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SUMMARY

Most disease-gene association methods do not account for gene-gene interactions, even though 

these play a crucial role in complex, polygenic diseases like Alzheimer’s disease (AD). To 

discover new genes whose interactions may contribute to pathology, we introduce GeneEMBED. 

This approach compares the functional perturbations induced in gene interaction network 

neighborhoods by coding variants from disease versus healthy subjects. In two independent AD 

cohorts of 5,169 exomes and 969 genomes, GeneEMBED identified novel candidates. These genes 

were differentially expressed in post mortem AD brains and modulated neurological phenotypes 

in mice. Four that were differentially overexpressed and modified neurodegeneration in vivo are 
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PLEC, UTRN, TP53, and POLD1. Notably, TP53 and POLD1 are involved in DNA break repair 

and inhibited by approved drugs. While these data show proof of concept in AD, GeneEMBED is 

a general approach that should be broadly applicable to identify genes relevant to risk mechanisms 

and therapy of other complex diseases.

Graphical Abstract

In brief

Lagisetty et al. develop GeneEMBED, a method to evaluate disease-gene associations 

by investigating differentially perturbed interactions in a molecular network. They apply 

GeneEMBED on two Alzheimer’s disease cohorts and three networks to identify novel candidate 

genes. Modulation of candidates in vivo showed altered neurodegeneration. They anticipate broad 

applicability of GeneEMBED in many complex diseases.

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive 

memory loss, language deficits, and behavioral abnormalities.1 An estimated six million 

individuals in the United States are afflicted with AD, and this number is projected to 

double by 2050.2 The polygenic nature of AD presents an obstacle to early diagnosis and 

risk prediction. In late-onset AD (LOAD), the estimated genetic heritability is 60%–80%.3,4 

Though genome-wide association studies (GWASs) have identi- fied >40 LOAD loci,5–9 
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they account for only a fraction (~33%) of the heritability.10,11 While there are many 

explanations for this “missing heritability” problem,12–14 which is seen across complex 

diseases,15 an attractive hypothesis suggests that genetic interactions may be a culprit.16

Genetic interactions are functional interactions observed among gene variants where 

the resulting phenotype differs from the independent phenotype of each variant.16,17 

Thus, relatively benign mutations may combine to generate complex phenotypes. Indeed, 

such non-additive genetic interactions have been observed in disease18–20 and have 

improved current models of the genotype-phenotype relationship.21,22 However, genome-

wide discovery of pairwise genetic interactions presents major challenges. Theoretical 

analysis suggests that, under reasonable assumptions, nearly 500,000 samples would be 

needed to identify statistically significant genetic interactions.16 The potential use of prior 

knowledge to compensate for necessary sample size has motivated the development of 

network informed gene prioritization methods for various diseases.23–28 These approaches 

do not typically use patient-specific genetic data. However, when they do, they often rely 

on expression data (e.g., HIT’nDRIVE)27 or they are built for somatic mutations (e.g., 

HotNet2)28 and are not immediately amenable to the case-control study designs typical of 

germline GWASs.

Advances in graph representation learning open new opportunities to analyze genomes in 

the context of biological networks. Graph learning techniques have been successful in a 

variety of biological applications, including predicting protein-protein interactions29–33 and 

drug responses or side effects.34–37 Specifically, node embedding enables machine learning 

on networks by compacting the qualitative and quantitative properties of a network node 

in a mathematically suitable framework. For example, Deep Walk38 and Node2Vec39 use 

random walk algorithms to represent nodes as vectors. Alternatively, Graph Convolutional 

Networks40 or Graph Attention Networks41 use graph neural network architectures to 

construct node representations instead. Regardless of the approach, node embeddings should 

conserve the relative properties between original graph nodes, meaning that similar nodes 

should embed similarly. We hypothesize, based on this principle, that differences in a gene’s 

embedding in a disease network compared with its embedding in a healthy network may 

reflect a role in disease pathology.

This motivated us to develop GeneEMBED (gene-embedding-based evaluation of disease-

gene relevance) to pinpoint genetic risk factors of disease by examining the differential 

perturbation patterns of gene interactions. The approach takes a predefined molecular 

network and annotates it with the functional impact of protein coding variants across cases 

and separately controls. Importantly, the approach considers all protein coding variants in 

estimating gene-level perturbed protein function. Machine learning performs embeddings on 

each network and then finds which genes have the most difference in case versus controls 

embeddings. Notably, this approach addresses the limitations of standard models by feasibly 

assessing the contribution of pairwise, and higher order, genetic interactions on disease and 

doing so with a case-control study design of typical genome-wide studies.

