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Abstract: Catheter ablation (CA) is a commonly used treatment for persistent atrial fibrillation (AF).
Since its medium/long-term success rate remains limited, preoperative prediction of its outcome is
gaining clinical interest to optimally select candidates for the procedure. Among predictors based
on the surface electrocardiogram, the dominant frequency (DF) and harmonic exponential decay
(γ) of the fibrillatory waves ( f -waves) have reported promising but clinically insufficient results.
Hence, the main goal of this work was to conduct a broader analysis of the f -wave harmonic spectral
structure to improve CA outcome prediction through several entropy-based measures computed
on different frequency bands. On a database of 151 persistent AF patients under radio-frequency
CA and a follow-up of 9 months, the newly introduced parameters discriminated between patients
who relapsed to AF and those who maintained SR at about 70%, which was statistically superior
to the DF and approximately similar to γ. They also provided complementary information to γ

through different combinations in multivariate models based on lineal discriminant analysis and
report classification performance improvement of about 5%. These results suggest that the presence
of larger harmonics and a proportionally smaller DF peak is associated with a decreased probability
of AF recurrence after CA.

Keywords: persistent atrial fibrillation; catheter ablation; outcome prediction; fibrillatory wave
analysis; electrocardiogram; spectral analysis; dominant frequency; harmonic content

1. Introduction

Atrial fibrillation (AF) is the most frequently encountered cardiac arrhythmia in
clinical practice [1]. This disruption of heart sinus rhythm (SR) affects roughly 37.5 million
people worldwide [2], thus making it one of the most important public health problems
and a significant cause of rising healthcare costs in developed countries [3]. Although
the mechanisms underlying AF are not fully understood, it requires a combination of
triggers, mainly located near the pulmonary veins (PVs), and a vulnerable atrial substrate
characterized by reentry circuits [4]. AF is commonly linked to life-altering symptoms such
as palpitations, fatigue, chest pain, shortness of breath, and dizziness [5]. This arrhythmia
is not a direct cause of death, but it is associated with a two-fold increase in mortality
because of a higher risk of heart failure and ischemic stroke [6].

Depending on the duration and recurrence of arrhythmic episodes, AF is classified into
several stages [7]. However, the disease is not static and often progresses from paroxysmal
to sustained forms over the course of a few years; this is usually correlated with irreversible
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electrical and structural remodeling of the atrial substrate that, in turn, promotes perpetua-
tion of the arrhythmia [4]. Hence, early diagnosis of AF and finding the best way to restore
SR as soon as possible is highly advisable [8]. To that purpose, pharmacological or electrical
cardioversion strategies are frequently used in clinical practice until they are no longer
effective or not recommended. In that case, catheter ablation (CA) has become a commonly
used alternative [9] thanks to its superior ability over antiarrhythmic drugs for restoring SR
in the midterm [10]. This therapy has evolved during the last two decades, and the most
common protocol remains based on PVs isolation (PVI) [11]. Despite its usually successful
initial outcome, it is not as effective in patients with persistent AF compared to patients with
paroxysmal AF in the medium/long term, since approximately 40% to 50% of them relapse
to AF within the first year [9]. Thus, the high complexity in the management of catheters
and the complications associated with the procedure encourage careful assessment of the
benefits and risks for each patient [12].

This tailored assessment, along with the clinical, social, and economic challenges that
AF will involve in the coming decades [2], motivate the emerging clinical interest in the
development of preoperative predictors of CA outcome, which could be helpful in the
selection of patients who would benefit the most from the procedure [13]. Some benefits of
choosing optimal candidates for CA are the reduction of hospitalization rates, limitation of
repeated procedures, assignment of more appropriate AF treatments to improve patient
quality of life, and minimization of the risks and costs associated with AF treatment [13].
So far, some clinical indices have been proposed to anticipate midterm CA outcome, such
as the total duration of AF, the duration of the last arrhythmic episode, left atrial diameter,
and history of hypertension or diabetes, among others. However, most of these parameters
have reported controversial results, so there is no strong evidence to consider them as
reliable single predictors of AF recurrence after the procedure [14].

Some authors have pioneered the use of parameters manually measured on the surface
electrocardiogram (ECG) obtained prior to CA. Uncoordinated electrical conduction in the
atria means the typical P-wave is replaced on the ECG by undulatory activity known as
fibrillatory waves ( f -waves). Manual measurement of the time between these waves, i.e.,
the AF cycle length (AFCL) [15], and their amplitude [16,17] have been positively correlated
with midterm CA results. During ablation, invasive measures of the AFCL or its inverse, i.e.,
the dominant frequency (DF), in different atrial structures have also been confirmed to have
a direct link with AF recurrence several months after the procedure [18–21]. However, these
indices have the disadvantage of being based on manual and/or invasive ECG metrics,
which entails a high degree of subjectivity in measurement during or after CA intervention.

