
ORIGINAL ARTICLE

A Lagrangian cylindrical coordinate system for characterizing dynamic
surface geometry of tubular anatomic structures

Torbjörn Lundh1,2
& Ga-Young Suh1

& Phillip DiGiacomo3
& Christopher Cheng1

Received: 26 May 2017 /Accepted: 3 February 2018 /Published online: 3 March 2018
# The Author(s) 2018. This article is an open access publication

Abstract
Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of
treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple,
rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system
enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we
validate the method’s ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and
orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to
exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels
throughout the body.
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1 Introduction

Accurate description of vascular geometry is important for
understanding vascular anatomy, physiology, and pathology.
Morphologic changes to vascular anatomy are commonly as-
sociated with clinical diagnosis and assessment. In the case of
aortic aneurysms, for example, the simple measurement of
aneurysm diameter can be a predictor of rupture, and aneu-
rysm volume has been shown to correlate with the risk of
clinical sequelae [3, 14]. Moreover, descriptions of dynamic
anatomy, in the form of vascular deformations due to cardiac,
respiratory, and musculoskeletal influences, can provide fur-
ther insight into the physiological and pathological processes
associated with disease development. For example, radial

aortic compliance can help characterize degenerative disease
in the aorta and lower extremities [4, 5]. Axial deformation
and elasticity of the superficial femoral artery can be used as
an indicator of lower extremity arterial health and a predictor
of stent fracture [6]. Also, degree of in vivo deformation of
implanted stents provides insight to predict long-term perfor-
mance of the stents inside stenotic arteries [20].

Three-dimensional (3D)medical imaging is capable of pro-
viding exquisite geometric information, from which 3D geo-
metric models can be constructed. These geometric models
can then be used to quantify vascular deformation for device
evaluation and development as well as perform hemodynamic
and vessel structure simulations [2, 6, 8–10, 12, 13, 21–24].
One of the most established 3D lumen modeling methods is
based on centerline construction, orthogonal 2D segmenta-
tions, and surface lofting [28]. While these methods allow
for analysis of motion and deformation of lumen centerlines
and cross sections, they lack the ability to robustly and fully
characterize 3D vascular surface geometry. For example, they
cannot fully quantify the variation in surface curvature along a
highly curved vessel, such as in the aortic arch.

Developing more nuanced methods to quantify 3D geo-
metric and morphological features of the human vascular sys-
tem, and their dynamic changes, is needed to better understand
how devices interact with the vascular system and the biome-
chanical characteristics that determine a patient’s prognosis
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and potential response to treatment. For example, recent ef-
forts in surface modeling and analysis have demonstrated ex-
cellent promise for better predicting aortic aneurysm rupture
[12, 16, 18, 19]. However, because the key parameter for
evaluating mechanical fatigue of a medical device is based
on alternating strain at a particular material points, a
Lagrangian-basedmethod to quantify deformation is also war-
ranted. Here we present a method for creating a Lagrangian
description of approximate cylindrical structures based on a
cylindrical coordinate system. Building from a vessel center-
line and lumen cross-sectional contours, this coordinate sys-
tem can describe complex surface geometry, including longi-
tudinal and circumferential curvature, cross-sectional eccen-
tricity, and the orientation of eccentricity. We validate this
method with idealized software phantoms and demonstrate
the wide potential of this method by analyzing dynamic
changes of blood vessel geometry in patient-specific examples
of the thoracic aorta, abdominal aorta, and iliofemoral vein.

2 Methods

2.1 Formulation

To develop a Lagrangian cylindrical coordinate system which
can accurately quantify the surface of a tubular anatomical
structure, the first step is to develop a continuous coordinate
system for the longitudinal and angular dimensions. The lu-
minal surface of a tubular structure, such as a blood vessel, can
be defined by a sequence of n cross-sectional contours Si, in
3D Cartesian space (Fig. 1a). These contours, formally denot-

ed as Sif gni¼1, are defined as Si ¼ bij
� �mi

j¼1 where bij = (xij, yij,

zij) defines the mi individual points on each contour. For each
contour, the centroid Ci ¼ xi; yi; zið Þ can then be used to
construct a centerline curve Cif gni¼1. The arc length of this
centerline curve, σ, is used as the longitudinal coordinate for
this coordinate system.

