which may contribute to specialized endoplasmic reticulum 

functions in neurons, is downregulated in the INT3 neuronal cluster. The altered expression 

of numerous other ALS GWAS genes in the SOD1 mice suggests that ALS genes are tightly 

connected, as perturbation of the SOD1 gene in this mouse model alters the expression of 

other known ALS genes. It is possible that despite the heterogeneity in the causal mutations 

in human patients, similar sets of downstream genes and pathways in tightly connected 

networks are altered, aligning with the omnigenic model of human complex diseases (Boyle 

et al., 2017).
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In addition to confirming pathways implicated in previous motor neuron studies 

(Brockington et al., 2013; Krokidis and Vlamos, 2018), our scRNA-seq analysis supports 

involvement of these pathways in other cell types as well. For instance, DEGs from 

endothelial cells and microglia were associated with immune pathways; DEGs from 

ependymal and an unknown cell type were associated with response to stress; the 

neurogenesis pathway was found to be altered in numerous major cell types (astrocytes, 

oligodendrocytes, OPC, Neurons2, ependymal, Schwann cells); and synaptic transmission 

related pathways were enriched among DEGs not only from GABAergic interneurons but 

also from cerebellar neurons. In the “synaptic signaling” pathway, GABAergic specific 

DEGs Nrxn3 and Grid2 are upregulated whereas Sncg, Krfn5, Hspa8, Syt7, Grik1, 
Kcnmb2, Cask, Lrrk2, Prkcg are down-regulated; in the pathway “regulation of synapse 

structure”, cerebellum specific DEGs Bai3, Ctnna2, Lphn3, Ntrk2, Cntn4, and Fgf14 are 

down-regulated. Interestingly, in an unknown general cell cluster and an unknown neuron 

subtype (INT1), specific DEGs (e.g., Sod1 and Ubb, both upregulated) were enriched 

for the “regulation of mitochondrial membrane potential” pathway. These results suggest 

that specific cell types in the brainstem, which demonstrate perturbations in known ALS 

pathways, are not limited to motor neurons and the cell specific DEGs provide potential 

novel targets for investigating the pathogenic pathways in ALS.

Our analyses showed potential novel cell-type specific ALS pathways, as well. For instance, 

pathways involved in “toxin transport” and “cell differentiation” in ependymal cells, 

“response to organophosphorus” in Schwann cells, and “collagen formation” in VLMC 

were observed. Among these, “toxin transport and organophosphorus responses” have been 

previously linked to environmental insults and triggers of ALS (Merwin et al., 2017; Yu 

and Pamphlett, 2017). Therefore, our findings implicate the connection of the genetic insult 

(SOD1 in this case) with environmentally responsive pathways. The exact roles of these 

pathways and the associated cell types in ALS warrant further investigation.

Additionally, our study facilitated prioritization of potential target genes that are either 

independent of cell types or cell-type specific. Top cell-type independent DEGs include 

the mitochondrial genes mt-Rnr1 (upregulated), mt-Rnr2 (downregulated), and mt-Cytb 
(upregulated). mt-Rnr1 and mt-Rnr2 encode small mitochondrial peptides MOTS-c and 

humanin, respectively. MOTS-c is essential for regulation of gene expression and 

mitochondrial homeostasis (Kim et al., 2018), and humanin (Zapala et al., 2010) is 

implicated as a therapeutic target for numerous neurodegenerative disorders. Although 

humanin has been implicated in ALS before (Kovanda et al., 2018), our study is the 

first to reveal its consistent alteration across most cell populations in brainstem, thereby 

offering strong evidence that mitochondrial peptides may serve as major biomarkers or 

targets that are not cell-type specific. Other consistent DEGs across cell types that may 

also serve as cell-independent global markers or targets for ALS include Malat1, a long 

noncoding RNA important for cell cycle regulation (Tripathi et al., 2013) and neurorepair 

(Zhang et al., 2017); Ubb, a proteasome component; Grid2, a non-conventional glutamate 

receptor; Rora, a key regulator of diverse functions ranging from embryonic development, 

cellular differentiation, to immunity, circadian rhythm, and metabolism; and Gm26924 with 

unknown function. Many of these genes have not been implicated in ALS previously. Cell
type specific DEGs include motor-specific Scn2a (upregulated), which could mediate motor 
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neuron hyperexcitability, and TG neuron specific Tmem255a (upregulated) and cerebellar 

neuron specific Gm5914 (downregulated), whose functions remain poorly understood. These 

cell specific DEGs provide potential novel targets for investigating the pathogenic pathways 

in ALS in specific cell types.