To overcome these limitations and to achieve predictors available for the selection
of candidates for CA, more recent studies have addressed non-invasive extraction of the
aforementioned metrics through automated processing of the preoperative surface ECG.
Researchers have reported performance at least as good as previously proposed clinical
parameters and their manually or invasively derived versions [22]. Beyond the single DF
and f -wave amplitude (FWA), the presence of large harmonics of the DF has also been
identified as a promising predictor of CA outcome [18,23]. Higher harmonic content in the
f -wave spectral distribution has been associated with a greater degree of organization of
the atrial electrical activity and with higher probability of maintaining SR after different
AF treatments, including CA [18,23], electrical cardioversion [24,25], and pharmacological
therapy [26]. However, only the power contained by the DF and its harmonics has been
analyzed to date, and the main goal of the present work is, hence, to conduct a broader
analysis of the f -wave harmonic spectral structure to improve preoperative prediction of
CA outcome in persistent AF patients.

2. Materials and Methods
2.1. Study Population

The population enrolled in this work consisted of 151 AF patients (35 women and
116 men) between 20 and 82 years old, with 59 years being the rounded mean age of the
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group. They were consecutively treated with radiofrequency CA for the first time following
standard clinical indications at two Spanish hospitals (i.e., University Hospitals of Toledo
and Albacete), thus constituting a retrospective database. The ablation procedure started
with patient sedation using general anesthesia or conscious sedation after suspending
all antiarrhythmic drug therapy except amiodarone >5 half-lives before the intervention.
Anticoagulant drugs were also used to avoid thromboembolic complications. Indeed, an
initial bolus of heparin was administered, followed by additional doses properly activated
by coagulation-time monitoring throughout the procedure. Isolation of PVs was achieved
by creating electrically impenetrable boundaries surrounding their ostia using a radiofre-
quency source [27]. Thus, a catheter was used to generate point-by-point lesions through
the release of radiofrequency current for at least 30 s and then creating a contiguous antral
circumferential line around the PVs, whose location were determined using a mapping
catheter [28]. The procedure finished when all PVs were successfully isolated. If AF still
remained at that point, SR was restored by electrical cardioversion.

The procedure was initially successful in all patients, who were monitored for several
hours after the intervention without presenting any important complications. They received
anticoagulant and antiarrhythmic drugs according to clinical judgment and had a quite
standard follow-up with a visit, ECG, and 24 h Holter at 3 and 9 months, as recommended
by the current 2020 ESC guidelines [7]. Thereafter, visits each 12 months were planned.
A blanking period of 3 months was considered to define every episode of AF or other
arrhythmias lasting more than 30 s as recurrence, but the patients were advised to go at
any moment to an emergency room in case of AF-related symptoms.

2.2. Data Preprocessing

The database of this study consisted of a standard 12-lead ECG signal continuously
recorded just before starting the CA procedure while the patient was under AF. Hence, a
total of 151 ECG recordings with variable durations of between approximately 6 s and 5 min
were available. The signals were acquired by the equipment available in the hospitals, with
16-bit resolution and a sampling rate of 977 Hz. For the present study, lead V1 was selected
since it contains the f -waves with the greatest amplitude regarding ventricular activity,
thus favoring their automated extraction and accurate analysis. In fact, the electrode that
records this unipolar lead is located in a standard position very close to the atria, so it is the
most appropriate lead for recording AF activity [29].

The selected ECG signal was then preprocessed to minimize the perturbations un-
avoidably recorded together with the electrical heart activity and, consequently, to improve
further analysis of the f -waves. Since the patient was at rest during recording of the surface
ECG before CA, the main disturbances presented on the ECG consisted of baseline wander,
powerline interference, and disturbances associated with high-frequency noise sources [30].
The low-frequency component associated with baseline wander was estimated using a
low-pass filter with a cut-off frequency of 0.8 Hz and zero-phase distortion through an
IIR structure and forward/backward filtering and then subtracted from the original ECG
signal [30]. Powerline interference was removed by a denoising algorithm based on the
stationary wavelet transform. It applies a novel threshold function to the wavelet coeffi-
cients for filtering the unwanted frequency and its harmonics, simultaneously minimizing
the distortion of the rest of the components [31]. The algorithm was also able to remove
most of the high-frequency noise, but a low-pass forward/backward IIR filter with a cut-off
frequency of 70 Hz was additionally used to make the ECG signal as clean as possible [30].

Finally, f -wave characterization requires that ventricular activity is first canceled.
Although there are different techniques for this, f -waves were automatically extracted from
the preprocessed ECG signal using a well-established QRST cancellation technique based on
adaptive singular value cancellation (ASVC). The algorithm firstly obtained a cancellation
template from the singular-value decomposition of a set of QRST complexes that were
temporally aligned with regard to the R-peak. Then, the resulting template was adapted
in amplitude for the cancellation of each single QRST complex. Notably, this method
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avoids spikes caused by discontinuities between QRST complexes and the subsequent
TQ intervals through a softening approach that considers the differences between the
cancellation template and the QRST segment at its beginning and end to minimize sudden
transitions [32]. As an example, Figure 1 shows the f -waves obtained from a typical
preprocessed ECG interval.

(a)

(b)

Figure 1. Example of a common (a) preprocessed ECG interval and (b) its f -waves extracted via a
well-known QRST cancellation method [32].