Next, the angular coordinate, θ, can be defined by specify-
ing a particular circumferential reference point among the
boundary points bij for each contour Si, which is called γi
(Fig. 1b). To define this reference point γi in a consistent,

non-arbitrary way, an initial material point must be identified
with a fiducial marker. For vascular structures, a bifurcation
point serves as a natural fiducial marker. The lumen bound-
aries of the mother and daughter branches are defined as two
separate sets and the most distal intersection of these two sets
is selected as the material point δ and will be the landmark on
the mother vessel that will serve as the natural reference point
(Fig. 2). Then, the closest boundary point to this landmark is
denoted the Greenwich point γ of the vessel. That is, γ ∈ {bij}
where ∣δ − γ ∣ =mini, j ∣ δ − bij∣. Now, suppose that γ is se-
lected on the kth contour Sk. This point is used as the reference
point for the centerline curve, such that C(0) =Ck and C(σ) is
proximal to Sk if σ < 0 and distal to Sk if σ > 0. Corresponding
reference points on every contour can then be assigned by
letting γk = γ, and defining γk + 1 using a projection onto the
Sk + 1 section as explained in more detail later. Iterating this
process defines Greenwich points for each contour. The piece-
wise linear curve defined by these points is defined as the
Greenwich curve.

Using the longitudinal σ and angular θ dimensions, the
Lagrangian cylindrical surface function r(σ, θ) is created
(Fig. 1b). By using linear interpolation in both dimensions, a
continuous vessel coordinate system provides a Lagrangian
description of every vessel boundary point. The radial func-
tion r(σ, θ) can be expanded to include a time parameter, i.e.,
r(σ, θ, t), in order to define changes of the vessel surface with
respect to time.

This Lagrangian coordinate system can be used to quantify
and monitor the surface curvature in both the circumferential
(θ) and longitudinal (σ) directions. To compute the curvature
at a given surface point, a circle is fit around the initial point
and two of its symmetric neighboring points in the direction of
interest (Fig. 3a, b). The reciprocal of the radius of this circle is
defined as the magnitude of the curvature. The product and
mean of the circumferential and longitudinal curvatures at a
given point could be used to serve as proxies for the Gaussian
curvature and mean curvature, respectively.

Additionally, this system can be used to quantify both the
orientation and magnitude of the eccentricity of the structure.
Classically, the eccentricity of an ellipse with major axis a and

minor axis b, defined by x2
a2 þ x2

a2 ¼ 1, has eccentricity
ffiffiffiffiffiffiffiffiffi
1− b2

a2

q
.

Fig. 1 Definition of a contours Si,
contour centroids Ci, and
Greenwich points γi along the
longitudinal axis of the tubular
structure and b the Greenwich
point γi on each section Si from
which the angular dimension θ
can be defined

1660 Med Biol Eng Comput (2018) 56:1659–1668



This definition can be generalized to irregular contours by
selecting the two orthogonal diameters through the center
point Ciwhile minimizing the quotient dD whereD is the major
axis and d is the axis perpendicular to D and defining the

eccentricity as
ffiffiffiffiffiffiffiffiffiffi
1− d2

D2

q
. The direction of eccentricity is defined

as the positive angle θe between the major diameter D and the
Greenwich point γi (Fig. 3c). By tracking the direction of
eccentricity as a function of σ, the static and dynamic spirality
of eccentricity can be quantified.

