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Abstract
Living soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined 
tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to 
the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical 
mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms 
on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational 
framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological 
mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a recon-
structed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding 
mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can 
largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still 
unexplained experimental observations about mechanical homeostasis.

Keywords  mechanical homeostasis · growth and remodeling · cell–extracellular matrix interaction · discrete fiber model · 
finite element method

1  Introduction

Living soft tissues, in contrast to classical engineering mate-
rials, usually seek to establish and maintain a mechanical 
state that is not stress-free. This behavior of living soft tis-
sues is often referred to as mechanical homeostasis, and it 
plays a key role in the control of form and function in health 
and disease (Lu et al. 2011; Cox and Erler 2011; Ross et al. 
2013; Humphrey et al. 2014; Bonnans et al. 2014). Intra 
cellular structures such as the actomyosin cytoskeleton are 

physically coupled to the surrounding extracellular matrix 
(ECM) via transmembrane protein complexes such as inte-
grins that can cluster to form focal adhesions (Cavalcanti-
Adam et al. 2007; Lerche et al. 2019). This coupling allows 
cells to receive mechanical cues from their environment, 
transduce these cues into intracellular signals, and react, 
for example, by adapting cellular stress and thereby also 
the stress of the surrounding ECM. Physical interactions 
between cells and ECM have been shown to control vari-
ous processes on the cellular scale such as cell migration 
(Grinnell and Petroll 2010; Xie et al. 2017; Hall et al. 2016; 
Kim et al. 2020), differentiation (Chiquet et al. 2009; Mam-
moto et al. 2012; Zemel 2015; Seo et al. 2020), and survival 
(Bates et al. 1995; Schwartz 1995; Zhu et al. 2001; Sukharev 
and Sachs 2012) and are therefore fundamental for health 
and in disease of entire tissues and organs.

To study the micromechanical foundations of mechani-
cal homeostasis experimentally, tissue culture studies with 
cell-seeded collagen or fibrin gels have attracted increas-
ing interest over the past decades (Eichinger et al. 2021). 
Circular free-floating gels, when seeded with fibroblasts, 
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exhibit a strong compaction over multiple days in culture 
due to cellular contractile forces (Simon et al. 2012, 2014). 
Studies of such gels whose compaction is prevented by 
boundary constraints typically show a two-phase response. 
First, tension in the gels rapidly increases to a specific 
value, the so-called homeostatic tension (phase I), and 
then remains largely constant (phase II) for the rest of the 
experiment (Brown et al. 1998, 2002; Sethi et al. 2002; 
Campbell et al. 2003; Marenzana et al. 2006; Dahlmann-
Noor et al. 2007; Karamichos et al. 2007; Ezra et al. 2010; 
Courderot-Masuyer 2017; Eichinger et al. 2020). If the 
gel is perturbed in phase II, for example, by an externally 
imposed deformation, cells appear to promote a restora-
tion of the homeostatic state (Brown et al. 1998; Ezra et al. 
2010). Despite substantial research efforts over decades, 
the exact interplay between cells and surrounding tis-
sue that is crucial for mechanical homeostasis and other 
related phenomena such as durotaxis still remains poorly 
understood (Eichinger et al. 2021).

Computational studies in this field have focused primarily 
on decellularized ECM systems to study the micromechani-
cal and physical properties of networks of fibers (Heussinger 
and Frey 2007; Mickel et al. 2008; Lindström et al. 2010; 
Chatterjee 2010; Broedersz et al. 2011; Stein et al. 2010; 
Cyron and Wall 2012; Cyron et al. 2013b, a; Lang et al. 
2013; Motte and Kaufman 2013; Müller et al. 2014; Jones 
et al. 2014; Lee et al. 2014; Müller et al. 2015; Ronceray 
et al. 2016; Mauri et al. 2016; Dong et al. 2017; Humphries 
et al. 2018; Zhou et al. 2018; Bircher et al. 2019; Domaschke 
et  al. 2019, 2020). Current computational models of 
cell–ECM interactions often suffer from shortcomings—
most are limited to two dimensions and just one or two cells 
(Wang et al. 2014; Abhilash et al. 2014; Notbohm et al. 
2015; Jones et al. 2015; Kim et al. 2017; Humphries et al. 
2017; Grimmer and Notbohm 2017; Burkel et al. 2018). The 
importance of the third dimension for the physics of fiber 
networks is well known (Cukierman et al. 2002; Baker and 
Chen 2012; Jansen et al. 2015; Duval et al. 2017), and it can 
be assumed that collective interactions between more than 
just two cells play important roles in mechanical homeosta-
sis. Moreover, current models typically rely in many crucial 
aspects on heuristic assumptions (Nan et al. 2018; Zheng 
et al. 2019) and almost all of them assume simple random 
fiber networks (e.g., based on Voronoi tessellations) that 
do not match the specific microstructural characteristics of 
actual collagen gels or tissues. What remains wanting is a 
robust, computationally efficient three-dimensional model of 
cell–fiber interactions, where the microstructure of the fiber 
network realistically resembles real collagen gels and tissues 
and which is efficient enough to enable simulations with 
several cells. Such a computational model can be expected 
to help unravel the micromechanical and molecular founda-
tions of mechanical homeostasis.

In this paper, we introduce such a computational model. It 
is based on the finite element method and relies on a strong 
experimental foundation. It can be used to test various 
hypotheses with regard to the micromechanical principles 
of mechanical homeostasis. It can also help to identify prom-
ising future experiments. The model focuses on mechani-
cal aspects of homeostasis by concentrating on the physi-
cal interactions of cells with surrounding matrix fibers and 
thus neglects direct modeling of biochemical phenomena. 
The paper focuses on a detailed description of the compu-
tational framework, but examples are used to demonstrate 
the physical validity of this framework and to illustrate the 
opportunities it will open up. It will be seen that this frame-
work captures well key observations from experiments on 
short time scales (in which deposition and degradation of 
tissue fibers can be neglected), thus helping to explain the 
underlying physics.

2 � Models and methods

To study the physical foundations of mechanical homeosta-
sis in soft biological tissues on short time scales (hours), our 
framework models (i) interlinked ECM-like fiber networks 
whose microstructure closely resembles that of actual col-
lagen gels, (ii) transmembrane proteins such as integrins 
which connect extra- to intracellular structures, and (iii) the 
contractile activity of the cytoskeleton. In the following, we 
describe the mathematical and computational details of our 
model.

