
Citation: Tukaj, S.; Sitko, K. Heat

Shock Protein 90 (Hsp90) and Hsp70

as Potential Therapeutic Targets in

Autoimmune Skin Diseases.

Biomolecules 2022, 12, 1153. https://

doi.org/10.3390/biom12081153

Academic Editor: Vladimir N.

Uversky

Received: 27 July 2022

Accepted: 18 August 2022

Published: 20 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential
Therapeutic Targets in Autoimmune Skin Diseases
Stefan Tukaj * and Krzysztof Sitko

Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
* Correspondence: stefan.tukaj@ug.edu.pl; Tel.: +48-58-523-6119

Abstract: Over a hundred different autoimmune diseases have been described to date, which can
affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the
world’s population suffers from chronic, noninfectious inflammatory skin diseases, the development
of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune
diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes
or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of
autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but
almost never leads to the development of permanent mechanisms of immune tolerance. In addition,
current therapies and their long-term administration may cause serious adverse effects. Hence,
safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory
responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically
well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic
targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90
and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected
autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
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1. Introduction

Present in both prokaryotic and eukaryotic cells, highly evolutionarily conserved
heat shock proteins (Hsps) are grouped into six major families: Hsp100, Hsp90, Hsp70,
Hsp60 (chaperonins), Hsp40, and the small Hsps, according to their approximate molecular
weight expressed in kilodaltons (kDa). Their classical ATP-dependent (foldase) or ATP-
independent (holdase) chaperone activity is to assist in proper protein folding during
translation, re-folding of denatured proteins, native protein stabilization, polypeptide
transport, or degradation of misfolded proteins. Hsps can be synthesized constitutively or
induced in the cell under stress conditions and are present in various cellular compartments.
Multiple stress factors, e.g., hyperthermia, oxidative stress, ethanol, or UV radiation, can
increase the production of well-characterized inducible Hsp90 and Hsp70 chaperones,
which, in turn, interact with protein substrates (clients) and (co-)chaperones to participate
in almost every cellular process, including inflammation [1–4]. In addition to their classical
(canonical) role in the cell, some of these molecular chaperones (e.g., Hsp70) can be either
passively (due to necrosis) or actively (via lipid vesicles) secreted into the extracellular space
to mediate cell–cell communication via binding to several cell-surface receptors, including
TLR4, CD91, LRP-1, SCARF1, and LOX-1 [5,6]. Moreover, some Hsps may form complexes
with intracellular antigens, which are subsequently directed toward either the MHC class I
or MHC class II associated pathways, leading to the activation of T lymphocytes [7]. As
a result of findings described above, both intra- and extracellular Hsps have become
the subject of interest of scientists in the context of the inflammatory and autoimmune
process [8–10].
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2. Heat Shock Protein 90 (Hsp90)

In humans, the Hsp90 family consists of four members (i.e., Hsp90α, Hsp90β, Grp94/gp96,
and TRAP-1) localized in different cellular compartments. Structurally, all members of the
Hsp90 family comprise a common domain structure consisting of the nucleotide-binding
domain (NTD, N-terminal domain), a middle domain (MD) that has high affinity for co-
chaperones and client proteins, and the carboxy-terminal domain (CTD) responsible for
dimerization and oligomerization [11–13]. Hsp90α, so far the best described member of
the Hsp90 family, is a stress-inducible mammalian cytosolic isoform. It is one of the key
chaperones responsible for the biological activity of hundreds of its protein substrates,
among which there are key signaling molecules (e.g., mitogen-activated protein kinase,
MAP kinases) and transcription factors (e.g., nuclear factor-kappa B, NF-κB) that regulate
important cellular processes, such as growth, cell cycle, and differentiation. Moreover,
Hsp90 is involved in the stabilization of oncogenic proteins (e.g., Bcr-Abl, HER-2, EGFR,
and HIF-1α); hence, the inhibitors of its chaperone activity are currently being tested
as cancer treatment in advanced clinical trials [14,15]. In addition, it was shown that
extracellular Hsp90α mediates tumor metastasis but can also contribute to physiological
processes such as wound healing [16,17].

Inhibition of Hsp90 Activity

The structure and chaperone activities of Hsp90 have already been thoroughly dis-
cussed in other review articles [18–22]. Here, we present a brief overview of this issue to
provide the reader with a basic background for understanding the mechanism of action of
Hsp90 inhibitors and their classification, which may be considered for use in the treatment
of autoimmune skin diseases. The majority of discovered Hsp90 inhibitors that target the
ATP-binding pocket in the N-terminal domain of Hsp90 have entered clinical trials (e.g.,
17-DMAG, 17-AAG, and STA-9090); however, they have not been approved by the FDA
due to high toxicity, poor pharmacokinetic profiles, or simply a lack of clinical efficacy [20].
The lack of effectiveness of this type of Hsp90 inhibitor is due to, inter alia, triggering a
survival mechanism in cancer cells, referred to as heat shock response (HSR), driving heat
shock factor 1 (HSF-1) activation [23]. In fact, activation of HSF-1 is a common feature of
numerous cancer types, and its expression is associated with malignancy and mortality.
Moreover, activation of HSF1-dependent chaperones (e.g., Hsp70, Hsp40, and Hsp27)
participates in cancer cell growth and survival [10]. The above-mentioned insufficient
therapeutic strategy in cancer diseases can be improved by using combined therapy. For
instance, treatment with 17-AAG along with small interfering RNA (siRNA), knocking
down Hsp90α, exhibited significant anticancer activity in glioma [24]. Additionally, Hsp90
siRNA was able to inhibit the proliferation, migration, and invasion of angiosarcoma
cells [25]. Nevertheless, due to the significant role of Hsp90 in neoplastic diseases, the
search for effective and safer inhibitors of this chaperone is still ongoing. For instance,
isoform-selective inhibitors (e.g., Gamitrinib or Radamide) as well as regulators targeting
the MD (e.g., Sansalvamide A, Kongesin A) or C-terminal region of Hsp90 (e.g., Novobiocin,
Deguelin, Epigallocatechin-3-gallate (EGCG)) were reported as alternative strategies for
developing potent and safer Hsp90 inhibitors for clinical use [18–22,26–28]. The latter
group of Hsp90 inhibitors is an especially attractive chemotherapeutic approach, as they
do not trigger an HSR [23] (Figure 1).
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Figure 1. Schematic representation of the structural domains of Hsp90 along with their 
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the autoimmune process was confirmed in experimental preclinical studies using Hsp90 
inhibitors, belonging solely to the N-terminal binding type, which seem to be more attrac-
tive for the treatment of autoimmune diseases due to the activation of an HRS [10,23]. This 
anti-Hsp90 therapy has been successfully applied in murine models of encephalomyelitis, 
collagen-induced arthritis, adjuvant-induced arthritis, systemic lupus erythematosus 
(SLE), lipopolysaccharide-induced uveitis (EIU), and DSS-induced ulcerative colitis 
[10,29]. Mechanistically, Hsp90 inhibitors such as geldanamycin (GA) and its semi-syn-
thetic derivatives (e.g., 17-DMAG or 17-AAG) bind to the N-terminal nucleotide binding 
pocket of Hsp90 with higher affinity than ATP, which drives Hsp90-dependent ‘clients’ 
to proteasomal degradation. It is believed that immunosuppressive activity of this type of 
Hsp90 inhibition may result from (i) the activation of HSF-1, which regulates the expres-
sion of multiple genes, including immunoregulatory Hsp70 and IL-10; (ii) the expansion 
of immunosuppressive lymphocytes (both T and B regulatory cells); (iii) the inactivation 