2.2 Optimization of methods

In order to apply this method to arbitrary complex tubular
structures, derivation of the Greenwich curve and pre-
scribed window sizes to compute curvature need to be
optimized. For this optimization exercise, two idealized
software phantoms were utilized. The first was a simple
tubular phantom with circular contours and a longitudinal
bend causing variation in longitudinal curvature (Fig. 4a).
The second phantom was designed with non-circular cross

sections and two bends in different planes, exhibiting var-
iable circumferential curvature, longitudinal curvature, ec-
centricity, and orientation of eccentricity (Fig. 4b).

For defining the points that comprise the Greenwich curve,
three methods were attempted. The first method started with
the initial point γk and projected the vector γk −Ck onto the
Sk + 1th section along the vector Ck + 1 −Ck. Then, γk + 1 is se-

lected to be the closest point in the sequence b kþ1ð Þ j
� �mkþ1

j¼1
:

The second method instead projected the vector γk −Ck along
the normal of the Skth section onto the Sk + 1th section and
defined γk + 1 in the same way. The third method simply se-

lected γk + 1 to be the closest point in b kþ1ð Þ j
� �mkþ1

j¼1
from γk.

Using any of these methods, Greenwich points on every sec-
tion can be defined. The piecewise linear curve formed by
these Greenwich points is then designated as the Greenwich
curve. In this paper, we selected the first method, i.e., projec-
tion of the vector γk −Ck onto the Sk + 1th section along the
vector Ck + 1 −Ck, since we would like to obtain a Greenwich
curve that more robustly tracks the centerline curve.

To determine the optimal span length of the three points to
calculate curvature (i.e., window size), the idealized

Fig. 2 Location of the Greenwich
point δ on a CT-based anatomic
model. Orthogonal cross-sections
to the mother vessel centerline a
completely proximal to the
daughter vessel where the
daughter vessel is not visible, b at
the daughter vessel where the
daughter vessel appears as a
Bbud,^ c at the most distal
intersection of the mother and
daughter vessels where the
intersection point is chosen as δ,
and d completely distal to the
daughter vessel where the mother
and daughter vessels are separate

Fig. 3 Definition of a
longitudinal curvature (outer
curve in blue and inner curve in
red), b circumferential curvature,

and c eccentricity,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−d2=D2

q
,

and orientation of eccentricity (θe)
with respect to the Greenwich
point γi, where d/D is minimized
to find the major and minor axes
(color figure online)
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phantoms, where the analytic curvatures were known, were
used. A variety of window sizes were evaluated for both the
longitudinal and circumferential directions and window sizes
which adequately resolved the true curvature, yet did not pro-
duce substantial spurious oscillations, were selected.

2.3 Application to phantoms and human data sets

The optimized coordinate systemwas applied to the two phan-
toms described above, as well as three human data sets to
exemplify the full range of quantifications and analyses pos-
sible. For the human data, high-resolution computed tomog-
raphy (CT) imaging data were acquired of a thoracic aortic
endograft implanted via thoracic endovascular aortic repair
(TEVAR) (Fig. 5a), an abdominal aorta and the visceral artery
branches after endovascular aneurysm repair (EVAR) (Fig.
5b), and the iliofemoral veins after stent implantation (Fig.
5c). From the idealized phantoms and the human data sets,

centerlines and orthogonal segmentations were created using
SimVascular (Open Source Medical Software Corporation,
San Diego, CA) [28]. Modeling was started by creating an
initial lumen path manually along the center of vessel lumens.
Then, semi-automatic 2D level set segmentation was per-
formed orthogonally to this initial path, at every one half ra-
dius of the vessel. From every segmentation contour, mathe-
matical centroid was extracted and connected to form the cen-
terline. To assure the orthogonality of lumen contours, subse-
quent round of 2D segmentation was performed along the
centerline instead of initial path, with consistent interval.
The centerline was updated according to the second-round
contours, which together used as the input for this application.
The cylindrical coordinate system methods were applied to
quantify the longitudinal and circumferential curvature, as
well as the amplitude and direction of eccentricity at each
cross section. Finally, for the thoracic aortic endograft, dy-
namic changes in geometry due to cardiac pulsation are shown