2.3. Spectral Characterization of the f -Waves

Given the disparity in the ECG length acquired from the patients, the preprocessed
recordings were segmented into 6 s intervals. For each patient, five consecutive intervals at
most were considered, and the ECG-derived parameters from each one were averaged for
unbiased subject-based analysis and classification. In this way, comparable values were
obtained for all patients regardless of ECG signal duration, and slight variability noticed in
f -waves owing to extracardiac noise [33] was minimized.

The power spectral density (PSD) of each 6 s ECG excerpt was estimated using
the Welch Periodogram and is referred to as W( f ). The computational parameters of
this algorithm were selected to provide a spectral resolution of 0.1 Hz with a Hamming
window 4000 points long and with 3000 points overlapping between adjacent windowed
sections [23]. To serve as a reference, common spectral features previously proposed to
anticipate CA outcome were then automatically computed from the f -wave segments.
Thus, the DF was obtained as the frequency with the highest PSD amplitude [34,35], with
this power value also considered in the study. Both parameters hereafter are referred to as
f0 andW( f0), respectively. Making use of a 1 Hz bandwidth window centered on 2 · f0,
the first harmonic of the DF ( f1) and its spectral power (W( f1)) were also computed. The
harmonic exponential decay (γ) was additionally estimated as a measure of the presence of
harmonic components of the DF [25,26]. This parameter was defined as the logarithmic
ratio of the spectral power between the DF and its first harmonic, i.e.,

γ = ln
(
W( f0)

W( f1)

)
. (1)

The power of the DF and its harmonics has also been typically quantified through the
well-known organization index (O). It was defined as the ratio of the cumulative power
under the DF and its first two harmonics and the area of the entire power spectrum between
3 and 25 Hz [36]. Both parameters γ and O consider only the power under the largest
frequency components in the spectral distribution of the f -waves, not the shape and mor-
phology of the harmonics, i.e., how the power is distributed around each frequency peak.
Hence, in the present work, some pioneering parameters were considered for broader spec-
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tral characterization of the f -waves. More precisely, the shape of the DF and its harmonic
components were separately analyzed by dividing the f -wave spectral distribution into
two bands, as Figure 2 shows. The low-frequency (LF) band considered the spectral content
around the DF, whereas the high-frequency (HF) band accounted for harmonic content. The
cut-off frequency separating both bands was positioned approximately halfway between
the DF and its first harmonic, that is, at three means of the DF value ( f0). For a global
overview of the spectral distribution of the f -waves, the total frequency (TF) band ranging
from 3 to 25 Hz was also analyzed.

Frequency (Hz)

LF band HF band

TF band

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 2. Spectral distribution of a common excerpt of f -waves divided into two frequency bands,
i.e., low-frequency (LF) band and high-frequency (HF) band. Both form the total frequency (TF) band,
ranging between 3 and 25 Hz.

The power distribution within each one of the three frequency bands was assessed
through several entropy-based measures. Particularly, Wiener entropy, also known as
spectral-flatness measure (F ), was firstly computed by dividing geometric and arithmetic
means of the power contained by each band [37,38]; that is

F =

N
√

∏
fu
f= fl
W( f )

1
N ∑

fu
f= fl
W( f )

, (2)

where fl and fu are the lower and upper frequency band limits, respectively, and N is
the total number of frequency samples. This index estimates the uniformity of signal-
energy distribution in the frequency domain, so high values indicate more uniform or flat
distributions, and low values are more peaky ones [38]. Another measure providing similar
information is spectral entropy (S), but this index was defined in a completely different
way. In fact, S quantifies spectral complexity of a signal by computing the sparseness of its
spectral distribution via Shannon entropy [39,40]. In brief, the PSD of the signal has to first
be normalized by the total power of the frequency band of interest to obtain a probability
function with unit area, i.e.,

W̃( f ) =
W( f )

∑
fu
f= fl
W( f )

. (3)
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Then, S is estimated by computing the Shannon entropy from the resulting probability
function, so that

S = − 1
ln(N)

fu

∑
f= fl

W̃( f ) · ln
(
W̃( f )

)
. (4)

It should be noted that S is normalized by the highest possible value, i.e., ln(N),
and thus ranges between 0 and 1. A high value of S implies a flat, uniform spectrum
with a broad spectral content, whereas a low value implies a spectrum with all the power
condensed into a single frequency bin, i.e., a less complex, more predictable signal [41].

A generalized version of S can be obtained by replacing the Shannon entropy with
the Rényi entropy, thus obtaining Rényi spectral entropy (R) as

R =
1

ln(N)
· 1

1− α
ln

(
fu

∑
f= fl

W̃( f )α

)
, (5)

where α (α ≥ 0 and α 6= 1) is a bias parameter. Note that the Shannon entropy is an instance
of Rényi entropy for α = 1, and therefore,Rmight be a more sensitive tool than S to detect
subtle changes in spectral distribution of a time series if α is appropriately chosen [41].