Figure 1. Schematic representation of the structural domains of Hsp90 along with their specific
inhibitors, categorized by binding sites. Created with BioRender.com (accessed on 9 August 2022).

Importantly, numerous studies have shown that intracellular Hsp90 is involved in
the activation of the innate and adaptive components of the immune response, thereby
promoting an inflammatory/autoimmune response. An indirect contribution of Hsp90 in
the autoimmune process was confirmed in experimental preclinical studies using Hsp90
inhibitors, belonging solely to the N-terminal binding type, which seem to be more attrac-
tive for the treatment of autoimmune diseases due to the activation of an HRS [10,23]. This
anti-Hsp90 therapy has been successfully applied in murine models of encephalomyelitis,
collagen-induced arthritis, adjuvant-induced arthritis, systemic lupus erythematosus (SLE),
lipopolysaccharide-induced uveitis (EIU), and DSS-induced ulcerative colitis [10,29]. Mech-
anistically, Hsp90 inhibitors such as geldanamycin (GA) and its semi-synthetic derivatives
(e.g., 17-DMAG or 17-AAG) bind to the N-terminal nucleotide binding pocket of Hsp90
with higher affinity than ATP, which drives Hsp90-dependent ‘clients’ to proteasomal
degradation. It is believed that immunosuppressive activity of this type of Hsp90 inhibition
may result from (i) the activation of HSF-1, which regulates the expression of multiple
genes, including immunoregulatory Hsp70 and IL-10; (ii) the expansion of immunosuppres-
sive lymphocytes (both T and B regulatory cells); (iii) the inactivation of NF-κB-dependent
inflammatory/regulating factors, including TNF-α, IL-6, IL-8, and IL-17; or (iv) blockade
of the cell signaling molecules, such as MAP kinase [10,14,29–31]. There is, however, an
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important issue to be resolved. Namely, will Hsp90 inhibitors, which already found use
in the treatment of cancer and do not activate an HSR, also be effective in the treatment
of autoimmune diseases? The basic mechanism and cellular consequences concerning
the inhibition of Hsp90 in regard to autoimmune diseases are schematically presented in
Figure 2.
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Figure 2. Contribution of Hsp90 and Hsp70 to the immune response and their significance in the
therapy of autoimmune diseases. Inflammation leads to Hsp90 upregulation and, vice versa, Hsp90
promotes proinflammatory signaling. Blockade of Hsp90 activates heat shock factor 1 (HSF-1), which
upregulates the expression of Hsp70 and IL-10. Stress stimuli or Hsp90 inhibition lead to the induction
of Hsp70, which downregulates NF-κB activation. In parallel, Hsp70 presented by major histocom-
patibility complex (MHC) class II molecules activates disease-modulating (immunosuppressive) T
regulatory cells (Treg). On the other hand, acting as a damage-associated molecular pattern (DAMP),
extracellular Hsp70 activates neutrophils and promotes the secretion of reactive oxygen species (ROS).
Hsp70-based immunization stimulates either pro- or anti-inflammatory immune responses/cells.
Created with BioRender.com (accessed on 11 August 2022).

3. Heat Shock Protein 70 (Hsp70)

The Hsp70 family of molecular chaperones (comprises 13 gene products in humans)
represents one of the most ubiquitous classes of constitutively (e.g., Hsc70) or stress-induced
(collectively termed Hsp70 or HSPA1) proteins [32]. Structurally, Hsp70 isoforms consist
of three functional domains, including the nucleotide-binding domain (NBD), substrate-
binding domain (SBD), and a C-terminal peptide-binding domain [33]. The Hsp70 is
involved in a large variety of cellular processes, e.g., protein folding and remodeling, to-
gether with other molecular (co-)chaperones, including Hsp40 or Hsp90 [34]. While the
inhibitors of Hsp70 chaperone activity are currently under investigation in therapy for
cancerous diseases [28,35,36], a potential use of this therapeutic strategy in autoimmune
and noncancerous inflammatory diseases remains unclear. This is especially intriguing
as pharmacological co-inducers of Hsp70 expression (e.g., carvacrol) were able to down-
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regulate the inflammation process in preclinical models of autoimmune arthritis [37–39].
Mechanistically, in contrast to Hsp90, the upregulation of intracellular Hsp70 inhibits the
activity of NF-κB, a transcription factor that plays a key role in the inflammation process
and autoimmunity [8]. In addition, DNA vaccines coding for Hsps including Hsp70 are
considered as potential treatment of autoimmune disorders [40].