2.1 � Construction of representative volume 
elements (RVEs)

Computational modeling of soft tissues on the level of dis-
crete fibers and individual cells remains intractable for large 
tissue volumes, noting that 1ml of ECM may contain over 
one million cells. Therefore, we use RVEs as structurally 
typical samples of the considered tissue (Fig. 1a). Building 
on our previous work on biopolymer networks (Cyron and 
Wall 2012; Cyron et al. 2013a, b; Grill et al. 2021), we con-
structed physically realistic three-dimensional fiber networks 
from confocal microscope images of actual collagen gels 
(Fig. 1a). Following Lindström et al. (2010) and Davoodi-
Kermani et al. (2021), we assumed that the mechanical prop-
erties of collagen fiber networks are predominantly governed 
by three descriptors, namely the valency (number of fibers 
connected to a network node, referred to by some as connec-
tivity), the free-fiber lengths between adjacent nodes (herein 
also referred to as fiber length), and the angles between the 
fibers joining at the nodes (which can be quantified by the 
cosine of the angles between any pair of fibers joining at 
a node). These descriptors vary in the network across the 
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fibers and nodes by following certain statistical distributions. 
Using the computational procedure described in Appendix 
A1, which is motivated by Yeong and Torquato (1998) and 
Lindström et al. (2010), and briefly illustrated in Fig. 1, we 
ensured that the statistical distributions of valency, free-
fiber length, and inter-fiber cosines closely matched those 
of actual collagen fiber networks. The computational pro-
cedure to produce such networks has been implemented 
in a short C++ program which is available under the BSD 
3-Clause License as the repository BioNetGen hosted at 
https://​github.​com/​bione​tgen/​bione​tgen.

2.2 � Mechanical network model

We used the finite element method to model the mechanics 
of our fibrous RVEs. Individual fibers were modeled as geo-
metrically exact beam finite elements based on the nonlinear 
Simo–Reissner theory (Reissner 1981; Simo 1985; Simo and 
Vu-Quoc 1986) and a hyperelastic material law. This beam 
theory captures the modes of axial tension, torsion, bending, 
and shear deformation and is appropriate for large deforma-
tions. Thus, our finite element model of the fiber network 
can capture all essential modes of mechanical deformation. 
If not stated otherwise, covalent bonds between fibers were 
modeled as rigid joints coupling both translations and rota-
tions. We chose the dimensional and constitutive parameters 
to mimic collagen type I fibers as the most abundant struc-
tural protein of the ECM. Fibers are assumed to have circular 
cross sections with a diameter of Df = 180 nm (Van Der 
Rijt et al. 2006) and elastic moduli of Ef = 1.1 MPa (Jansen 

et al. 2018). Assuming curvilinear fibers with circular cross 
section of diameter Df  , the average mass density of collagen 
�c in the network RVE was calculated as

according to Stein et al. (2008), where Ltot is the sum of 
all individual fiber lengths, VRVE the volume of the RVE, 
and vc = 0.73 ml/g the specific volume of collagen fibers 
(Hulmes 1979).

2.3 � Fiber to fiber cross‑linking

A native ECM consists of myriad structural constituents, 
including collagen and elastin, which usually form networks 
to provide mechanical support to the resident cells. To form 
these networks, covalent cross-links are formed via the 
action of enzymes such as lysyl oxidase and transglutami-
nase, which can be produced by the cells (Simon et al. 2014). 
In addition to covalent bonds, transient hydrogen bonds or 
van der Waals bonds contribute further to the mechanical 
integrity of the ECM (Kim et al. 2017; Ban et al. 2018).

To model initially existing covalent bonds between fibers, 
we permanently connect individual fibers joining at nodes 
of our initially generated network by rigid joints. To model 
the formation of additional transient and covalent bonds, we 
define so-called binding spots on all fibers (Fig. 2). If during 
the simulation it happens that the distance between two bind-
ing spots on distinct filaments falls within a certain critical 

(1)�c =
LtotDf

2�

VRVEvc

a

b

c

Fig. 1   Schematic of the network construction process. a Random 
fiber network geometries based on Voronoi tessellation are used as 
the initial configuration. Valency, length, and cosine distribution are 
used as descriptors of the network geometry for which target distri-
butions are given. b By iterative random displacements of arbitrary 
nodes in the network and accepting these displacements based on 

their impact on the system energy, which penalizes deviations of the 
geometric descriptors from their target distributions, one arrives after 
a number of stochastic steps at a configuration with the desired distri-
bution of the geometric descriptors of interest. c Microscope images 
of collagen gels are used to determine the target distributions for the 
descriptors of the network

https://github.com/bionetgen/bionetgen
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interval, a new bond between the two filaments is established 
according to a Poisson process with an on-rate kf−fon  . That is, 
within a subsequent time step Δt , a bond is assumed to form 
with the probability

Newly established bonds are modeled by initially stress-free 
beam elements. Bonds established this way during the simu-
lation can also dissolve. This process is again modeled by a 
Poisson process with an off-rate kf−f

off
 , yielding in each time 

step Δt an unbinding probability

The off-rate is in general affected by the force F acting on 
the bond because transient chemical bonds under mechanical 
loading are typically less (though in certain regimes more) 
stable than load-free bonds (Bell 1980). This phenomenon 
can be modeled by a force-dependent off-rate

with Δx a characteristic distance, kB the Boltzmann constant, 
and T the absolute temperature (Bell 1980). Δx > 0 was cho-
sen so that the bond weakens under tension, a bond behavior 
that is often referred to as slip-bond behavior. By choosing 
k
f−f

off ,0
= 0 , we can model new covalent bonds formed during 

our simulations, whereas kf−f
off ,0

> 0 mimics transient bonds.

(2)pf−f
on

= 1 − exp (−kf−f
on

Δt).

(3)p
f−f

off
(F) = 1 − exp (−k

f−f

off
(F)Δt).

(4)k
f−f

off
(F) = k

f−f

off ,0
exp

(

FΔx

kBT

)

,

2.4 � Cell–ECM interaction

Cells in soft tissues can mechanically connect to surround-
ing fibers by integrins and exert stress on them via focal 
adhesions. A focal adhesion usually includes an actin 
stress fiber bundle in the cytoskeleton that connects the 
nucleus of the cell with the integrins of a cluster and can 
actively contract. Based on experimental observations, 
we restricted the maximal number of focal adhesions per 
cell to NFA,max = 65 (Kim and Wirtz 2013; Horzum et al. 
2014; Mason et al. 2019). Figure 3b on the left shows three 
focal adhesions. It has been shown experimentally that 
roughly Ni,FA,max = 1000 integrins are involved in one focal 
adhesion (Wiseman 2004; Elosegui-Artola et al. 2014). 
These integrins are organized in so-called integrin clus-
ters of roughly 20 − 50 integrins (Changede et al. 2015; 
Cheng et al. 2020) (Fig. 3c). We thus assume for each focal 
adhesion 50 integrin clusters containing a maximum of 
Ni,ic,max = 20 integrins each.

To model cell-mediated active mechanical processes in 
soft tissues, we model the cell centers as point-like particles. 
When these particles approach predefined integrin binding 
partners (with a distance of di−f = 50 nm to each other; 
López-García et al. 2010) on the fibers within ±ΔR around 
the cell radius R, a physical connection between cells and 
fibers is assumed to form by a Poisson process similar to 
the one in Eq. (2), but with a specific on-rate kc−fon  (see also 
Fig. 3a). The actin stress fibers connecting the cell nucleus 
with the fibers surrounding the cells are modeled as elastic 
springs (Fig. 3b, c) whose stress-free length evolves at some 
predefined rate ċ that can be calculated to match experimen-
tal data of different cell types. These stress fibers contract 
at a rate of ċ = 0.1 𝜇m/s (Choquet et al. 1997; Moore et al. 