While this approach is general and applicable to many complex diseases, we tested this 

in two LOAD datasets: the Alzheimer’s Disease Sequencing Project (ADSP) (dbGaP: 
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phs000572.v7.p4) Discovery cohort comprising 2,729 affected (AD+) individuals and 2,440 

healthy (AD−) controls and the Extension cohort with 481 AD+ and 488 AD− individuals 

(NIGADS: NG00067). To assess robustness of GeneEMBED, we used two variant impact 

scoring methods, Evolutionary Action (EA)42 and PolyPhen2 (PPh2),43 and we tested 

three different molecular interaction networks: STRING,44 HINT,45 and a brain-specific 

network.46,47

Candidate genes from the Discovery and Extension cohorts were consistent with one another 

and with known AD genes. The candidates interacted with manually curated AD-associated 

genes and were dysregulated in AD brains. Functional in silico analysis showed they were 

involved in pathways relevant to AD, including for cell cycle and DNA replication. In 
vivo perturbation analysis confirmed that GeneEMBED genes were modifiers of tau and 

β-amyloid-induced phenotypes in well-established Drosophila AD models,48–50 and their 

modulation in mice showed abnormal neurological phenotypes, supporting their role in 

normal neuronal maintenance and function. Importantly, many GeneEMBED candidates are 

druggable with already approved compounds. Overall, these results point to new targets 

for therapeutic development in AD and broadly support a novel and general paradigm to 

interrogate other complex genetic diseases.

RESULTS

GeneEMBED identifies genes that are perturbed in AD

With a view to discover AD genes, GeneEMBED aims to combine the integrative features of 

network biology with machine learning to find genes with functional interactions perturbed 

differently among cases and controls, due to mutations. First, GeneEMBED builds a 

personalized functional impact network by calculating a perturbation score (PS) for each 

gene of each subject of a cohort. This score reflects all non-synonymous variants in the 

gene (v); the impact of each variant is estimated by either EA42 or PPh243 (Variant Impact 

ScoreEA and VISPPh2, respectively) and zygosity (zyg) (Figure 1A; STAR Methods). The PS 

scores are then mapped to a gene network of choice, such as the STRING protein-protein 

interaction network, by setting the weight of an existing edge between two genes as the sum 

of their PS score. Finally, the edge weights are averaged across all cases, or separately across 

all controls, to produce two global cohort networks that compile the aggregate mutational 

perturbations of protein-protein interactions in cases and in controls. Both networks are 

then processed with the GraphWave51 machine learning algorithm, which applies an 

unsupervised diffusion-aided wavelet decomposition to assign a continuous vector-valued 

embedding to each gene or node. This embedding is based on the topological (geometric 

distribution of the edges in the node’s vicinity) and functional (functional information 

associated with each edge) properties surrounding the gene in the network. As a result, 

the vector assigned to each gene represents the integrated functional perturbation of the 

variants in its network neighborhood. The final step applies principal-component analysis 

(PCA) to identify vectors with significant differences between the case and control networks 

(false discovery rate [FDR] < 0.01), suggesting distinct perturbation patterns in these genes 

between AD versus controls.
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Next, to test the algorithm and identify genetic factors underlying AD, we applied 

GeneEMBED to the whole-exome sequencing (WES) and whole-genome sequencing 

(WGS) data from the ADSP Discovery and Extension cohorts, respectively, using either 

VISEA or VISPPh2 for the variant impact score and initially the STRING protein-protein 

interaction network. In addition, we applied GeneEMBED to healthy control versus healthy 

control using both VISEA and VISPPh2 to identify potential false-positive (FP) genes. After 

removal of FPs, GeneEMBED identified 69 AD candidates in the Discovery Cohort and 119 

candidates in the Extension cohort with VISEA and 128 candidates in the Discovery Cohort 

and 120 genes in the Extension cohort (Table S1) with VISPPh2.