Extracellular Hsp70 Activities

Bacterial and autologous Hsp70 may be released from normal and stressed cells and
impact the host’s immune components belonging to the innate and acquired arms of the
immune system. While data concerning the immunosuppressive activity of intracellular
Hsp70 are generally consistent, with some exceptions, the role of extracellular Hsp70 in the
inflammation process and the development of autoimmune diseases is still not fully deter-
mined, as scientists working in this field present often-conflicting data. These differences
may be the result of interpretation errors that stem from presenting an incomplete picture of
the immune responses to Hsp70, insufficient/inadequate quality/purity of protein prepa-
rations used in cell cultures, or simply due to fundamental disparity in the way in vitro
and in vivo experiments are conducted. These apparently ambiguous activities may also be
related to the ability of this chaperone to interact with multiple receptors that are displayed
on different types of cells in the immune system. Finally, it is suggested that this dual
nature corresponds to the mechanism of secretion/presentation. While Hsp70 presented
by the antigen-presenting cells (APC) may activate regulatory T helper cells (Treg), thus
promoting anti-inflammatory mechanisms, Hsp70 liberated from damaged (necrotic) cells
can act as a damage-associated molecular pattern (DAMP) via Toll-like receptors 2 and 4
(TLR2 and TLR4), which stimulates proinflammatory reactions [5,8–10,41,42]. It should also
be kept in mind that, despite the common features of autoimmune diseases, there are some
substantial differences (involving different cells of the immune system) that may ultimately
elicit the dual (pleiotropic) nature of extracellular Hsp70 and other Hsps. Multiple studies
presenting the immunosuppressive activities of Hsp70-derived molecules are based on
preclinical models of arthritis [43]. For instance, the research team of professor van Eden W.
reported, in a very elegant way, that highly conserved Hsp70-peptide (HSP70-B29) used
for active immunization of animals could be regarded as a potential treatment target for
rheumatoid arthritis (RA) via induction of immunosuppressive Hsp70-specific Tregs [44].
The description of the dual role of extracellular Hsp70 in the development of autoimmune
skin diseases is presented in later chapters and in Figure 2.

4. Hsp90 and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases

The skin, which protects us from environmental and microbial insults thanks to physi-
cal and immunological barriers, is the largest organ of the human body. This protection is
ensured by the skin’s unique anatomy and cellular composition, in particular, the network
of immune cells including macrophages, dendritic cells, mast cells, γδ T cells, and innate
lymphoid cells. During microbial skin infection, different activated T cell subpopulations,
monocytes, and granulocytes may be additionally recruited to the skin to support host
defense [45]. When the body overcomes an infection, the primary activity status of the
immune cells is restored thanks to immunoregulatory mechanisms. Colloquially, autoim-
munity may occur when the balance between the effector arm and the regulatory arm of
the innate and adaptive immune systems is disturbed or improperly regulated. Therefore,
the primary therapies for autoimmune skin diseases involve the use of immunosuppressive
medications, including corticosteroids (applied both topically and systemically), methotrex-
ate, or azathioprine, which inhibit the proinflammatory immune response. Currently,
precisely targeted therapies relying on proinflammatory cytokine blockade (e.g., TNF, IL-17,
and TSLP), cell depletion (e.g., B cells), blockade of intracellular signaling (e.g., JAK-STAT),
or a costimulatory blockade (e.g., CD28/CD80-86/CTLA-4) are approved by the FDA or
under clinical evaluation [46,47]. Despite the huge breakthrough made in the treatment
of autoimmune skin diseases, currently available therapy still fails to bring a satisfactory
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effect in a number of cases. Hence, safer and more effective therapies that bring a sustained
balance between pro- and anti-inflammatory responses are still desired.

There is growing evidence from preclinical studies confirming the contribution of
either Hsp90 or Hsp70 to the development and therapy of autoimmune skin diseases, such
as autoimmune bullous skin diseases, psoriasis, systemic lupus erythematosus, vitiligo,
alopecia areata, or systemic sclerosis. Studies targeting Hsp90 or Hsp70 in autoimmune
skin diseases based on preclinical and clinical studies are presented in Table 1.

Table 1. Overview of studies targeting Hsp90 or Hsp70 in autoimmune skin diseases based on
preclinical and clinical observations.

Disease Animal Model/
Clinical Observation Target Inhibitor Outcome Literature

Epidermolysis
bullosa

acquisita

COL7 or anti-COL7 IgG
immunized mouse

models

Hsp90

TCBL-145

Clinical and histological improvement

[48]

17-DMAG [48,49]

17-AAG [50]

Hsp70 None Hsp70- or anti-Hsp70 IgG-treated EBA
mice had more intense disease activity [51,52]

Psoriasis

Mouse xenograft
transplantation model Hsp90 Debio 0932 Clinical and histological improvement [53]

Imiquimod-induced
mouse model

Hsp70
Myricetin
Quercetin

Ellagic acid
Clinical and histological improvement [54]

Hsp70 None Topically applied Hsp70 ameliorated
disease activity [55]

Hsp70 None Hsp70-based immunization
ameliorated disease activity [56]

Phase I–II evaluation of
safety and efficacy Hsp90 Debio 0932 Clinical improvement during unrelated

(oncological diseases) clinical trial [53]

Phase Ib proof-of-concept
study Hsp90 RGRN-305 Clinical and serological improvement [57]

Vitiligo Mouse model of
autoimmune vitiligo Hsp70 None

Human- and mouse-derived inducible
Hsp70-vaccinated mice

displayedaccelerated depigmentation
[58]

Alopecia
areata

C3H/HeJ spontaneous
mouse model of AA Hsp70 Quercetin Clinical and histological improvement [59]