Fig. 2   Fiber network model: collagen fibers are modeled as beam-like 
mechanical continua discretized by beam finite elements. Nearby col-
lagen fibers are connected by permanent (covalent) chemical bonds 
modeled as rigid joints. During the simulation, additional transient 
bonds may stochastically form and dissolve between nearby bind-

ing partners on the fibers. These bonds are also modeled by short 
beam  elements transmitting forces and moments. Cells of radius R 
can attach to nearby collagen fibers if certain predefined cell binding 
locations on the surrounding fibers are within R − ΔR and R + ΔR 
around the cell
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2010). The force acting on a single integrin Fi can be com-
puted according to

(5)Fi =
FSF

Ni,bonded

,

with FSF the force acting in the respective stress fiber and 
Ni,bonded the number of currently bound integrins in the inte-
grin cluster associated with the respective stress fiber.

In contrast to many previous approaches in which dis-
placements have been prescribed in the neighborhood of 
cells to model their contraction, we are able to model a true 
two-way feedback loop between cell and ECM. Integrins 

a b

c d

Fig. 3   a If cells lie within a certain distance from integrin bind-
ing spots on fibers, a focal adhesion can from with a certain prob-
ability. b A focal adhesion consists of around 1000 integrins con-
necting the intracellular actin cytoskeleton to the ECM fibers. Actin 
stress fibers connect the cell nucleus to the focal adhesions and are 
modeled as elastic springs that contract over time. c Each focal adhe-
sion consists of numerous so-called integrin clusters, each formed by 
20 − 50 integrins. We assume that each integrin cluster is connected 
to one actin stress fiber. Integrins are modeled as molecular clutches, 

i.e., they bind and unbind according to specific binding kinetics. d 
Experiments have determined a catch–slip bond behavior for single 
integrins where the lifetime does not monotonically decrease with 
the mechanical force transmitted through the bonds but where there 
exists a regime where increasing forces increase the average lifetime 
of the bond. To avoid infinite off-rates in case of low forces, we chose 
a slightly higher lifetime for low forces compared to the experimental 
data of Kong et al. (2009)
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have been shown experimentally to exhibit a so-called 
catch–slip bond behavior (Kong et al. 2009) whose unbind-
ing can be modeled by a Poisson process with a force-
dependent off-rate

whose parameters were determined via fits to the experi-
mental data (Kong et al. 2009; Weng et al. 2016) as shown 
in Fig. 3d and in Table 2. While the average lifetime of most 
chemical bonds decreases monotonically with increasing 
force transmitted by the bond, catch-slip bonds exhibit a 
regime where the bond stabilizes as the force increases. As 
illustrated in Fig. 3d, this makes integrin bonds particularly 
stable for values of Fi in a range around 30 pN. Recall that 
we model an integrin cluster as a system of 20 parallel inte-
grins whose bonds form and dissolve according to the above 
specified on- and off-rates (Fig. 3c). If at a certain point all 
bonds happen to have broken at the same time, the related 
integrin cluster is assumed to dissolve. It may, however, 
reform on the basis of a new (not yet contracted) stress fiber 
shortly thereafter with a binding rate kc−fon  . If all clusters of a 
certain focal adhesion happen to dissolve at the same time, 
the focal adhesion as a whole is dissolved.

This model implies that many binding and unbinding 
events of integrins occur during the lifetime of a focal adhe-
sion. This way, our model captures the chemical dynamics 
of the connection between cells and ECM fibers on different 
scales ranging from individual integrins to whole focal adhe-
sions (Stehbens and Wittmann 2014). Thereby, our model 
both captures typical lifetimes of focal adhesions on the 
order of minutes and turnover rates of most proteins involved 
in the adhesion complex on the order of seconds.

2.5 � Boundary conditions

As mentioned before, simulations of complete tissues on 
the cm-scale are computationally expensive with discrete 
fiber models; hence, we study RVEs. A major challenge 
in the context of discrete fiber simulations is the imposi-
tion of deformations on the RVE to study its response to 
certain strains. To this end, most previous work by others 
requires that the nodes of the finite elements used to discre-
tize fibers are located exactly on the boundary surfaces of 
the RVE where displacements are prescribed (Stein et al. 
2010; Abhilash et al. 2014; Liang et al. 2016; Humphries 
et al. 2018; Burkel et al. 2018; Ban et al. 2018, 2019). Other 
approaches prescribe the displacements of nodes close to 
these surfaces (Lee et al. 2014). These methods share the 

(6)

k
c−f

off
(F) = a1exp

(

−

(

F − b1

c1

)2
)

+a2exp

(

−

(

F − b2

c2

)2
)

problem that they do not ensure full periodicity across the 
boundaries where displacements are prescribed. To over-
come this limitation, we developed a novel form of fully 
periodic boundary conditions for fiber networks that allows 
imposition of complex multiaxial loading states. This 
approach ensures full periodicity across all surfaces of the 
RVE and thereby minimizes computational artifacts due 
to finite-volume effects. The computational details of our 
algorithm are summarized in Appendix A1. Briefly, every 
point on a fiber that would reside outside of the RVE in the 
i-th coordinate direction is shifted back in by the length of 
the RVE in the respective direction Li (Fig. 11a). In this 
way, Dirichlet boundary conditions can be applied by simply 
stretching the RVE as a whole, as this results in a strain in 
each fiber that is cut by the boundary in the direction of the 
applied load due to a change in the shifting factor (Fig. 11c, 
d).

2.6 � Search algorithm and parallel computing

To yield meaningful computational results, the RVEs have 
to be much larger than the characteristic microstructural fea-
tures such as the free-fiber length between adjacent nodes. 
Using values for the cell density and collagen concentration 
in a physiologically reasonable range typically leads to a 
system size of the RVE that can be solved only by parallel 
computing, including an efficient parallel search algorithm 
for the evaluation of all interactions between cells and fib-
ers. We implemented such a search algorithm based on a 
geometrical decomposition of the computational domain 
in uniform cubic subdomains. The computational details of 
our parallelization are summarized in Appendix A2. Impor-
tantly, our approach does not require any fully redundant 
information on all processes, which enables a highly efficient 
parallelization on even a very large number of processors.

3 � Results and discussion

The presented computational framework was implemented 
in our in-house research finite element code BACI 2021. 
To ensure robustness, scalability, and especially validity, we 
performed various computational simulations and compared 
the results with available experimental data. The default 
parameters used in our simulations are listed in Table 2.