Finally, another measure of the spectral complexity of a signal is C0 complexity. This
index is more robust to conditions of nonlinearity and non-stationarity than previous
ones [42]. For its computation, the normalized PSD of the f -waves was modified to only
preserve its most irregular part, i.e.,

Ŵ( f ) =

{
W̃( f ), i f W̃( f ) ≤ T,
0, i f W̃( f ) > T,

(6)

with T being a threshold computed from the mean spectral power, so that

T =
2
N

fu

∑
f= fl

W̃( f ). (7)

Then, the C0 complexity is computed as the power ratio of the irregular part to the
original signal [42], i.e.,

C0 =
fu

∑
f= fl

Ŵ( f )

W̃( f )
, (8)

resulting in a real number between 0 and 1, so that the greater the predominance of the
irregular part of the signal, the higher the value of C0.

2.4. Statistical Analysis and Classification Performance

Normality and homoscedasticity of continuous variables were firstly assessed using
Lilliefors and Levene’s tests, respectively. When both conditions were met, a parametric
Student’s t-test was used to measure statistical differences between the two groups of
patients, i.e., those who maintained SR and those who relapsed to AF after a follow-up of 9
months. A non-parametric Mann–Whitney U-test was used for the same purpose when
data distributions were non-normal but homoscedastic. Since most parameters showed
normal and homoscedastic distributions, values of all the features are summarized along
the manuscript in terms of mean ± standard deviation. Regarding categorical variables,
they are reported as number and percentage, and were compared using a Fisher exact test.
In all cases, a value of significance p < 0.05 was considered as statistically significant.

On the other hand, the classification performance of each single feature was evaluated
through a repeated, patient-based, 10-fold cross-validation approach [43]. Precisely, in
each cross-validation procedure, the data were first partitioned into 10 equally sized folds.
Subsequently, 10 iterations of training and validation were performed, such that within
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each one a different fold of the data was held out for validation while the remaining nine
folds were used for learning. The data were stratified by ensuring that each fold was a
good representative of the whole. Linear discriminant analysis (LDA) was used to train a
prediction model in each iteration. This analysis assumes that different classes generate
data based on Gaussian distributions, such that training an LDA model involves finding the
parameters for a Gaussian distribution for each class. In fact, the procedure searches for a
projection hyperplane of the observations for which the variance of each class is minimized
and the distance between the means of the classes is maximized [44].

The classification results for each 10-fold cross-validation procedure are summarized
by means of a receiver operating characteristic (ROC) curve computed on the classification
scores provided by the obtained LDA models. This plot is the result of plotting the fraction
of true positives out of total positives (sensitivity) against the fraction of false positives out
of total negatives (1-specificity) at various thresholds. Sensitivity (Se) was considered to be
the rate of patients who were correctly classified as relapsing to AF, whereas specificity (Sp)
was the percentage of patients properly identified as maintaining SR. An optimal threshold
for separating both groups was selected to provide the best balance between Se and Sp,
although in this way, the highest percentage of patients correctly classified, i.e., accuracy
(Acc), could not be achieved [45]. The area under the ROC curve (AUC) was also obtained as
an aggregate performance measure across all possible thresholds [45]. To provide additional
information about the proportions of positive and negative samples that were true positives
and true negatives, the positive predictive value (PPV) and negative predictive value
(NPV) were also computed. The described validation process was repeated 100 times to
obtain general and unbiased classification outcomes [43]. The data were reshuffled and
re-stratified before each 10-fold cross-validation approach, and Se, Sp, Acc, AUC, PPV, and
NPV values were averaged for the 100 cycles.

Finally, to explore complementary information among single features and to improve
prediction of CA outcome after a follow-up of 9 months, a multivariate analysis was
conducted. In this case, a LDA was also used to build prediction models based on linear
combinations of those features automatically selected by making use of a forward sequential
selection technique. In this analysis, features were sequentially added to an empty candi-
date set until the addition of further features did not decrease the criterion function, i.e.,
the prediction error [46]. That error was assessed inside repeated cross-validation loops to
avoid any bias in feature selection [43]. Hence, variables that were selected more frequently
for the models were used last to build several LDA-based prediction algorithms and were
evaluated as single features, i.e., by running the patient-based 10-fold cross-validation 100
times. The classification improvement achieved by these models regarding single features
was statistically evaluated using an asymptotic McNemar’s test. To compare the accuracies
of two classification models, the algorithm first compared their predicted labels against the
true labels and then detected whether the difference between the misclassification rates
was statistically significant [47].

3. Results

After a follow-up of 9 months, 103 patients maintained SR, and the remaining 48
relapsed to AF. This implies that the CA procedure was unsuccessful in the mid-term for
31.79% of the patients, which is consistent with current AF recurrence statistics [9,11]. The
baseline clinical characteristics of both groups are provided in Table 1. As can be seen,
none of the features collected for the patients, i.e., gender, age, AF duration before the CA
procedure, body mass index, and left atrium diameter, presented statistically significant
differences between the patients who maintained SR and those who relapsed to AF.
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Table 1. Baseline clinical characteristics of the population enrolled in the study with their correspond-
ing statistical significance to distinguish between the two groups of patients.