Systemic
lupus

erythematosus

MRL/lpr mouse
model of SLE

Hsp90

17-AAG

Clinical and functional improvement

[60]

STA-9090 [61]

17-DMAG [62]

(NZB × NZW)F1
mouse model of SLE

Hsp90 None Vaccination with DNA encoding Hsp90
protected from murine lupus [63]

Hsp70 None Vaccination with DNA encoding Hsp70
led to disease suppression [64]

Systemic
sclerosis Mouse model of Ssc Hsp90 17-DMAG Histological and functional

improvement [65]

Atopic
dermatitis

OVA-induced mouse
model Hsp70 None

Subcutaneous administration of
recombinant Hsp70 led to clinical,

histological, and serological
improvement

[66]
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4.1. Autoimmune Bullous Diseases

Autoimmune bullous diseases (AIBDs) belong to a relatively rare and potentially
life-threatening organ-specific group of inflammatory skin diseases characterized by the
presence of autoantibodies against various structural proteins of the skin present in desmo-
somes (e.g., pemphigus vulgaris-PV) and hemidesmosomes (e.g., bullous pemphigoid-BP
and epidermolysis bullosa acquisita-EBA), or against epidermal/tissue transglutaminases
present in Duhring disease (also known as dermatitis herpetiformis-DH). Despite under-
standing of the pathophysiology of AIBDs, in which both innate and adaptive mechanisms
of the immune response are undoubtedly involved, treatment for this group of diseases
remains a challenge, due to frequent relapses after the discontinuation of therapy, numerous
side effects associated with using, e.g., corticosteroids, or due to the lack of a fully effective
drug [67–69].

4.1.1. Bullous Pemphigoid

Bullous pemphigoid (BP) is one of the most common types of AIBDs, character-
ized by the presence of tense blisters and tissue-bound autoantibodies directed to two
hemidesmosomal structure proteins, namely, BP180 (specifically to its immunodominant
region, NC16A) and BP230. In addition to the T-cell-dependent humoral autoreactivity, the
importance of complement activation, neutrophils, macrophages, mast cells, and various
proteases including neutrophil elastase and matrix metalloproteinases (MMPs) for blister
formation are indicated [70].

It has been found that Hsp90 is accumulated/overexpressed in the perilesional skin
of BP patients as compared to normal skin of healthy controls. Experimental approaches
revealed that the accumulation of this chaperone in BP is mediated by the presence of
circulating anti-BP180-NC16A IgG autoantibodies, since the levels of Hsp90 in circulation
were significantly lower in affected patients compared to healthy controls and inversely
correlated to the titer of anti-BP180-NC16A IgG in those patients. In addition, while Hsp90
expression was upregulated in activated (by BP serum) human keratinocytes (HaCaT), the
presence of purified anti-BP180-NC16A IgG blocked the secretion of Hsp90 from HaCaT
cells in vitro [71]. The role of the Hsp90 in BP has also been proven experimentally using an
Hsp90 inhibitor—17-DMAG. The presence of this inhibitor in HaCaT cultures stimulated
by anti-BP180-NC16A IgG (an in vitro approximation of BP ‘model’) led to the inhibition
of NF-kB activation and a decreased expression/secretion of IL-8, which is one of the key
chemokines in BP. In addition, 17-DMAG treatment was associated with Hsp70 induction
in the cells [72].

4.1.2. Epidermolysis Bullosa Acquisita

Epidermolysis bullosa acquisita (EBA) is an anti-type VII collagen (COL7) autoantibody-
mediated autoimmune blistering skin disease with two major clinical subtypes, including
mechanobullous or inflammatory variants, with the latter resembling BP [70]. In the BP-
like experimental model of EBA, anti-COL7 IgG binding is followed by reactive oxygen
species (ROS) generation and MMPs expression by neutrophils. Both directly lead to the
degradation of the dermal–epidermal junction and blister formation [73].

Anti-Hsp90 therapy was examined in COL7-immunized mice using intraperitoneally
applied 17-DMAG or nontoxic peptide TCBL-145. Both inhibitors ameliorated the clinical
symptoms of EBA, suppressed anti-COL7 IgG, and reduced dermal neutrophilic infiltration.
While total or antigen-specific plasma cells and germinal center B cells were unaffected by
anti-Hsp90 treatment, human or mouse B cell as well as T cell activation were potentially
suppressed by the inhibitors [48,49]. Mechanistically, 17-DMAG treatment led to the
induction of HSF-1 and Hsp70 and reduced Th1 and Th17 frequencies in human activated
B and T cell cultures, respectively [49,74]. In addition, anti-Hsp90 therapy led to the
induction of regulatory B cells (Breg), the activation of which was proven ex vivo [49]. In a
dose-dependent manner, 17-DMAG inhibited the detachment of the epidermis from the
dermis in the human skin biopsy (cryosection assay) treated with anti-COL7 IgG-activated
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granulocytes, as well as inhibiting the production/release of ROS by activated human
neutrophils. Finally, since extracellular Hsp90 has been found to interact with MMP2
and MMP12 in the sera of EBA patients, it may suggest that these basement-membrane-
degrading enzymes are substrates of this chaperone and are thus potentially dependent on
its activity [75]. The effectiveness of anti-Hsp90 therapy has also been demonstrated locally.
Application of a less toxic geldanamycin analog, 17-AAG, directly to skin lesions attenuated
clinical disease severity (both in prophylactic and therapeutic treatment) without skin or
systemic toxicity in experimental EBA models. The therapy led to the reduction in skin
infiltration by neutrophils and NF-κB activation, as well as decreases in MMP2, MMP9,
MMP12, and Flii expression. In addition, topical 17-AAG application led to the induction
of Hsp70 in the skin [50].