3.1 � Network construction

We first validated the network generation method described 
in Sect. 2. To this end, we created networks with different 
collagen concentrations and target descriptor distributions 
as observed by confocal microscopy in tissue culture experi-
ments with collagen type I gels (Lindström et al. 2010; Nan 
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et al. 2018). As shown in Fig. 4, our stochastic optimization 
method successfully generates networks with the desired 
distributions of valency, free-fiber length, and cosine. Fig-
ure 5a demonstrates that our simulated annealing converged 
well toward the desired network (Fig. 5b) with an increasing 
number of random iteration steps.

3.2 � Passive mechanical properties: stiffness

Next, we verified that our constructed, still acellular, net-
works have similar mechanical properties as actual collagen 
networks. To this end, we simulated simple uniaxial tensile 
tests with different collagen concentrations and compared 

the resulting values for the stiffness with values that have 
been collected in uniaxial experiments with collagen type 
I gels (Alcaraz et al. 2011; Miroshnikova et al. 2011; Joshi 
et al. 2018). We stretched a cubic simulation box with edge 
length L = 245 �m in one direction by applying displace-
ment boundary conditions as described in Appendix A1 at a 
slow loading rate of 0.01 �m/s up to a strain of 1.0% ; strains 
around 1% have been shown to be the relevant range when 
studying active, cell-mediated force development (Eich-
inger et al. 2020). Figure 5c demonstrates that the Young’s 
moduli of the constructed networks match well with the 
values observed in tissue culture experiments. In our arti-
ficial RVEs, we found a power law dependence between 

a b c

Fig. 4   Results of the network construction process for a collagen con-
centration of 2.5  mg/ml. a valency distribution, b free-fiber length 
distribution and c cosine distribution fit well the target distributions 

defined on the basis of experimental data taken from Nan et al. (2018) 
in a and from Lindström et al. (2010) in b and c 

a b c

Fig. 5   a In the stochastic network construction with a collagen con-
centration of 0.8 mg/ml in a cube of edge length 245 �m , the energy-
type objective function according to Eq. (11) is reduced during 
simulated annealing (in the studied range even superquadratically) 
by multiple orders of magnitude; b this optimization process yields 

RVEs with a desired microstructure; c the effective Young’s moduli 
at strains < 1% of RVEs constructed this way match well with the 
ones observed in experiments (Alcaraz et  al. 2011; Miroshnikova 
et al. 2011; Joshi et al. 2018)
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the Young’s modulus and the collagen concentration with 
an exponent of 1.33, similar to the exponent of 1.22 found 
experimentally (Joshi et al. 2018).

3.3 � Active mechanical properties: homeostatic 
tension

In this section, we consider cell-seeded fiber networks to 
study the active mechanics of soft tissues. The tension 
that develops in constrained gels stems from the contrac-
tile forces exerted by the cells on the surrounding fibers. 
In initially stress-free collagen gels seeded with fibroblasts, 
the tension builds up over a few hours until it has reached 
a plateau value, the so-called homeostatic value (Brown 
et al. 1998, 2002; Sethi et al. 2002; Campbell et al. 2003; 
Marenzana et al. 2006; Dahlmann-Noor et al. 2007; Kara-
michos et al. 2007; Ezra et al. 2010; Courderot-Masuyer 
2017; Eichinger et al. 2020). Tissue culture experiments 
(Delvoye et al. 1991; Eichinger et al. 2020) have shown that 
the homeostatic tension depends on both cell and collagen 
concentration in the gel. We used this observation to validate 
our computational model. We created RVEs with an edge 
length of L = 245 �m and three different cell densities and 
collagen concentrations as studied experimentally in Eich-
inger et al. (2020). To increase the complexity of the RVE 
only gradually by adding cells, we still solely considered 
covalent bonds between matrix fibers. We then compared the 
cell-mediated active tension over time of our simulations to 
the one observed experimentally.

It is important to note that a direct (quantitative) com-
parison between experimental data and simulation results is 
difficult due to differing boundary conditions. Tissue culture 

experiments have at least one traction-free boundary (uniax-
ial gels have two, circular discs three), while we performed 
our simulations with RVEs with periodic boundary condi-
tions applied in all directions. Note also that a free boundary 
in a microscopic RVE would not resemble a free boundary 
of a macroscopic specimen. It has been shown, however, 
that the number of fixed boundaries has a crucial impact on 
the homeostatic plateau value (Eichinger et al. 2020). In the 
following, we compare the first Piola–Kirchhoff stresses as 
the thickness of the gel samples over time is unknown. An 
initial thickness of the gel of tinitial = 1.6 mm (knowing it to 
be between 1.0 mm and 3.0 mm) is assumed to fit best to 
the simulation data presented in the following. The initial 
width of the undeformed gel is 10 mm. The stresses for the 
RVEs were quantified as the sum of all fiber tractions across 
a boundary divided by the respective cross-sectional area.

3.3.1 � Variation of cell density

In this section, we consider gels with a constant collagen 
density of 1.5 mg/ml. Cell densities of 0.2 ⋅ 106 cells/ml , 
0.5 ⋅ 106 cells/ml , and 1.0 ⋅106 cells/ml studied in Eichinger 
et al. (2020) translate in our simulations into 3, 8, and 15 
cells per RVE, respectively. Figure 6a shows the evolution 
of first Piola–Kirchhoff stress (true force/original area) 
generated in uniaxially constrained, dog-bone-shaped col-
lagen gels as observed experimentally. The gradient during 
the first 10 h of the experiment and the homeostatic pla-
teau level of stress increase with cell density. Both features 
are observed in our simulations and fit quantitatively well 
(Fig. 6b, c). We can therefore conclude that actin cytoskel-
eton contraction and the focal adhesion dynamics described 

cba

Fig. 6   For a collagen concentration of 1.5 mg/ml , we compare the 
development of first Piola–Kirchhoff stress in a experiments (Eich-
inger et al. 2020) and b simulations. A good semiquantitative agree-
ment of the expected cell-mediated steady state with nonzero tension 
(last data points of a and b) is observed c, however, also a signifi-

cant difference of the time scales. All lines show the mean ± standard 
error of the mean (SEM) of three identical experiments in a and c and 
of three simulations with different random network geometries in b 
and c 
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in Sect. 2.4 are sufficient mechanisms to reproduce this non-
trivial relationship.

A crucial difference between experiments and simulations 
is the time scale. Whereas mechanical homeostasis develops 
over a couple of hours in the experiments, it does so within a 
couple of minutes in the simulation. Interestingly, this time 
scale of our simulations agrees well with that for which sin-
gle cells in experiments on purely elastic substrates reach a 
homeostatic state (Weng et al. 2016; Hippler et al. 2020). 
Thus, a possible explanation for the difference between our 
simulations and the experimental data from Eichinger et al. 
(2020) may be that in tissues with numerous cells, complex 
interactions between the cells substantially delay the homeo-
static state. Such interactions remain poorly understood and 
are not yet accounted for in our computational framework. 
Another possible explanation for the different time scales 
in Fig. 6a, b may be viscoelasticity due to collagen fibers 
moving within culture media, which is not included in our 
model in detail, and due to an increasing stiffness of the gel 
due to progressed polymerization when being placed in an 
incubator at 37°C for longer times. Finally, subtle aspects on 
the subcellular scale that are not included in our model may 
affect the time to reach the homeostatic state substantially 
because it is well known that this time differs considerably 
for different cell types (Eichinger et al. 2021).