Fig. 4 3D models (top) and
schematics (bottom) of idealized
software phantoms of a a simple
phantom with a 90° bend and
uniform circular cross sections
and b a complex phantom with
two 90° bends in different planes
and varying non-circular cross
sections

Fig. 5 Human data sets: 3D high-resolution computed tomography data of a a thoracic aorta, b abdominal aorta, and c iliofemoral veins after endograft
implantation
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by comparing the surface geometries between systole and
diastole.

3 Results

3.1 Optimization of parameters

Figure 6 illustrates a subset of the trials run to optimize win-
dow sizes to calculate the surface curvature in the longitudinal
(Fig. 6a–c) and circumferential (Fig. 6d–f) directions. For lon-
gitudinal curvature, a window size of 20 mm produced spuri-
ous noise, as indicated by the deep ridges in Fig. 6a, while a
window size of 40 mm underestimated the peak longitudinal
curvature of 1 cm−1 on the inner curve of the second bend by
7% (Fig. 6c). A longitudinal window size of 30 mm, however,
did not exhibit spurious noise and was able to calculate the
peak curvature to within 0.5% (Fig. 6b). In the circumferential
direction, a window size of π/8 exhibited spurious oscillations
(Fig. 6d) while a window size of 3π/8 underestimated the peak
circumferential curvature of 2 cm−1 on the elliptical cross
sections by 35% (Fig. 6f). In this case, a window size of
π/4 rad (Fig. 6e) was determined to be optimal. Similar rela-
tive window sizes were utilized for analysis of idealized phan-
tom and human data sets.

3.2 Application to idealized software phantoms

The constructed 3D model of the simple phantom with 2D
cross-sectional contours, centerlines, and Greenwich curve is

shown in Fig. 7a. The pointwise measurements of the longi-
tudinal and circumferential curvature along the entire surface
are shown in Fig. 7b, c. As shown in Fig. 7b, the longitudinal
curvature was calculated to be 0 cm−1 proximal and distal to
the bend and a maximum value of approximately 0.5 and
0.25 cm−1 along the inner and outer curve of the bend, respec-
tively. In Fig. 7c, the circumferential curvature was calculated
to be approximately 1.0 cm−1 along the entire surface.

Likewise, the constructed model of the complex phan-
tom is shown in Fig. 8a and the results of the analyses are
shown in the remainder of Fig. 8. Surface calculations of
longitudinal and circumferential curvature are shown in
Fig. 8b, c, and the quantification of magnitude and orien-
tation of eccentricity are shown in Fig. 8d, e. As shown in
Fig. 8b, the straight sections exhibit 0.0 cm−1 longitudinal
c u r v a t u r e , t h e o u t e r c u r v e o f t h e f i r s t b e n d
exhibits 0.5 cm−1 curvature, and the inner curve of the
second bend exhibits 1.0 cm−1 curvature. Figure 8c depicts
circumferential curvatures of 1.5 cm−1 along the vertices of
the major of the elliptical cross sections, approximately
0.25 cm−1 along the flat sections of the elliptical cross
sections and 1.0 cm−1 at the circular cross sections. In
Fig. 8d, the magnitude of eccentricity along the longitudi-
nal direction was calculated as 0.87 for the proximal and
distal straight sections, with a steep dip at σ = 96 mm,
reflecting the location of the circular cross sections. In
Fig. 8e, the orientation of eccentricity was calculated as
1.6 and 0.0 rad for the proximal and distal straight sections,
respectively, with a sudden transition at σ = 96 mm. As
complement to these images, Table 1 shows the absolute

Fig. 6 Illustration of window size optimization for calculating surface
curvature of the complex idealized software phantom shown in Fig. 4b:
the pointwise calculations of longitudinal curvature for three different
window sizes in the sigma direction, a 20 mm, b 30 mm, and c 40 mm,

and the pointwise calculations of circumferential curvature for three
different window sizes in the theta direction, d π/8 rad, e π/4 rad, and f
3π/8 rad
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difference between the numerically estimated curvatures
and the analytic solution with respect to minimum, maxi-
mum and median.