Clinical Feature
Rhythm after Follow-Up

p-Value
SR AF

Number of patients (%) 103 (68.21%) 48 (31.79%) −
Male (%) 79 (76.70%) 37 (77.08%) 1.000
Age (years) 59.37± 12.24 57.23± 12.82 0.326
With AF <1 year (%) 6 (5.83%) 6 (12.50%) 0.198
With AF 1–3 years (%) 70 (67.96%) 31 (64.58%) 0.713
With AF >3 years (%) 27 (26.21%) 11 (22.92%) 0.841
Body mass index (kg/m2) 27.79± 3.55 29.06± 4.86 0.073
Left atrium diameter (mm) 44.11± 5.70 45.65± 5.32 0.117

Regarding the wide range of features considered in the present work to characterize f -
wave spectral distribution, Table 2 shows the values obtained for the two group of patients
and the corresponding statistical significance (p-value). Among the parameters commonly
proposed in previous works, f0, f1, and γ provided statistically significant differences
between patients who maintained SR and relapsed to AF, with the former having lower
values for the three indices. Similarly, the four proposed entropy- and complexity-based
features also provided statistically significant differences between both groups of patients
when the TF band covering the whole f -wave distribution between 3 and 25 Hz was
considered. In the case of the LF band, mainly containing the DF component, F and C0
also provided statistically significant differences between the two groups of patients, and
R reported a tendency close to being significant. On the contrary, no relevant differences
between the groups of patients were noticed in any of the four indices in the frequency
band covering the harmonic content, i.e., the HF band. It should be noted that several
values of α between 0.1 and 2 were tested to compute the Rényi spectral entropy, but the
best results (i.e., those presented in Table 2) were obtained for α = 0.1.

The classification performance of the single features reporting statistically significant
values of p < 0.05 is displayed in Table 3. Most indices presented values of Se, Sp, Acc, and
AUC greater than 60%, but only γ and C0TF exhibited performance metrics higher than 70%.
Both parameters reported similar classification performances, which were statistically better
than that provided by f0 for all the conducted validation cycles according to McNemar’s
test. These two variables also provided the highest values of PPV and NPV, about 52% and
83%, thus improving the DF results by more than 15 and 10%, respectively. Similarly, the
classification results reported by Wiener entropy and Rényi spectral entropy for the TF
band (i.e., FTF andRTF) were also statistically superior to that of f0, but in this case, values
of Acc and AUC of about 67%, values of PPV of about 47%, and values of NPV of about
81% were obtained. Contrarily, no statistically significant differences in the classification
performance was noticed between f0 and the entropy-based indices computed on the LF
band, i.e., FLF and C0LF.

On the other hand, multivariate analysis showed that the parameters most frequently
selected for the LDA-based models built throughout the validation cycles were γ and
FTF. Nonetheless, instead of the last parameter, C0TF and RTF were sometimes selected,
along with the index γ. The classification performance of these three LDA-based models
is presented in the first rows of Table 4. As can be observed, they were very similar for
the three cases, reaching values of Acc and AUC of about 75% and values of PPV and
NPV of about 58% and 86%, respectively. Notably, the three prediction models obtained
classification results statistically better than those of the included single features (i.e., γ,
FTF, C0TF, andRTF) and better than f0 for most validation cycles according to McNemar’s
test. In fact, improvements in values of Acc, AUC, PPV, and NPV greater than 5% were
obtained by the LDA-based models compared to those of the included single features and
by about 20% compared to those of the DF. Finally, the inclusion of a third variable to
these prediction models did not improve the classification results. For instance, the last
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three rows of Table 4 display how Acc and AUC slightly decreased when the models were
complemented with another feature, even when it was related to the DF component (such
asRLF) and was sometimes chosen by the automated feature selection algorithm. Along a
similar line, the inclusion of any clinical and/or echocardiographic variables presented in
Table 1 improved classification performance of the prediction models.

Table 2. Mean and standard deviation values for the analyzed metrics from the two groups of patients
and their corresponding statistical significance (p-value).

Feature
Rhythm after the Follow-Up

p-Value
SR AF

f0 (Hz) 5.69± 1.12 6.14± 0.99 0.009
W( f0) (mV2) 0.00051± 0.00091 0.00060± 0.00092 0.059
f1 (Hz) 11.34± 2.25 12.28± 1.98 0.008
W( f1) (mV2) 0.00013± 0.00041 0.00005± 0.00009 0.754
γ 2.20± 0.77 2.80± 0.57 <0.001
O 0.52± 0.15 0.53± 0.12 0.488

FLF 0.48± 0.15 0.43± 0.12 0.017
SLF 0.82± 0.08 0.81± 0.06 0.224
RLF 0.980± 0.010 0.978± 0.008 0.065
C0LF 0.45± 0.14 0.41± 0.11 0.045

FHF 0.49± 0.13 0.50± 0.10 0.865
SHF 0.86± 0.07 0.87± 0.05 0.828
RHF 0.985± 0.007 0.986± 0.005 0.967
C0HF 0.48± 0.10 0.49± 0.08 0.550

FTF 0.28± 0.10 0.22± 0.06 <0.001
STF 0.76± 0.07 0.73± 0.06 0.008
RTF 0.974± 0.008 0.971± 0.006 <0.001
C0TF 0.32± 0.07 0.28± 0.05 <0.001

Table 3. Classification between patients who relapsed to AF and maintained SR during the follow-up
based on the most-predictive single parameters.