Figure 7a shows that the deformation of the matrix fib-
ers around the cells in our simulations is on the order of 
10 �m , which agrees well with experiments (Notbohm et al. 
2015; Malandrino et al. 2019). Our simulation framework 
also reproduces the ability of cells to communicate via 

long-range mechanical interactions over several cell diam-
eters (Fig. 7b), which has also been observed experimentally 
(Ma et al. 2013; Shi et al. 2013; Baker et al. 2015; Kim et al. 
2017; Mann et al. 2019).

3.3.2 � Variation of collagen concentration

It is well known that interactions between cells and their 
environment crucially depend on the stiffness of the environ-
ment. This holds in particular for the proliferation, survival, 
migration, and differentiation of cells (Wang et al. 2012; 
Nguyen et al. 2018; Balcioglu et al. 2020). A simple way of 
testing the impact of stiffness on cellular behavior in tissue 
culture studies is to change the collagen concentration of the 
tested gels (Alcaraz et al. 2011; Miroshnikova et al. 2011; 
Hall et al. 2016; Joshi et al. 2018). As shown in Fig. 8a, tis-
sue culture studies with a cell density of 0.5 ⋅ 106 cells/ml 
revealed that the cell-mediated first Piola–Kirchhoff stress 
increases in collagen gels with the collagen concentration 
(Delvoye et al. 1991; Eichinger et al. 2020). This behav-
ior is both qualitatively and quantitatively reproduced well 
by our simulations as shown in Fig. 8b. Interestingly, both 
experiments and simulations exhibit a nearly linear relation 
(with a slope of ∼ 9∕2 ) between collagen concentration and 
the homeostatic stress (Fig. 8c). Moreover, the slope of the 
increase in stress up to the homeostatic stress was largely 
independent of the collagen concentration compared to the 
cell density in both the experiments and our simulations. We 
know from our simulations that an increased fiber density 
in cases of higher collagen concentrations in combination 

Fig. 7   Cells mechanically interact with surrounding matrix fibers. a 
Cells attach to nearby fibers, contract, and thereby deform the matrix. 
The simulated, cell-mediated matrix displacements are in a realistic 
range when compared to experimental data (Notbohm et  al. 2015; 
Malandrino et al. 2019). b Contracting cells can mechanically inter-
act with other cells over a distance of several cell diameters via long-

range mechanical signaling through matrix fibers, a phenomenon 
observed also in experiments (Ma et al. 2013; Shi et al. 2013; Baker 
et  al. 2015; Kim et  al. 2017; Mann et  al. 2019). c Cells, visualized 
with reconstructed cell membrane around stress fibers, develop differ-
ent shapes when pulling on the ECM
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with a constant distance between integrin binding spots on 
fibers of 50 nm (López-García et al. 2010) leads to more 
cell–matrix links per cell over time (data not shown) even 
when considering only the mechanisms presented in Sect.2. 
If one assumes that a cell stresses fibers one by one up to 
a certain level, this process takes longer if more fibers are 
present and can explain the observed nearly linear relation-
ship between homeostatic stress and collagen concentra-
tion as well as the similar initial slope for all three collagen 
concentrations.

3.4 � Residual matrix tension

Mechanical homeostasis in soft tissues is closely linked 
to growth (changes in mass) and remodeling (changes 
in microstructure) (Cyron and Humphrey 2017). In par-
ticular, a reorganization of the microstructure of tissues 
includes a change in the mechanical links between tissue 
fibers and of the constituent-specific natural (stress-free) 
configurations. Experimental studies have revealed that 
remodeling of collagen gels induced by cellular forces is 
time dependent and inelastic (Kim et al. 2017; Ban et al. 
2018). Recent computational work suggested that the 
inelastic nature of cell-mediated remodeling is induced 
by force-dependent breaking of weak inter-fiber connec-
tions followed by the formation of bonds in new configura-
tions leading to altered connections between tissue fibers 
(Nam et al. 2016; Kim et al. 2017; Ban et al. 2019; Cao 
et al. 2017) (Fig. 9a). This implies that after cell-mediated 
remodeling, a part of the matrix tension remains in the tis-
sue even after the elimination of all active cellular forces 
(e.g., by disrupting the actomyosin apparatus via addi-
tion of cytochalasin D or by cell lysis). This remodeling is 

often referred to as residual matrix tension (RMT) (Maren-
zana et al. 2006; Simon et al. 2014).

To date, our quantitative understanding of how an altered 
state of the matrix is entrenched during remodeling and 
how RMT develops is limited. Even the exact kind of cross-
linking which occurs when matrix tension is entrenched is 
unknown. An inelastic change of the stress-free configura-
tion of the tissue could emerge from newly formed, transient 
bonds between collagen fibers (such as hydrogen bonds or 
van der Waals forces) as a result of fiber accumulation in 
the surroundings of contractile cells (Kim et al. 2017; Ban 
et al. 2018). However, RMT could also be entrenched by 
cells producing covalent cross-links via the actions of tissue 
transglutaminase, which can also form new bonds between 
deformed matrix fibers. The impact of these enzymes on 
matrix remodeling has been shown experimentally in free-
floating collagen gels (Simon et al. 2014). To study RMT, 
we simulated the experimental protocol presented in Maren-
zana et al. (2006) and eliminated active cellular forces from 
the simulated system in the homeostatic state by dissolving 
all existing cell–ECM bonds at a certain time (by setting 
k
c−f
on = 0 , which led to a rapid dissolution of the remaining 

bonds). We then tracked tension over time in the RVE.
We first studied RMT in a purely covalently cross-linked 

network, implying that all existing bonds between fibers 
remained stable and no new bonds were formed during the 
simulation. After deactivating active cellular forces, we 
observed a (viscoelastic) decline of tension to zero in the 
RVE (Fig. 9b, bottom curve). This finding suggested that 
networks that lack the ability to form new, at least tempo-
rary stable, bonds cannot entrench a residual tension in the 
matrix, which was observed in the aforementioned experi-
mental studies (Marenzana et al. 2006; Simon et al. 2014).