3.3 Application to human image data sets

Figure 9a–c illustrates orthogonal segmentations, centerlines,
and derived Greenwich curves for each human image data set.
Utilizing the coordinate systemmethod on these examples, the
amplitude and orientation of the vessel eccentricity, and
pointwise longitudinal and circumferential surface curvatures
were quantified. Examples of these analyses can be seen in

Fig. 9d–f. Figure 9d shows the amplitude and orientation of
the eccentricity of the thoracic aortic endograft (from Fig. 5a).
Figure 9e shows the pointwise circumferential surface curva-
ture of the aneurysmal abdominal aorta (from Fig. 5b).
Figure 9f shows the pointwise longitudinal curvature of the
iliac vein (from Fig. 5c).

To demonstrate the ability of the developed method to
compare dynamic changes of surface geometry, Fig. 10
depicts a coordinate system analysis of pointwise longi-
tudinal surface curvature for the thoracic aortic endograft
(from Fig. 5a) at systolic and diastole phases of the
cardiac cycle.

Fig. 7 Results of the analyses for the simple idealized phantom from Fig.
4a, including a 2D cross-sectional contours and centerlines of the main
vessel and branch (blue) and Greenwich curve (thin black line), b
longitudinal curvature mapped pointwise onto the surface of the 3D

structure, and c circumferential curvature mapped pointwise onto the
surface of the 3D structure (the window sizes for the curvature
computations are 30 mm for longitudinal and π /4 rad for
circumferential) (color figure online)

Fig. 8 Results of the analyses for the complex idealized phantom from
Fig. 4b, including a 2D cross-sectional contours (blue) and centerlines
(yellow) of the main vessel and branch and Greenwich curve (thin black
line), b longitudinal curvature mapped pointwise onto the surface of the
3D structure, c circumferential curvature mapped pointwise onto the

surface of the 3D structure, d magnitude of eccentricity along the
centerline arc length, and e orientation of eccentricity along the
centerline arc length (the window sizes for the curvature computations
are 30 mm for longitudinal and π/4 rad for circumferential) (color figure
online)

1664 Med Biol Eng Comput (2018) 56:1659–1668



4 Discussion

In this paper, we describe a robust method for fully describing
the surface geometry of complex anatomic tubular structures
by using a Lagrangian cylindrical coordinate system. The
method was validated on idealized software phantoms and
then applied to three human data sets of different anatomies.

To ensure a robust and widely applicable system, window
sizes for curvature calculation need to be standardized based
on the anatomy of interest. The window size needs to be small
enough to ensure accurate estimation of maximum curvature
values, yet not so small as to cause substantial spurious oscil-
lations. Based on experiments on the complex idealized phan-
tom in Fig. 4b, the optimal window size for longitudinal and
circumferential curvature calculations was 30 mm and
π/4 rad, respectively. These correspond roughly the diameter

of the vessel and one eighth of the circumference, respectively.
These guidelines were used for all subsequent analyses.

Application to the simple and complex idealized phantoms
from Fig. 4 shows excellent agreement with analytic solutions
of surface curvature and eccentricity. Figure 7 shows that the
straight sections of the simple phantom were correctly calcu-
lated to have 0 cm−1 longitudinal curvature and that the inner
and outer curvatures at the bend correctly corresponded with 2
and 4 cm radius of curvature, respectively. In addition, the
circumferential curvature was correctly calculated to corre-
spond with 1 cm radius of curvature (2 cm diameter).