Feature Se (%) Sp (%) Acc (%) AUC PPV (%) NPV (%)

f0 56.25 56.42 56.36 0.617 37.56 73.45
f1 56.33 56.68 56.57 0.620 37.73 73.58
γ 69.29 69.18 69.22 0.728 51.17 82.86

FLF 60.27 60.33 60.31 0.606 41.45 76.52
C0LF 56.54 56.71 56.66 0.587 37.84 73.68

FTF 66.13 66.22 66.19 0.676 47.71 80.75
STF 58.83 59.28 59.14 0.623 40.24 75.55
RTF 66.10 66.18 66.16 0.675 47.67 80.73
C0TF 70.83 70.91 70.89 0.703 53.16 83.92

Table 4. Classification between patients who relapsed to AF and maintained SR during the follow-up
provided by the prediction models obtained from multivariable linear discriminant analysis.

Features in the Model Se (%) Sp (%) Acc (%) AUC PPV (%) NPV (%)

γ and FTF 72.75 75.14 74.38 0.758 57.69 85.54
γ andRTF 72.77 74.89 74.22 0.748 57.46 85.51
γ and C0TF 73.04 74.66 74.15 0.759 57.33 85.60
γ, FTF, and C0TF 72.15 74.56 73.79 0.751 56.93 85.17
γ, FLF, andRTF 73.90 73.12 73.36 0.743 56.16 85.74
γ,RTF, and C0TF 70.31 74.90 73.44 0.753 56.63 84.41
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4. Discussion

Despite its limited success rate in the medium/long term, CA remains a commonly
used treatment for persistent AF [9]. Hence, clinical interest in the preoperative prediction
of the outcome of this intervention has substantially grown in the last years [1], since it
might anticipate those patients with a high probability of early AF recurrence [48]. Keeping
in mind that CA often involves long-lasting procedures and high costs and risks for patients
unable to maintain SR for prolonged periods of time, the selection of optimal candidates for
this treatment would have interesting benefits. In this respect, not only could the huge costs
associated with AF treatment be reduced, but the risks related to the CA procedure would
be limited, tailored approaches could be enabled, and the number of repeated interventions
could be minimized in many patients, among other benefits [13].

So far, some clinical predictors of arrhythmia recurrence after CA have been ex-
plored, such as AF duration, anatomical characteristics of the left atrium, presence of
concomitant diseases, etc. However, they have only provided controversial results with
limited predictive ability, which is usually lower in persistent rather than paroxysmal
AF patients [14,49,50]. Accordingly, in the present study, none of the evaluated clinical
variables were relevant in the prediction of patients who relapsed to AF versus those who
maintained SR after a follow-up of 9 months. On the other hand, several previous works
have introduced the development of predictors based on quantitative analysis of atrial elec-
trical conduction. Invasive studies have shown that the DF and its inverse (i.e., the AFCL)
have a moderate predictive capacity of midterm SR maintenance after CA [18–21,51,52].
However, these predictors require invasive recordings of the atrial electrical activity by
means of electrograms acquired during the procedure, thus entailing an unnecessary risk
in those patients for whom the CA procedure will not be successful.

Subsequently, non-invasive studies have also proven the predictive potential of man-
ual measurement of the AFCL on surface ECGs, yielding a higher preoperative value
for patients with higher probability of long-term SR maintenance after CA [15]. More
recently, once f -waves were extracted from the surface ECG, the automated measurement
of the DF has also shown a reasonable ability to anticipate CA outcome in persistent AF
patients, associating lower values of frequency with a lower probability of AF recurrence
in the medium/long term [34,35]. The results obtained by the DF in the present work are
consistent with that tendency (see Table 2), and since this index has been directly linked to
the degree of electrical remodeling presented by the atria [34], it can be considered a good
reference for comparison with other predictors. The frequency of the DF’s first harmonic
( f1) also presented the same trend in the results for both groups of patients, exhibiting
predictive ability similar to that of the DF with Acc, AUC, PPV, and NPV values about 57%,
62%, 38%, and 74%, respectively (see Table 2).

In contrast to these results, the power peak both for the DF and its first harmonic did
not reveal statistically significant differences between patients who relapsed to AF and
those who maintained SR after the follow-up. Along the same line, the organization index
O was also unable to discern between the two groups of patients, thus suggesting that the
power globally concentrated around the DF and its first harmonic is not relevant in the
prediction of CA outcome. Similar results have also been reported in other works [23,36].
However, the power ratio of the first harmonic to the DF, i.e., the index γ, proved to be one
of the best single predictors, with values of Acc and AUC of about 70%, and values of PPV
and NPV of about 51% and 83%, respectively (see Table 2). A similar finding was previously
outlined in a previous work, where γ was the only spectral parameter able to report a
statistically relevant significance on a limited dataset of 22 persistent AF patients under
radio-frequency CA [23]. In the present work, that outcome has been corroborated on a
much wider database of 151 patients. According to the definition of γ, low values indicate
the presence of strong harmonics of the DF, and the obtained results hence suggest that the
higher the harmonic content of the DF, the lower the probability of AF recurrence after CA.
This finding is confirmed in Figure 3, which shows mean spectral distributions for all the 6
s ECG segments from the patients who relapsed to AF compared to those who maintained
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SR after the follow-up once they were aligned with respect to the DF. As can be seen, on
average, the patients who maintained SR exhibited greater harmonics of the DF than those
who relapsed to AF. Interestingly, the presence of larger harmonics has also been associated
with increased probability of AF termination during CA [18] and with medium/long-term
maintenance of SR after diverse AF therapies, including pharmacological cardioversion [26]
and internal [24] and external electrical cardioversion [25].