cba

Fig. 8   Mechanical homeostasis for a cell concentration of 
0.5 ⋅ 106 cells/ml and different collagen concentrations in a experi-
ments (Eichinger et al. 2020) and b our simulations. c In both cases, 
the relation between homeostatic first Piola–Kirchhoff stress (last data 

points were taken, respectively) and collagen concentration is approx-
imately linear. All lines show the mean ± SEM of three identical 
experiments in a and c and of three simulations with different random 
network geometries in b and c 
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In a second step, transient linkers (which could, for 
example, be interpreted as un-bonded, freely floating col-
lagen molecules or hydrogen bonds) were allowed to form 
between fiber to fiber binding spots with a certain on-rate 
k
f−f
on  ; they were able to be dissolved with a certain off-rate 
k
f−f

off
 . If two binding spots of two nearby fibers resided at 

some point in close proximity to each other, a new, ini-
tially tension-free bond was formed according to Eq. (2). 
We found that introduction of newly formed, transient 
bonds enables the entrenchment of matrix remodeling and 
t h u s  s o m e  R M T  ( F i g .   9 b ,  k

f−f

off
= 1.0e−04 s−1 , 

k
f−f

off
= 3.0e−04 s−1 , kf−f

off
= 1.0e−03 s−1 ) at least for a pro-

longed period. The transient nature of the cross-links 
between the fibers resulted, however, in a slow decrease in 
RMT over time. This decrease happened faster the higher 
the off-rate kf−f

off
 (Fig. 9b). If kf−f

off
 was chosen above a cer-

tain threshold, we did not observe any RMT.
In a third study, we allowed covalent cross-linker mole-

cules to form between two nearby collagen fibers when they 
were within a certain distance to each other and Eq. (2) was 
fulfilled. By setting kf−f

off
= 0 , a newly set bond could not be 

dissolved and was therefore covalent (permanent). In this 
case, we observed a substantial RMT that apparently did not 
decrease over time (Fig. 9b, kf−f

off
= 0.0 s−1).

It thus appears that both transient and covalent cross-
links play roles in inelastic matrix remodeling. Our study 
suggests that RMT crucially depends on the ability of cells 
to entrench the deformation they impose on their neighbor-
hood by covalent, permanent cross-links. Such a perma-
nent entrenchment appears energetically favorable because 
it releases cells from the necessity of maintaining matrix 
tension over prolonged periods by active contractile forces, 
which consume considerable energy.

4 � Conclusion

To date, our understanding of the governing principles of 
mechanical homeostasis in soft tissues on short time spans 
especially on the scale of individual cells remains limited 
(Eichinger et al. 2021). To address some of the many open 
questions in this area, we developed a novel computational 
framework for modeling cell–ECM interactions in three-
dimensional RVEs of soft tissues. Our computational frame-
work generates random fiber networks whose geometric 
characteristics resemble those of actual collagen type I gels, 
that is, they exhibit a similar distribution of valency, free-
fiber length, and orientation correlation (cosine) between 
adjacent fibers. These microstructural characteristics have 
been shown to be the primary determinants of the mechani-
cal properties of fiber networks (Davoodi-Kermani et al. 
2021). To model the mechanics of the collagen fibers in the 
network, our framework discretizes these fibers with geo-
metrically exact nonlinear beam finite elements, which are 
shown in Sect. 3 to reproduce the elastic properties of colla-
gen fiber networks. Our framework enables efficient parallel 
computing and can thus be used to simulate RVEs of tissues 
with realistic collagen concentrations and cell densities.

The physical interactions of cells with surrounding fib-
ers through stress fibers in the cytoskeleton and transmem-
brane proteins (integrins) are modeled by contractile elas-
tic springs whose binding and unbinding dynamics closely 
resemble the situation in focal adhesions. We used the 
non-trivial, experimentally determined relations of both 
cell density and collagen concentration to the homeostatic 
stress to show that the mechanisms accounted for in our 
computational framework are sufficient to capture these 
relationships. We also demonstrated how our framework 
can help to (quantitatively) examine the micromechanical 

Fig. 9   a Cells actively perma-
nently remodel their surround-
ing by reorganizing the network 
and establishing new cross-
links. This way, cell-mediated 
tension can be entrenched in 
the network. b When removing 
active cellular forces suddenly, 
the matrix tension quickly 
drops. However, if cells have 
entrenched their reorganization 
of the network structure by per-
manent (covalent) cross-links 
(i.e., with kf−f

off
= 0.0 ), a residual 

tension persists in the network. 
By setting transient cross-links 
with a sufficiently low off-rate, 
the cells can ensure an RMT at 
least over the periods consid-
ered

a

b
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foundations of inelastic cell-mediated matrix remodeling 
and RMT, which persists in the tissue even after active 
cellular forces have been removed.

Despite its advantages and broad experimental foun-
dation, the proposed computational framework has some 
limitations that remain to be addressed. First, our model 
does not yet capture mass turnover, that is, the deposition 
and degradation of fibers, which are assumed to be crucial 
for mechanical homeostasis on long time scales (Hum-
phrey and Rajagopal 2002; Ambrosi et al. 2011; Cyron 
et al. 2016; Braeu et al. 2017; Cyron and Humphrey 2017). 
Moreover, it models integrins but not associated proteins 
that also play a key role in the interactions between cells 
and surrounding matrix such as talin and vinculin (Ziegler 
et al. 2008; Grashoff et al. 2010; Carisey et al. 2013; Dum-
bauld et al. 2013; Das et al. 2014; Yao et al. 2014; Austen 
et al. 2015; Truong et al. 2015; Davidson et al. 2015; Zhu 
et al. 2016; Yao et al. 2016; Ringer et al. 2017). Also the 
model of cellular contractility is simplistic and should be 
endowed with additional biological details (Mogilner and 
Oster 2003; Murtada et al. 2010, 2012). Finally, we did 
not consider contact forces between fibers or between cells 
and fibers (assuming that cells and fibers mainly interact 
via integrins). While this reduces the computational cost 
substantially, a comprehensive incorporation of contact 
mechanics could also help to make our computational 
framework more realistic.

An important field of application for our computational 
framework will be in silico studies in which one can test 
step by step which additional features have to be incor-
porated in the framework to capture more and more phe-
nomena observed in vitro and in vivo. In this way, it may 
contribute to uncovering the micromechanical foundations 
of mechanical homeostasis on the level of individual cells 
and fibers and help to understand how these microscopic 

processes lead to what we call mechanical homeostasis on 
the macroscale.

Appendix

A1 Construction of random fiber networks 
by simulated annealing

In this appendix, we present the computational details of 
the algorithm we used for constructing network RVEs as 
an input for our simulations. Our algorithm closely follows 
the approach of Lindström et al. (2010), using the stochastic 
optimization method of simulated annealing for construct-
ing random heterogeneous media introduced by Yeong and 
Torquato (1998). Thereby, one assumes that the geometry of 
a fiber network can be characterized by some descriptors xi , 
with i ∈ {l, c} , in our case representing the fiber length and 
the direction cosine, respectively. These descriptors can be 
understood as random variables taking on specific values at 
certain nodes or fibers and characterize the network micro-
structure. The descriptors are assumed to follow some statis-
tical distribution Pi(xi) across the different fibers and nodes. 
These distributions can be determined, for example, from con-
focal microscopy images of real networks (see also Fig. 10). 
According to Lindström et al. (2010), this yields for collagen 
type-I networks

where l denotes the fiber length normalized by (N∕VRVE)
1

3 , 
with VRVE being the volume of the RVE and N representing 
the total number of network nodes in it. The parameters � 
and � denote a standard deviation and mean value that may 
vary from network to network. Typical parameters are given 

(7)Pl(l) =
1

l�
√

2�
exp

�

−
[� − ln(l)]2

2�2

�

,

cba

Fig. 10   Random initial descriptor distributions in a network gener-
ated by Voronoi tessellation vs. target distributions fitted by Lind-
ström et  al. (2010) and Nan et  al. (2018) to experimental data (col-

lagen concentration 2.5 mg/ml). Simulated annealing alters the initial 
network until its descriptor distributions match the required target 
distributions
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in Table 1. The cumulative probability distribution associ-
ated with Pl(l) is given by

and will be used in Eq. (13).
The distribution of the direction cosine � of fibers adja-

cent to the same node has been described by Lindström et al. 
(2010) by a truncated power series

with the associated cumulative distribution function

Again, typical values for the parameters bk are given in 
Table 1. To describe the valency distribution of the net-
works, we relied on the data reported in Nan et al. (2018).