5. Conclusions

In this first high-throughput single cell transcriptome study of the brainstem using a SOD1 

mutant ALS model, we characterized thousands of cells representing the majority of the 

brainstem cell types. We identified cell types that show sensitivity to the SOD1 mutation, as 

well as, cell-type specific genes and pathways altered in the mutant, thus recapitulating both 

known ALS genes and pathways and revealing novel ones that warrant further investigation. 

Our findings provide comprehensive molecular insights into ALS pathogenesis in a cell-type 

specific manner for a defined region of brainstem. The results add to a growing compendium 

of molecular characterization of CNS cell types and stimulate future studies using additional 

ALS human and animal models for determination of similarities/dissimilarities in gene 

expression profiles in both resistant and vulnerable cell types at single cell resolution. Such 

studies should lead to new insights into the pathogenesis of the disease and provide new 

targets for development of therapeutic intervention.
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Fig. 1. 
Major brainstem cell clusters and cell identities, a) t-SNE plot of the major brainstem cell 

types recovered from our scRNA-Seq data from 2 wildtype and 2 mutant mice, with each 

cell colored with the genotype: red and orange dots represent mutant cells from two mutant 

mice; blue and green dots represent wildtype cells from two wildtype mice, b) Significant 

overlap of marker genes of each cluster with known gene signatures of major brain cell 

types, c) The violin plots of known cell marker genes in our cell clusters. The width of 

violin plots shows the probability of the number of cells taking the given expression value, 
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d) Heatmap of top 50 cell-type specific makers (columns) on all 5093 cells (rows ordered by 

cell clusters with each row representing a cell). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Neuronal sub-clusters and cell identities, a) t-SNE plot of the neuronal sub-clusters 

recovered from our scRNA-Seq data from 2 wild type and 2 mutant mice, with each cell 

labeled with the genotype: red and orange dots represent mutant cells from two mutant mice; 

blue and green dots represent wildtype cells from two wildtype mice, b) The violin plots of 

known neuronal subtype marker genes in our neuron sub-clusters, c) Heatmap of the top 50 

cell-type specific makers (columns) on neuron cells (rows ordered by neuron sub-clusters 
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and each row representing a cell). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Cell types that show overall transcriptome shifts between wildtype and mutant cells based 

on a Euclidian distance-based analysis, a) Scatter plot of normalized logFC vs −log10 

(p values) from the Euclidian distance analysis, b) Scatter plot of normalized logFC 

vs. −log10 (p values) of neuronal subtypes. LogFC represents fold change of Euclidian 

distance between wildtype and mutant cell over the distance between random pools of cells; 

−log10(pval) of major brain cell types represents the statistical significance of the Euclidian 

distance of empirical data compared to randomized data, c) Heatmap of top 50 DEGs 
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in individual major cell clusters, with cells in wildtype (blue sidebar) and mutant groups 

(red sidebar) arranged in rows and DEGs arranged in columns, d) Heatmap of the top 50 

DEGs (columns) in individual neuronal sub-clusters, with cells in wildtype (blue sidebar) 

and mutant groups (red sidebar) arranged in rows and DEGs arranged in columns. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 4. 
Expression change of select DEGs (wildtype cells in blue and mutant ones in red) in 

GABAergic, motor and sensory neurons. The stars above the violin plots represent the 

significance in gene expression changes: *0.01 < p value < .05; **0.001 < p-value < 

.01; *** p-value <.001. a) Expression changes of DEGs related to synaptic signaling in 

GABAergic neurons. b) Expression changes of DEGs related to potassium channel function 

in Motor neurons. c) Expression changes of top DEGs in the peripheral sensory neurons. 
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(For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.)
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