Frequency (Hz)

Figure 3. Averaged spectral distributions for all the 6 s ECG segments from patients who relapsed to
AF (dashed, gray line) and those who maintained SR after the follow-up (solid, black line) once they
were aligned with respect to the DF.

To further delve into the analysis of the f -wave harmonic spectral structure, four
entropy-based indices were computed for the first time from three frequency bands. All
intended to quantify how power was distributed along the spectra and then to separately
and globally characterize the shape of the DF and its harmonic content. However, each
index presented a different mathematical definition and were thus sensitive to different
shades in a time series [53]. The Wiener entropy F has been widely studied to predict the
results of electrical defibrillation in ventricular fibrillation [37] and is computed by dividing
geometric and arithmetic means of the signal spectrum. In a completely different way,
spectral entropy S and Rényi spectral entropyR treat the normalized power distribution of
the f -waves as a probability distribution and calculate Shannon entropy and Rényi entropy,
respectively. The first index has already been proposed to discern between patients with
persistent and permanent AF [39] and to anticipate spontaneous termination of paroxysmal
AF episodes [40]. It should be noted that Rényi entropy is a generalization of Shannon
entropy and is thus able to provide additional information [41]. In fact, in the present work,
R provided notably better results than S when computed on the LF and TF bands. In
the former case, although both indices did not provide statistically significant differences
between patients who relapsed to AF versus those who maintained SR after the follow-up,
the indexRLF reported a nearly significant difference (p = 0.065, see Table 2). Regarding
the TF band,RTF provided statistically significant improvements of about 5% in values of
Acc, AUC, PPV, and NPV compared to STF according to McNemar’s test. Finally, the C0
complexity divides spectral distribution of a time series to estimate its regular and irregular
parts and then obtains an organization estimate highly robust to noise and non-stationary
artifacts [42].

Despite slight differences in their results, the indices F , R, and C0 reported similar
general trends on the three analyzed frequency bands of the f -waves. In the case of the LF
band, negligible differences on the edge of being statistically significant were noticed by
the three parameters (see Table 2). This finding suggests that the DF component presented
a kindred shape for the patients who relapsed to AF versus those who maintained SR
after the follow-up. However, the higher values of entropy and complexity noticed in the
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patients who maintained SR, along with the trend to higher power peaks (W( f0)) in those
who relapsed to AF, point toward the presence of a mildly larger and more-peaked DF
component when the probability of AF recurrence after CA increased. This suggestion
is supported by Figure 3, where a slightly larger and wider dominant peak can be seen
on average for the patients who relapsed to AF. Regarding the HF band, no differences
were noticed by any entropy-based parameter, suggesting that both groups of patients
presented a similarly well-defined structure of harmonic components of the DF, regardless
of the power contained by them. This assumption can also be visually corroborated in
Figure 3. Nonetheless, it should be remarked that the indices F , R, and C0 consider the
power distribution along the spectrum, but not the absolute level of power [53], which
was highly variable within each group of patients according to the values provided by the
variableW( f1) in Table 2.

These results for the LF and HF bands contrast with those obtained when the TF band,
ranging from 3 to 25 Hz, was analyzed. In this case, the parameters FTF, RTF, and C0TF
found highly marked, statistically significant differences and notably high classification
performance between the patients who relapsed to AF and those who maintained SR after
the follow-up. Indeed, they presented statistically significant improvements of about 10%
in values of Se, Sp, Acc, AUC, PPV, and NPV regarding the DF and their computation
on the LF band, i.e., FLF, RLF, and C0LF (see Table 3). Moreover, along with the index γ,
the variable C0TF reported the highest performance metrics, with values about 70%. This
wide disparity among frequency bands and the good results of the index γ suggest that
the most useful information for preoperative prediction of CA outcome lies in the relation
between the DF and its harmonic structure and not in the single information individually
provided by each one. In this respect, it is interesting to highlight that the parameters FTF,
RTF, and C0TF globally evaluated the whole spectrum of the f -waves before taking into
consideration both the DF and its harmonic content. The greater entropy and complexity
values observed in the patients who maintained SR during the follow-up could hence be
explained by the fact that they presented larger harmonics and a proportionally smaller
peak DF than those who relapsed to AF. This assumption can be visually corroborated in
Figure 3 on average for the two groups of patients.