Our target was to construct artificial random fiber net-
works as an input for our simulations whose descriptor dis-
tributions matched the ones defined above. To this end, we 
started from some random initial network. This network was 
then evolved in a number of discrete random steps accord-
ing to the concept of simulated annealing (Kirkpatrick et al. 
1983), until the descriptor distributions matched the desired 
target distributions.

To define the random initial configuration, we started 
by generating networks based on three-dimensional Voro-
noi tessellations (Rycroft 2009) with periodic boundary 
conditions applied in all directions. Subsequently, we ran-
domly removed and added fibers until the valency distribu-
tion matched its target distribution. Only then we started 
the actual simulated annealing, where only fiber length 
and direction cosine distributions still had to be matched 

(8)Cl(l) =
1

2
+

1

2
erf

�

ln(x) − �
√

2�

�

(9)Pc(�) =

3
∑

k=1

bk(1 − �)2k−1,

(10)Cc(�) = 1 +

3
∑

k=1

−
bk

2k
(1 − �)2k−1.

to their target distributions. The simulated annealing was 
performed following the concept introduced by Kirkpat-
rick et al. (1983). The idea is to iteratively select random 
nodes in the network and apply random displacements to 
them (Fig. 1b). In this way, the length of all fibers attached 
to the respective node and the angles between these fibers 
change. Importantly, only movements of nodes are accepted 
which do not lead to fiber lengths larger than one-third of the 
smallest edge length of the RVE to ensure that it stays repre-
sentative. Note that a movement of a node does not affect its 
connectivity, which ensures that the initially created valency 
distribution remains unaffected during the whole simulated 
annealing.

For stochastic optimization according to the simulated 
annealing concept, it is helpful to define an objective 
(energy-type) function E

where the El and Ec become minimal if the length and direc-
tion cosine distribution exactly match their target distribu-
tions and where the wi > 0 are weights that can be adapted 
to tune the importance of a specific distribution function. 
Having defined the objective function E, simulated anneal-
ing can be understood as a stochastic minimization of E. 
Once the minimum is found, El and Ec must be minimal and 
thus the length and direction cosine distributions match their 
target distributions. To perform a stochastic minimization of 
E, a Metropolis algorithm is applied during the simulated 
annealing. It consists of a sequence of random steps. For 
each of these steps, the associated change of E is computed, 
that is, ΔE . Then, the step is actually performed only with 
a likelihood

where T denotes a temperature-like parameter (having units 
of energy). In our simulated annealing, we slowly decreased 

(11)E = wl ⋅ E
l + wc ⋅ E

c,

(12)paccept(ΔE) =

{

1, ΔE ≤ 0

exp(−
ΔE

T
), ΔE > 0,

Table 1   Parameters for 
length, valency, and cosine 
distribution functions according 
to Lindström et al. (2010) and 
parameters used for simulated 
annealing process

Parameter Description Value [–]

wl Weight for free-fiber length distribution in Eq. (11) 1.0
wc Weight for direction cosine distribution in Eq. (11) 1.0
� Mean in Eqs. (7) and (8) −0.3000

� Standard deviation in Eqs. (7) and (8) 0.6008
b1 Parameter for truncated power series in Eqs. (9) and (10) 0.6467
b2 Parameter for truncated power series in Eqs. (9) and (10) −0.1267

b3 Parameter for truncated power series in Eqs. (9) and (10) 0.0200
bl Number of bins for free-fiber length distribution in Eq. (13) 1000
bc Number of bins for direction cosine distribution in Eq. (13) 1000
T0 Initial temperature 0.05
− Resulting average of nodal valency of constructed networks 3.3
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T as the number random steps increased, using at the anneal-
ing step k the value T = 0.95k ⋅ T0 (according to Nan et al. 
(2018)). We chose T0 such that the probability for accepting 
a random step with ΔE > 0 was approximately 0.5 in the 
beginning. In practice, the simulated annealing was stopped 
if either the total energy of the system was below a pre-
defined threshold or a maximal number of iterations were 
reached.

Remark A1  It is worth noting that for constructing RVEs 
with different collagen concentrations, we assumed the same 
target distributions for the valency, direction cosine and nor-
malized fiber length. Only the normalization factor of the 
fiber length was changed. Moreover, an increased collagen 
concentration automatically also implies a higher number N 
of network nodes in the RVE.

Remark A2   While there exists a variety of simple and obvi-
ous choices for the Ei in Eq. (11), these mostly suffer from a 
computational cost on the order of O(ni) with ni the number 
of instances of a descriptor. This makes the generation of 
large random networks practically infeasible. To overcome 
this problem, we adopted the idea of Lindström et al. (2010) 
to use a binning algorithm and define the Ei as Cramer–von 
Mises test statistics, which reduces the computational cost 
to the order of O(b) with b the number of bins. To this end, 
we divided the range of x

i
 in bi disjoint intervals (bins) and 

assigned each instance of a descriptor at a fiber or node of 
a random network to its associated bin. The resulting his-
togram is a discrete approximation of Pi(xi) . The center of 
the j-th bin is denoted by xij . The number of instances of 
descriptor xi assigned to the j-th bin is mij . The Cramer–von 
Mises test statistics can then be computed as

with Sij = Mi(j−1) − nCi(xij) −
1

2
 , Mij =

∑j

k=1
mik , and Ci the 

cumulative distribution of xi.

A2 Boundary conditions

Here, we summarize how we applied fully periodic bound-
ary conditions to our simulation domains. Let these domains 
be cuboids with edge length Li in the i-th coordinate direc-
tion. In a fully periodic network, the part of a fiber stick-
ing out across one periodic boundary must have a counter-
part entering the RVE at the opposing side (Fig. 11a). One 
can interpret the element part sticking out of the domain 
at one boundary and the element part entering the RVE at 
the opposing boundary also as a fictitious single element 

(13)Ei =
1

n2
i

bi
∑

j=1

mij

[

1

6
(mij + 1)(6Sij + 2mij + 1) + S2

ij

]

,

(Fig. 11b, state II) cut into two parts (Fig. 11b, state I). 
Thereby, state I as delineated in Fig. 11b can be used to 
evaluate interactions with other fibers or cells, and state II 
for evaluating strains and stresses on element level. If the 
element is cutting through a boundary in the i-th coordinate 
direction, the i-th coordinate of the nodal positions in states 
I and II is shifted by Li relative to each other. Importantly, 
only the translational degrees of freedom of the beam finite 
element nodes are affected by the periodic boundaries, rota-
tional degrees of freedom remain unaffected.