It has been frequently reported that Hsp70-derived peptides, used for active immuniza-
tion of animals, could be regarded as a potential treatment target for RA via the induction
of immunosuppressive mechanisms, which include IL-10 and Tregs [43]. Since blood levels
of autologous inducible Hsp70 were found to be elevated in an experimental EBA mouse
model [51], the role of this protein in EBA has yet to be determined. This disease is char-
acterized by a different mechanism of development than RA. Surprisingly, Hsp70-treated
EBA mice displayed more severe symptoms compared to untreated EBA mice. This effect
was accompanied by increased levels of cutaneous MMP9 and circulating H2O2. ROS
release assay using human granulocytes stimulated by EBA-specific immune complexes
confirmed the proinflammatory properties of autologous Hsp70 [51]. Additionally, the hu-
moral autoimmune response to Hsp70 has been observed to play a role in EBA. Circulating
anti-Hsp70 IgG autoantibodies were significantly elevated in EBA patients as compared to
healthy individuals and positively correlated with IFN-γ in patients. The importance of
these newly discovered, pathologically relevant autoantibodies has been proven in vivo,
since anti-Hsp70 IgG-treated EBA mice had a more intense clinical and histological disease
activity [52]. The above outcomes suggest that both autologous Hsp70 and autoantibodies
to Hsp70 display proinflammatory activities in the context of EBA development [51,52].

4.1.3. Dermatitis Herpetiformis

Dermatitis herpetiformis (DH) is an autoimmune blistering skin manifestation of
celiac disease that develops mostly in patients with latent gluten-sensitive enteropathy.
It is manifested by the presence of gluten-induced IgA autoantibodies against epidermal
(eTG) and tissue (tTG) transglutaminases [76]. In fact, circulating autoantibodies to Hsp60,
Hsp70, and Hsp90 were found to be significantly elevated in DH patients (but not in BP
and PV patients) in the active phase of the disease. Interestingly, remitted patients were
characterized by a significant decrease in the level of anti-Hsps autoantibodies, as well
as autoantibodies directed to eTG and tTG. These serological observations may suggest
that autoantibodies to Hsps participate in the development and maintenance of DH, which
suggests a potential novel use as disease biomarkers [77].

4.2. Psoriasis

Psoriasis is one of the most common chronic autoimmune skin conditions, character-
ized by scaly and itchy patches of reddened skin resulting from excessive proliferation
and abnormal differentiation of epidermal keratinocytes caused by an impaired local and
systemic immune responses, the presence of susceptibility alleles, and environmental
factors [78]. There is a growing body of research suggesting that psoriasis is a systemic in-
curable disease where proinflammatory T helper cells, specifically the Th17 subpopulation,
play an important effector role in initiating systemic inflammation [79]. Since proving that
Hsp90 was involved in IL-17-mediated skin inflammation, the chaperone was found to be
significantly upregulated in keratinocytes and mast cells in the lesional skin of patients
with psoriasis [80]. Therefore, it has been described as a potential novel therapeutic target
in this disease. In fact, the use of an Hsp90 inhibitor in the treatment of patients with
psoriasis was discovered accidently during the first clinical trials of a new oral Hsp90
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inhibitor (Debio 0932) in the treatment of oncological diseases, such as advanced solid
tumors, lymphomas, and non-small cell lung cancer. Symptoms of psoriasis, which one of
the oncological patients was suffering from, had gone into complete remission as a result
of the experimental treatment administered during the trial. The confirmation of these
unexpected results was provided in a psoriasis xenograft transplantation model. In this
mouse model, oral administration of Debio 0932 to animals significantly arrested both the
development of the clinical manifestation of psoriasis and histological parameters, such
as epidermal thickness, as well as psoriasis pattern and vessel scores [53]. In vitro studies
using another Hsp90 inhibitor (RGRN-305) on psoriasis-like inflammatory response in hu-
man keratinocytes further confirmed the contribution of this chaperone to the development
of psoriasis. RGRN-305 significantly reduced the IL-17A- and TNFα-induced expression of
CCL20, NFKBIZ, IL-36G, and IL-23A in human keratinocyte cultures [81]. These preclinical
observations have resulted in the use of this experimental therapy in clinical trials. A
phase Ib proof-of-concept study has been recently launched to evaluate the safety and
efficacy of RGRN-305 in the treatment of plaque psoriasis [57]. It has been reported that
six of the eleven psoriasis patients enrolled in this clinical study responded positively to
RGRN-305 treatment, as a 71–94% reduction in the Psoriasis Area and Severity Index (PASI)
in RGRN-305-treated patients was noted. While five out of eleven patients were considered
non-responders, no serious side effects were reported. Treatment with RGRN-305 resulted
in a marked inhibition of the IL-23, TNF-α, and IL-17A signaling pathways and the normal-
ization of both histological changes and the gene expression profiles of psoriasis, further
supporting that Hsp90 may serve as a novel target in the treatment of psoriasis [57].

Hsp70 has also been considered as a therapeutic target in psoriasis. This claim was
tested using a well-described imiquimod (IMQ)-induced mouse model of psoriasis-like skin
inflammation. Interestingly, topical application of either Hsp70 inhibitors or plant-derived
Hsp70 protein contributed to a significant inhibition of clinical and histological symptoms
and a modulation of the selected disease-associated cytokines, including IL-17A, IL-4, IL-5,
TNF-α, IL-22, and IL-23 [54,55]. These distinct therapeutic approaches (i.e., inhibition of
Hsp70 activity or topical Hsp70 application) had surprisingly convergent clinical outcomes.
It must therefore be clarified whether the chaperone activity of intracellular Hsp70 or the
immunogenicity of the extracellular fraction of this protein is crucial in the development of
psoriasis. Given the assumption that immunization with Hsp70 expanded Treg and amelio-
rated autoimmune arthritis in a model [82], the role of Hsp70-based immunization therapy
on psoriasis-like skin inflammation (IMQ-induced mouse) was evaluated. Immunization
of naïve BALB/c mice (two weeks prior to psoriasis induction) with autologous or plant
Hsp70 resulted in decreased PASI and histological severity. Mechanistically, therapy with
plant-derived Hsp70 led to the expansion of two populations of Tregs, i.e., CD4+FoxP3+

and CD4+CD25+. A functional assay revealed that concomitantly induced circulating
anti-Hsp70 IgG in the immunized animals could also inhibit disease progress, since passive
transfer of anti-Hsp70 IgG led to the attenuation of disease activity and the inhibition of
Th17 frequencies in the spleens. Antiproliferative/immunosuppressive effects of Hsp70 on
keratinocytes/T cells were also directly confirmed in cell culture experiments [56].