The same idea of the presence of a larger DF component with low-amplitude harmonics
in the patients who relapsed to AF also underlies the values reported by the variable γ.
However, the relation of this index with FTF,RTF, and C0TF was not as strong as initially
expected. In fact, parametric analysis reported notably low correlation values, which were
on the edge of being statistically significant, of 16.36% (p = 0.045), 11.96% (p = 0.144),
and 17.96% (p = 0.027) for the pairs γ and FTF, γ andRTF, and γ and C0TF, respectively.
Moreover, the conducted multivariable analysis also provided that the combination of
these pairs of parameters in LDA-based prediction models obtained statistically significant
improvements of about 5% in values of Se, Sp, Acc, and AUC regarding the single variables
(see Tables 2 and 3), thus achieving the best performance metrics of about 75%. Similarly,
PPV and NPV also experienced a statistically significant increase of about 5% regarding
the single parameters combined in these models and of up to 20% in comparison with the
DF. As a consequence, the index γ and the entropy-based parameters computed on the TF
band could contain complementary information, and therefore, joint analysis of both the
power ratio between the DF and its first harmonic and the global distribution of the power
along the spectrum seems to play a key role to improve the preoperative prediction of CA
outcome in persistent AF patients.

Extensive ablation based on linear lesions or complex fractionated electrogram (CFE)
ablation in addition to PVI has been widely proposed in the cientific literature and widely
used in clinical practice. However, large, multicenter and prospective studies comparing
these CA strategies with PVI alone have failed to provide any additional benefit, but pro-
long the duration of the procedure [54,55]. Thereby, all patients enrolled in the present
study were treated with PVI alone. The adoption of this CA strategy provides the fairest
comparison between patients. In fact, all subjects received the same atrial substrate modifi-
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cation, thus avoiding a potential bias in the study and allowing the analyzed preoperative
predictors to focus on quantifying main differences between atrial electrophysiological
features of the patients with high and low risk of midterm AF recurrence. Contrarily, when
a tailored CA protocol is applied to each patient by PVI plus a variable number of linear
lesions or targeted CFEs, it is reasonable to think that the preoperative predictors could
be impacted by the different degree of modification provoked in the atrial substrate of
each patient. However, to the best of our knowledge, this hypothesis has still not been
corroborated. Some previous works have considered individualized protocols for each
patient, but disaggregated data on each kind of intervention (i.e., PVI alone, PVI plus linear
lesions, and PVI plus CFE ablation) have not been provided to date [15,34–36,52,56]. These
studies have reported a high disparity in the predictive power and cut-off point for some
well-established parameters, such as the DF, and the use of different CA protocols could
partially explain this finding. Clearly, the proposed predictors based on the f -wave har-
monic spectral structure could be similarly impacted by the use of tailored CA approaches,
but this aspect will have to be addressed in further studies.

Finally, some limitations of the study merit comment. Following current clinical
guidelines [7], follow-up of patients after CA was mainly based on standard ECG and
24 h Holter monitoring at different scheduled visits and, in case of symptoms, additional
exploration and ECG recordings in the emergency room. However, since continuous ECG
monitoring for the whole follow-up was not used, some asymptomatic, non-sustained AF
episodes may have been overlooked, and the number of patients with AF recurrence may
have been underestimated. Moreover, a follow-up of 9 months could be considered a short
period of time to assess CA outcome; however, this midterm AF recurrence prediction is
still clinically interesting to select optimal candidates for the intervention. In fact, many
previous works have addressed CA outcome predictions at similar or even shorter periods,
such as [15–17,34–36]. Nonetheless, a longer follow-up period will be considered in future
work, since visits every 12 months are scheduled for all the patients. On the other hand,
the sole analysis of the V1 lead precluded specific information from the electrical activity
registered at many atrial regions. Although this lead has proved to be the best to reflect
global activation of the atria and has, moreover, been widely analyzed in the scientific
literature [16,17,23,57], there is recent evidence that the study of spatial variability of ECG-
based parameters could be helpful to improve CA outcome prediction [58]. Hence, a
multi-lead extension of f -wave harmonic structure analysis will be conducted in the future.
Lastly, although a comparable [34–36] or much larger number of patients [23,52,56,58] than
in previous works also dealing with CA outcome prediction has been analyzed in the
present study, the database was retrospective and only came from two centers. Hence, in
the future, the conclusions will be corroborated in wider datasets prospectively collected
from a higher number of hospitals. A broader analysis will also be performed, considering
more predictors, since the results provided by the indices of this study had a limited PPV
value in comparison to NPV.

5. Conclusions

The present work has conducted a pioneering analysis of the f -wave harmonic spectral
structure to improve preoperative prediction of CA outcome in persistent AF patients. The
results show that the relation between the DF and its harmonic content contains more-
relevant information for prediction than separate analysis of each frequency component.
While the DF and its harmonic structure individually presented similar global shapes
both for patients who relapsed to AF and those who maintained SR after the follow-up,
the power ratio between both components had the best discriminant ability. Indeed, the
presence of larger harmonics and a proportionally smaller DF peak was strongly associated
with a decreased probability of AF recurrence after CA. Moreover, analysis of the global
distribution of the f -wave power along the spectrum through diverse entropy-based indices,
jointly considering both the DF and its harmonic content, also revealed complementary
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information with respect to their power ratio, thus significantly improving the preoperative
prediction of CA outcome.
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