It is a major challenge to impose periodic Dirichlet bound-
ary conditions on fiber networks in a manner that is fully peri-
odic. Most of the literature (Stein et al. 2010; Lee et al. 2014; 
Abhilash et al. 2014; Liang et al. 2016; Humphries et al. 2018; 
Burkel et al. 2018; Ban et al. 2018, 2019) bypasses this diffi-
culty by fixing nodes on or close to the periodic boundary in a 
manner that unfortunately cannot ensure periodicity in a rigor-
ous manner. To overcome this deficiency, we used the follow-
ing approach. Dirichlet boundary conditions on RVEs can be 
represented by normal or shear strains. These strains can be 
converted into a relative displacement of opposing periodic 
boundaries by components Δdj in the j-th coordinate direction. 
We accounted for this displacement by stretching (Fig. 11c) or 
shearing (Fig. 11d) the RVE as a whole. The nodal positions 
in states I and II were then no longer converted into each other 
in the above described simple manner, that is, by a relative 
shift by Li in the i-the direction. Rather, all coordinates of the 
nodal positions were additionally shifted relative to each other 
by the components Δdj . Note that this approach can account 
for complex multi-axial loading by applying the described 
procedure at all periodic boundaries. Moreover, this approach 
can account for large strains.

A3 Search algorithm and parallel computing

Here, we describe how we ensured efficient parallel comput-
ing for the presented modeling framework in our in-house 
finite element solver BACI 2021. Parallelization of the finite 
element discretization of the fibers can be handled with 
standard libraries such as the Trilinos libraries that form 
the basis of our in-house code. Therefore, we focus on the 
parallelization of cell–fiber interactions and chemical bonds 
between fibers; both require search algorithms to identify 
cell–fiber or fiber pairs that may interact at a certain point 
in time. We implemented a search algorithm based on a geo-
metrical decomposition of the computational domain (RVE) 
in uniform cubic containers. For simplicity, these were 
aligned with the axes of our coordinate system (Fig. 12). 
Cells and finite beam elements are assigned to all containers 
with which they overlap. We chose the minimal size of the 
containers such that all possible interaction partners were 
certainly located within one layer of neighboring containers. 
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Hence, evaluating the possible interactions of a single cell 
or beam finite element simply required searching within one 
layer of containers around the containers to which the cell or 
element was assigned.

The content of the containers had to be updated over time 
as cells and matrix fibers moved during our simulations. 
Depending on the time step size of our simulations, con-
tainer size and effective physical interaction distance, it was 
feasible to update our containers only every n-th time step. 

The potentially large domain considered in our simulations 
typically required a distribution of the above described containers 
on several processors. To this end, each processor was assigned a 
set of containers forming a connected subdomain. In addition to 

these containers, each processor was also provided full informa-
tion about one layer of so-called ghost containers surrounding its 
specific subdomain (Fig. 12b). The computational cost of sharing 
the information about ghost containers was negligible compared 
to the overall computational cost of our simulations.

To enable an effective search algorithm based on a rectan-
gular Cartesian domain, we used a coordinate transforma-
tion to the undeformed domain in case boundary conditions 
imposing a deformation of the computational domain.

It is worth mentioning that in our parallelization frame-
work, no data (except some uncritical parameters such as the 
current time step) need to be stored fully redundantly on all 
processors, which would drastically limit the problem sizes.

c dba

Fig. 11   Illustration of periodic boundary conditions using the exam-
ple of a single fiber in a network: a any fraction of an element stick-
ing out of a periodic boundary must have a counterpart entering at the 
opposing side; b both element fractions together define what is physi-
cally present within the RVE (state I). To compute strains and stresses 
in both element fractions, it is convenient to use a fictitious state II 

(shifted rightward in the figure for illustration purposes only), which 
represents the part of the cut element within the simulated RVE and 
the part located in an adjacent domain periodically continuing the 
RVE; c application of fully periodic normal strain boundary condi-
tion in vertical direction; d application of fully periodic shear strain 
boundary condition in the drawing plane

Fig. 12   a Our computational 
domain (top) was divided into a 
large number of cubic contain-
ers (middle). Sets of numerous 
such containers (highlighted by 
different colors, bottom) were 
distributed to different proces-
sors. b All fibers discretized by 
beam finite elements as well 
as all cells were assigned to 
all containers with which they 
overlapped. Each processor was 
provided information not only 
about its own containers but 
also about a layer of ghost con-
tainers elements with which the 
elements in its own container 
may interact

ba
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Table 2   List of parameters and default values of computational model

Parameter Description Value References

a1 Integrin catch–slip bond parameter 2.2 To fit data of Kong et al. (2009)
b1 Integrin catch–slip bond parameter 29.9 To fit data of Kong et al. (2009)
c1 Integrin catchslip bond parameter 8.4 To fit data of Kong et al. (2009)
a2 Integrin catch–slip bond parameter 1.2 To fit data of Kong et al. (2009)
b2 Integrin catch–slip bond parameter 16.2 To fit data of Kong et al. (2009)
c3 Integrin catch–slip bond parameter 37.8 To fit data of Kong et al. (2009)
R Cell radius 12  μm Typical value
ΔR Linking range around cell ±3 μm –
Df Diameter of collagen fibers 180 nm Van Der Rijt et al. (2006)
Ef Young’s modulus of collagen fibers 1.1 MPa Jansen et al. (2018)
ċ Contraction rate of stress fibers 0.1

� m
s

Choquet et al. (1997);
 Moore et al. (2010)

kBT Thermal energy 4.28 ⋅ 10−3 aJ at 37◦ C
Li RVE edge length in i-th coordinate direction 245�m –

k
f−f
on

Chemical association rate for fiber linker 0.0001s−1 –

k
f−f

off
Chemical dissociation rate for fiber linker 0.0001s−1 –

Δx Bell parameter 0.5 nm –
NFA,max Maximal number of focal adhesions per cell 65  Kim and Wirtz (2013);

 Horzum et al. (2014);
 Mason et al. (2019)

Ni,FA,max Maximal number of integrins per focal adhesion 1000  Wiseman (2004);
 Elosegui-Artola et al. (2014)

Ni,ic,max Maximal number of integrins per cluster 20  Changede et al. (2015);
 Cheng et al. (2020)

k
c−f
on

Chemical association rate for integrin 0.1 s−1 slightly modified Zhu et al. (2016)

di−f Distance between binding spots for integrinfiber links 50 nm López-García et al. (2010)

https://github.com/bionetgen/bionetgen


1867A computational framework for modeling cell–matrix interactions in soft biological tissues﻿	

1 3

need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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