4.3. Vitiligo

Vitiligo is an autoimmune T-cell-dependent depigmenting disorder resulting from the
loss of melanocytes in the epidermis [83]. It has been initially reported that 4-tertiary butyl
phenol (4-TBP)-treated vitiligo PIG3V melanocytes may mediate the activation of disease-
effector dendritic cells (DCs) through the release of Hsp70 [84]. Further, it has been shown
that using human- and mouse-derived inducible Hsp70 in vaccination (plasmids encoding
Hsp70s) accelerated depigmentation in a mouse model of autoimmune vitiligo [58], repre-
senting a potential therapeutic target [85]. Moreover, two independent studies have found
cutaneous upregulation of Hsp70, which was associated with the development of vitiligo in
patients [86,87]. Additionally, using an immortalized human vitiligo melanocyte cell line,
both cytoplasmic Hsp70 and Hsp90 were found to be translocated into apoptotic bodies
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along with autoantigens (e.g., tyrosinase-related protein 1 or cleavage nuclear membrane
antigen Lamin A/C) associated with vitiligo [88].

4.4. Alopecia Areata

Alopecia areata (AA) is a chronic inflammatory CD8+ T cells-mediated disease charac-
terized by an autoimmune reaction to hair follicles, which consequently leads to the loss
of hair in focal regions, the complete scalp including eyelashes and eyebrows, or even the
entire body [89]. Quantitative proteomic analysis revealed that Hsp90 and Hsp70 chaper-
ones were among 104 downregulated proteins found in lesional compared to non-lesional
skin biopsies of AA patients [90]. Further studies demonstrated that Hsp90 and Lamin
A/C interact with each other, and both play an essential role in the growth, migration, and
self-aggregation of dermal papilla cells and can be linked to AA. It is suggested that the dis-
ruption of such interactions may contribute to the pathogenesis of AA via the dysfunction
of dermal papilla cells [91].

Preclinical studies revealed not only an enhanced skin Hsp70 expression in C3H/HeJ
mice strain that developed AA spontaneously [92], but also that the blockade of Hsp70 by
quercetin proved an effective treatment for AA in this model [59].

4.5. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a prototype autoimmune disease character-
ized by antinuclear antibodies, immune complex deposition, and heterogeneous clinical
manifestations involving various organs and tissues, e.g., skin, joints, or kidneys. The
disease manifests with various abnormalities in the phenotypes and functions of the innate
and acquired immune cells [93]. The role of Hsp90 in SLE and its clinical relevance has
been confirmed independently by several research teams. Higher expression of Hsp90 as
well as enhanced circulating levels of soluble Hsp90 and anti-Hsp90 autoantibodies were
associated with disease progression. Clinical improvement and multimodal regulatory
effects of Hsp90 inhibition on, e.g., cell signaling, proinflammatory cytokine secretion, ds-
DNA antibodies, proteinuria, or lymphocytes activity (e.g., expansion of Treg or reduction
in pathogenic T and B cell lineage populations) in SLE was revealed using experimental
animal models. Taken together, Hsp90 contributes to inflammation and SLE progres-
sion, and therefore, targeting of its expression/activity may be a viable treatment for
SLE [60–63,94–100].

Independent approaches revealed Hsp70 gene polymorphisms associated with SLE
pathogenesis [101,102]. In addition, the expression of Hsp70 (HSPA1A) was significantly
upregulated in patients with SLE and positively linked with the disease-specific autoan-
tibodies in patients [103]. Preclinical studies, however, indicate a dual role for Hsp70
in the development of SLE. On the one hand, vaccination with DNA encoding Hsp70
suppressed a murine model of SLE via the induction of tolerogenic immune responses and
marked suppression of anti-dsDNA antibody production, reduction in renal disease, and
anti-inflammatory responses [64]. On the other hand, blockade of HSC70/Hsp73 chaperone
expression via the P140 peptide displayed protective properties in MRL/lpr lupus-prone
mice by decreasing autoreactive T cell priming and signaling [104].

4.6. Systemic Sclerosis

Systemic sclerosis (SSc) is a rare systemic autoimmune disease, one of the connective
tissue diseases, characterized by widespread skin (scleroderma) and internal organ fibrosis,
disturbances of innate and acquired immune responses, as well as vascular abnormali-
ties [105]. Multiple observations provide evidence for the contribution of Hsp90 in the
development of skin fibrosis [106]. It has been found, for instance, that increased expression
of Hsp90 in the skin of patients with SSc is critical for TGF-β signaling and that a pharmaco-
logical blockade of Hsp90 inhibited the profibrotic effects of TGF-β in cultured fibroblasts
and in animal models of SSc [65]. Importantly, the chaperone’s extracellular presence, i.e.,
elevated serum Hsp90 levels, were associated with increased systemic inflammation, worse
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lung functions, and skin involvement in SSc patients [107]. Likewise, increased levels of
circulating Hsp70 were associated with pulmonary fibrosis, skin sclerosis, renal vascular
damage, oxidative stress, and inflammation in SSc patients, suggesting that extracellular
Hsp70 may be a useful serological marker for evaluating both cellular stresses and disease
severity in SSc patients [108].