Analysis of the complex idealized phantom had similar
excellent correspondence with analytic solutions, such as lon-
gitudinal curvature values of 0.5 and 1.0 cm−1 at the outer
curve of the first bend and inner curve of the second bend,
respectively (Fig. 8). For the contour cross sections, the

Table 1 Absolute curvature
difference between numerical
estimation and analytic solution

Absolute curvature difference (cm−1) Minimum Maximum Median

Simple phantom, longitudinal curvature 5.7 × 10−8 0.53 8.8 × 10−4

Simple phantom, circumferential curvature 1.9 × 10−4 0.24 0.0094

Complex phantom, longitudinal curvature 1.9 × 10−6 1.0 0.13

Complex phantom, circumferential curvature 0.00091 1.7 0.47

Diastole
Systole

Eccentricity

Orienta�on of eccentricity

(mm)

(ra
d)

(mm)

Circumferen�al curvature at inspira�on Longitudinal curvature at supine

b c

d e f

(c
m

-1
)

(c
m

-1
)

a

Fig. 9 Results of the analyses for the human CT image data from Fig. 5,
including 3D representations of the a thoracic aortic endograft during
diastole, b aneurysmal abdominal aorta during inspiration, and c right
iliofemoral vein in the supine position, the corresponding d magnitude

(above) and orientation (below) of the eccentricity along the centerline of
the thoracic aortic endograft, e circumferential curvature of the abdominal
aorta, and f longitudinal curvature of the right iliofemoral vein
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circumferential curvatures calculated for the circular cross sec-
tions and the flat sections of the elliptical cross sections were
1.0 and 0.25 cm−1, respectively, which perfectly match the
analytic solutions. The calculated circumferential curvature
of 1.5 cm−1 at the vertices of the ellipse is 25% below the
analytic solution; however, increased point sampling around
the contour would greatly improve this calculation. The ana-
lytic eccentricity of an ellipse with a 4 cm major diameter and

2 cm minor diameter is
ffiffiffi
3

p
=2 (dotted pink line in Fig. 8d),

which is almost exactly the value calculated by our method. In
addition, the orientation of eccentricity calculated by the
method closely approximated the π/2 and 0 rad analytic solu-
tions (Fig. 8e). Both eccentricity graphs capture the transition
point at the correct longitudinal location where the idealized
model bent from one plane to an orthogonal plane.

Figure 9 shows applicability of the method to actual med-
ical images of different vascular structures. For the thoracic
aortic endograft, the eccentricity was calculated to be higher
(less circular) at the ends of the graft, which makes sense due
to the decrease in hoop strength at the free ends of the stent
graft (Fig. 9d). In the abdominal aorta example, circumferen-
tial curvature calculations show higher curvatures at the nor-
mal proximal aorta (equivalent to diameter ≈ 2 cm), lower
curvatures at the aneurysm (equivalent to diameter ≈ 6 cm),
and moderate curvature at the transition between normal and
aneurysmal sections (Fig. 9e). For the iliofemoral vein, the
longitudinal curvature was predominantly 0.2 cm−1 or equiv-
alent to approximately 5 cm radius of curvature (Fig. 9f).

The CT images and 3D geometric models of the thoracic
aortic endograft in Fig. 10a–d illustrate how difficult it is to
qualitatively identify subtle differences in surface geometry
and morphology of vessels at different physiological states.
However, with the color map of pointwise longitudinal

surface curvature (Fig. 10e, f), the coordinate system analysis
shows the power of its quantitative sensitivity. For example,
the diastolic phase (Fig. 10f) shows a larger region of high
longitudinal curvature along the inner curve of the proximal
descending aorta as compared to the systolic phase (Fig. 10e).
This makes sense because the during the high pressure pulse
of systole, we would expect the endograft to straighten
slightly.