4.7. Atopic Dermatitis

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases
(prevalence: 15–30% in children and 2–10% in adults), characterized by intense itching and
recurrent skin lesions. AD is a chronic and incurable immune-mediated disease that can be
controlled by the use of topical emollients, calcineurin inhibitors, or corticosteroids [109].
Since immune responses to self-proteins have been observed in AD patients, it cannot be
excluded that an autoimmune response plays an important role in the progression of this
disease [110]. Even though AD is not currently classified as an autoimmune disease, recent
observational studies revealed the potential association between AD and autoimmune
disorders. Systematic review and meta-analysis studies showed a significant association of
AD with various autoimmune diseases, including AA, celiac disease, Crohn’s disease, RA,
SLE, ulcerative colitis, and vitiligo [111].

Highly immunogenic extracellular Hsp90 can activate the humoral immune response
driving the generation of circulating anti-Hsp90 autoantibodies that were found to be
elevated in several autoimmune disorders [8,9]. In fact, one study found circulating Hsp90
to be significantly elevated in AD patients compared to healthy controls and positively
correlated with the severity of AD (SCORAD; Scoring Atopic Dermatitis). In the same
study, anti-Hsp90 IgE serum positivity was characterized for about 50% of AD patients and
less than 3% of healthy controls. These results suggest a possible role of the extracellular
Hsp90 and anti-Hsp90 IgE autoantibodies in the development of AD, as well as providing
potential novel disease biomarkers [112].

It has been found that the upregulation of Hsp65 and Hsp72/73 in skin lesions of
patients with AD was positively associated with the disease’s severity [113]. Another study
revealed that elevated levels of anti-Hsp70 antibodies were associated with metal allergy in
AD patients [114]. On the other hand, subcutaneous administration of recombinant Hsp70
to mice with an OVA-induced AD-like phenotype ameliorated disease severity and cellular
skin inflammation via the induction of systemic Th1- and inhibition of Th2-like immune
responses, as well as the inhibition of cutaneous TSLP expression [66].

5. Prospective

Extensive preclinical studies using Hsp-based vaccines or the inhibition of Hsp ex-
pression/activity in experimental autoimmune animal models have been validated in
the first clinical trials and proof-of-concept studies, giving hope for the development of
next-generation drugs. Promising clinical trials have been performed in patients with
rheumatoid arthritis using Hsp40-derived dnaJP1 (a highly conserved 15 aa peptide), as
well as full-length Hsps, such as immuno-globulin binding protein (BiP, belonging to the
Hsp70 family) and Hsp10. In parallel, the treatment of newly diagnosed type 1 diabetes
patients with Hsp60-derived DiaPep277 peptide successfully entered phase III clinical
trials [8,9,43,115,116]. In addition, the latest clinical trials confirm the safety and efficacy of
Hsp90 inhibition by RGRN-305 in the treatment of plaque psoriasis [57]. Taken together,
both therapeutic approaches, i.e., modulation of Hsp activity/expression and Hsp-based
vaccines, seem to represent a new promising direction in the treatment of autoimmune skin
diseases. To fully validate this approach, long-term efficacy and safety, optimal dosage,
and the use of Hsp-derived proteins/chaperone inhibitors in combination with current
therapy all require further research. Therefore, further and more extensive studies using
animal experimental models should be performed to determine the roles of such chaper-
ones in the pathogenesis of autoimmune skin diseases. It is also worth noting that studies
suggesting the involvement of Hsp90/70 in autoimmune/inflammatory diseases based
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solely on observations of changes in the level of protein expression in inflamed tissues may
not be sufficient to draw a final conclusion. Upregulation of Hsp90/70 and the correla-
tions between the levels of these chaperones both inside and outside the cell with selected
clinical parameters cannot unequivocally determine their contribution in the pathological
process since the presence of such associations may result from compensation mechanisms.
Therefore, functional assays or animal experimental models should be implemented to
determine the role of such chaperones in the pathogenesis of autoimmune diseases. This is
particularly important in the study of Hsp90/70, whose rapid and efficient expression in a
cell exposed to multiple stressors is a key element of first response, enabling the repair of
any damage that has occurred.
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10. Tukaj, S.; Węgrzyn, G. Anti-Hsp90 therapy in autoimmune and inflammatory diseases: A review of preclinical studies. Cell Stress
Chaperones 2016, 21, 213–218. [CrossRef]

11. Hoter, A.; El-Sabban, M.E.; Naim, H.Y. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and
Disease. Int. J. Mol. Sci. 2018, 19, 2560. [CrossRef] [PubMed]

12. Li, J.; Buchner, J. Structure, function and regulation of the hsp90 machinery. Biomed. J. 2013, 36, 106–117. [CrossRef] [PubMed]
13. Biebl, M.M.; Buchner, J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb. Perspect. Biol. 2019,

11, a034017. [CrossRef] [PubMed]
14. Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell. Biol. 2017, 18, 345–360. [CrossRef]

[PubMed]
15. Zuehlke, A.D.; Beebe, K.; Neckers, L.; Prince, T. Regulation and function of the human HSP90AA1 gene. Gene 2015, 570, 8–16.

[CrossRef]
16. Hance, M.W.; Nolan, K.D.; Isaacs, J.S. The double-edged sword: Conserved functions of extracellular hsp90 in wound healing

and cancer. Cancers 2014, 6, 1065–1097. [CrossRef]
17. Li, W.; Sahu, D.; Tsen, F. Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim. Biophys. Acta 2012,

1823, 730–741. [CrossRef]

http://doi.org/10.1097/SHK.0b013e3182a185ab
http://www.ncbi.nlm.nih.gov/pubmed/23807250
http://doi.org/10.1098/rstb.2016.0527
http://www.ncbi.nlm.nih.gov/pubmed/29203712
http://doi.org/10.1016/j.jbc.2022.101905
http://www.ncbi.nlm.nih.gov/pubmed/35398094
http://doi.org/10.1146/annurev-biophys-090121-082906
http://doi.org/10.3389/fimmu.2016.00159
http://doi.org/10.3389/fimmu.2019.03035
http://doi.org/10.3389/fimmu.2012.00063
http://doi.org/10.3390/ijms21155298
http://doi.org/10.1007/s12192-019-01000-3
http://doi.org/10.1007/s12192-016-0670-z
http://doi.org/10.3390/ijms19092560
http://www.ncbi.nlm.nih.gov/pubmed/30158430
http://doi.org/10.4103/2319-4170.113230
http://www.ncbi.nlm.nih.gov/pubmed/23806880
http://doi.org/10.1101/cshperspect.a034017
http://www.ncbi.nlm.nih.gov/pubmed/30745292
http://doi.org/10.1038/nrm.2017.20
http://www.ncbi.nlm.nih.gov/pubmed/28429788
http://doi.org/10.1016/j.gene.2015.06.018
http://doi.org/10.3390/cancers6021065
http://doi.org/10.1016/j.bbamcr.2011.09.009


Biomolecules 2022, 12, 1153 13 of 16

18. Donnelly, A.; Blagg, B.S. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med.
Chem. 2008, 15, 2702–2717. [CrossRef]

19. Der Sarkissian, S.; Aceros, H.; Williams, P.M.; Scalabrini, C.; Borie, M.; Noiseux, N. Heat shock protein 90 inhibition and
multi-target approach to maximize cardioprotection in ischaemic injury. Br. J. Pharmacol. 2020, 177, 3378–3388. [CrossRef]

20. Sanchez, J.; Carter, T.R.; Cohen, M.S.; Blagg, B.S.J. Old and New Approaches to Target the Hsp90 Chaperone. Curr. Cancer Drug
Targets 2020, 20, 253–270. [CrossRef]

21. Mielczarek-Lewandowska, A.; Hartman, M.L.; Czyz, M. Inhibitors of HSP90 in melanoma. Apoptosis 2020, 25, 12–28. [CrossRef]
[PubMed]

22. Bickel, D.; Gohlke, H. C-terminal modulators of heat shock protein of 90 kDa (HSP90): State of development and modes of action.
Bioorg. Med. Chem. 2019, 27, 115080. [CrossRef] [PubMed]

23. Wang, Y.; McAlpine, S.R. N-terminal and C-terminal modulation of Hsp90 produce dissimilar phenotypes. Chem. Commun. 2015,
51, 1410–1413. [CrossRef] [PubMed]

24. Mehta, A.; Shervington, A.; Howl, J.; Jones, S.; Shervington, L. Can RNAi-mediated hsp90α knockdown in combination with
17-AAG be a therapy for glioma? FEBS Open Bio 2013, 3, 271–278. [CrossRef] [PubMed]

25. Yamada-Kanazawa, S.; Kajihara, I.; Fukushima, S.; Jinnin, M.; Masuzawa, M.; Masuzawa, M.; Amoh, Y.; Hoshina, D.; Abe, R.;
Ihn, H. Inhibition of heat shock protein 90 exerts an antitumour effect in angiosarcoma: Involvement of the vascular endothelial
growth factor signalling pathway. Br. J. Dermatol. 2017, 177, 456–469. [CrossRef]

26. Yu, J.; Zhang, C.; Song, C. Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur. J. Med. Chem.
2022, 238, 114516. [CrossRef]

27. Li, L.; Chen, N.N.; You, Q.D.; Xu, X.L. An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin. Ther.
Pat. 2021, 31, 67–80. [CrossRef]

28. Shevtsov, M.; Multhoff, G.; Mikhaylova, E.; Shibata, A.; Guzhova, I.; Margulis, B. Combination of Anti-Cancer Drugs with
Molecular Chaperone Inhibitors. Int. J. Mol. Sci. 2019, 20, 5284. [CrossRef]

29. Li, L.; Wang, L.; You, Q.D.; Xu, X.L. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future
Directions. J. Med. Chem. 2020, 63, 1798–1822. [CrossRef]

30. Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 2010,
10, 537–549. [CrossRef]

31. Jackson, S.E. Hsp90: Structure and function. Top Curr. Chem. 2013, 328, 155–240. [CrossRef]
32. Radons, J. The human HSP70 family of chaperones: Where do we stand? Cell Stress Chaperones 2016, 21, 379–404. [CrossRef]

[PubMed]
33. Kityk, R.; Kopp, J.; Sinning, I.; Mayer, M.P. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones.

Mol. Cell 2012, 48, 863–874. [CrossRef] [PubMed]
34. Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680.

[CrossRef] [PubMed]
35. Kumar, S.; Stokes, J., 3rd; Singh, U.P.; Scissum Gunn, K.; Acharya, A.; Manne, U.; Mishra, M. Targeting Hsp70: A possible therapy

for cancer. Cancer Lett. 2016, 374, 156–166. [CrossRef]
36. Ambrose, A.J.; Chapman, E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J. Med. Chem. 2021,

64, 7060–7082. [CrossRef]
37. Wieten, L.; Broere, F.; van der Zee, R.; Koerkamp, E.K.; Wagenaar, J.; van Eden, W. Cell stress induced HSP are targets of regulatory

T cells: A role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett. 2007, 581, 3716–3722.
[CrossRef]

38. Wieten, L.; van der Zee, R.; Spiering, R.; Wagenaar-Hilbers, J.; van Kooten, P.; Broere, F.; van Eden, W. A novel heat-shock protein
coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum. 2010,
62, 1026–1035. [CrossRef]

39. Wieten, L.; van der Zee, R.; Goedemans, R.; Sijtsma, J.; Serafini, M.; Lubsen, N.H.; van Eden, W.; Broere, F. Hsp70 expression and
induction as a readout for detection of immune modulatory components in food. Cell Stress Chaperones 2010, 15, 25–37. [CrossRef]

40. Quintana, F.J.; Cohen, I.R. DNA vaccines coding for heat-shock proteins (HSPs): Tools for the activation of HSP-specific regulatory
T cells. Expert Opin. Biol. Ther. 2005, 5, 545–554. [CrossRef]

41. De Maio, A. Extracellular Hsp70: Export and function. Curr. Protein Pept. Sci. 2014, 15, 225–231. [CrossRef] [PubMed]
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