Several methods have been developed to model human
vessels and quantify geometric curvature. Classic methods
have employed 2D level set segmentation creating a set of
orthogonal contours following vascular lumen, acquiring cen-
terlines from the contours, and computing the curvature along
the centerline [6, 7, 21, 22, 24, 25]. Other available methods
include 3D segmentation with growing seeds, acquiring cen-
terline from inscribing spheres in lumenal surface, and com-
puting the centerline curvature [11, 15]. It is also possible to
acquire surface curvature directly across 2D surface patches
such as a built-in function provided by the Vascular Modeling
Toolkit (VMTK) [1]. The method presented in this study im-
proved the classic centerline-based method by computing the
surface curvature using 2D-segmented contours as an input. In
addition to the traditional centerline curvature, we believe that
surface curvature provides additional, relevant information for
characterizing vascular dynamics and designing novel medi-
cal devices. Furthermore, the method in this study provides
curvature output along surface lines, not 2D surface patches
like the VMTK methods above. The main reason we comput-
ed surface curvature was to quantify inner and outer line ge-
ometries. These surface line curvatures are crucial to under-
stand how medical device dynamically deform under in vivo
condition and if in-stent restenosis occurs along the surface
line with challenging geometry [29]. The methods computing

e

f

(cm-1)
g

a b

c d

0.6

(cm-1)

0.5

0.4

0.3
0.3

0.2

0.1

0

0.2

0.1

Fig. 10 Illustration of thoracic aortic endograft in systole (top row) and
diastole (bottom row) (the human CT image data from Fig. 5a). Left
column shows CT images for a systole and b diastole; middle column
shows 3D models of the cylindrical coordinate system for c systole and d
diastole. The next column shows pointwise longitudinal curvature of the
endograft surface for e systole and f diastole. Right column shows the

pointwise absolute difference in longitudinal curvature between systole
and diastole (g). Note how while it is difficult to visualize differences in
longitudinal curvature by looking at the CT images or 3D models, the
color maps of curvature show quantitative differences. According to the
presented example of longitudinal curvature changes, cardiac pulsation
induces curvature changes along the most distal aorta
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surface curvature across 2D surface patches can also calculate
surface line curvature with secondary calculations and aver-
aging, but this requires additional steps and relies on averag-
ing across 2D areas which results in lower resolution
calculations.

More complete characterization of vascular geometry may
help predict disease severity, such as aneurysm rupture risk
[12, 16, 18, 19, 26], quantify pre- and post-operative geomet-
ric alterations to determine the mechanical impact of devices
on the native anatomy [25], establish boundary conditions
with which to evaluate and predict device failures due to cy-
clic fatigue [7], and more fully describe dynamic anatomy to
come up with better device solutions. For example, in vivo
arterial motions have often been implicated in cyclic mechan-
ical fatigue and stent fracture [6, 7, 13, 17, 21]. Additional
aortic endograft design challenges for aneurysm or dissection
repair include cardiac-induced deformation, hemodynamic
forces, and vulnerable and complex anatomies [27]. The
Lagrangian coordinate system described in this paper im-
proves our ability to evaluate deformations of anatomy and
implanted devices at material points.

Because this cylindrical coordinate system method uses
piecewise linear centerlines with linear interpolation between
cross-sectional contours, the quality of the geometric model
and analyses is dependent of the quality and quantity of the
cross-sectional contours. Specifically, the coordinate system
requires that the original 2D contours to be sufficiently orthog-
onal to the centerline and sufficiently densely-spaced.
However, this method can include spline interpolation be-
tween centerline points and cross-sectional contours, relieving
some of the need for densely packed contours. In addition, the
method can be generalized to input a volumetric model, de-
rived from any number of segmentationmethods, and then use
that model to create arbitrary cross-sectional contour densities
based on need. These method extensions, along with applying
these techniques to a wide range of anatomic structures in-
cluding vascular, pulmonary, gastrointestinal, and reproduc-
tive, will be topics of future research.
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