Fourteen genes overlapped between the Discovery and Extension cohorts when using 

VISEA (one-tailed hypergeometric p ≈ 1.86e–16). Of these, nine genes had evidence 

in literature documenting their association with AD (Figure 1B; APOE, CSF1R, ILR4, 

MAPK6, MAPT, REST, RIPK4, SP3, and TRIB3).52–60 Particularly notable were MAPT 
and APOE. Neurofibrillary tangles, one of the primary AD biomarkers, are aggregates 

of hyperphosphorylated MAPT gene products.61 APOE, on the other hand, is one of the 

strongest genetic predictors of AD.61

Similarly, 16 genes overlapped between Discovery and Extension cohorts when using 

VISPPh2 (one-tailed hypergeometric p ≈ 4.25e–15), of which six have been previously linked 

to AD pathology (Figure 1B; CCT5, ERBB2, MAPK6, REST, SYNJ1, and TP53).55,57,62–65 

GeneEMBED-VISPPh2 did not recover APOE in the Discovery cohort but did so in the 

Extension.

GeneEMBED also identified well-known genes in which rare variants are associated with 

AD, including TREM266 and SORL1,67 though these genes are recovered only in the 

Discovery cohort. Comparing VISEA to VISPPh2, 34 genes overlapped in the Discovery 

cohort (one-tailed hypergeometric p ≈ 1.46e–53) and 44 genes overlapped in the Extension 

network (one-tailed hypergeometric p ≈ 2.46e-64), indicating concordance between these 

two impact scores. Lastly, we found that four genes overlapped among all cohort-VIS 

combinations with a one-tailed hypergeometric p ≈ 8.58e–10. These data suggest that 

GeneEMBED is robust to inter-cohort variability as well as differences in impact scoring 

systems and can recover several well-characterized, positive control AD genes.

In order to control against a standard method for inferring gene-disease associations, 

we used Multi-marker Analysis of GenoMic Annotation (MAGMA), which prioritizes 

genes based on multiple regression analysis. This method can be performed genome-wide, 

allowing it to be used for gene discovery.68 MAGMA identified 31 AD-associated genes in 

the Discovery cohort and only seven in the Extension, with no overlap (Table S2). MAGMA 

in the Discovery cohort shared only APOE with both GeneEMBED-VISEA analyses and 

GeneEMBED-VISPPh2 in Extension while overlapping with VISPPh2 analysis in Discovery 

cohort by two genes SORL1 and PRIM1. Similarly, MAGMA in Extension only shared 

TPO with VISPPh2 in Discovery and did not overlap with any other analyses. Of the 31 

MAGMA candidates from the Discovery cohort, nine had been previously associated with 

AD, including APOE and TOMM40.52,69 This indicates that MAGMA was less effective 

and less reproducible at this small sample size.
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To assess the recovery of GeneEMBED in a systematic manner, we measured one-tailed 

hypergeometric overlaps between GeneEMBED candidates and 208 AD-associated genes 

in the DisGeNet database. DisGeNet compiles gene-disease associations based on genetic, 

clinical, and animal model curation.70 We found a significant overlap (p = 0.012–5.3e–4) 

between GeneEMBED candidates and DisGeNet genes across functional mutational impact 

methods (VISEA versus VISPPh2) and cohorts (Discovery versus Extension; Table S3). In 

addition, we found significant overlaps between AD-associated genes from the comparative 

toxicogenomic database (CTD)71 and GeneEMBED-VISEA in both the Discovery (p = 

0.047) and Extension (p = 3.3e–3) cohorts. MAGMA candidates in the Discovery cohort 

recovered similar significant overlaps (Table S3; the low number of MAGMA candidates in 

the Extension cohort prevented a similar analysis).

These data suggest that GeneEMBED is able to significantly recover several known 

AD genes despite large differences in cohort sizes. Moreover, MAGMA was unable 

to reproducibly retrieve genes between the Discovery and Extension cohorts, while 

GeneEMBED found significant overlaps. Taken together, these findings demonstrate the 

robustness of GeneEMBED, compared with MAGMA, to both inter-cohort variability and 

sample size. Overall, GeneEMBED identifies candidates distinct from MAGMA, which 

are nonetheless enriched for known AD-associated genes, suggesting an identification of 

disease-relevant signal.

GeneEMBED candidates are robustly connected and relevant to AD

To assess the role of GeneEMBED candidates, we asked whether they are implicated in 

molecular changes related to AD, specifically, dysregulated gene expression as tallied by the 

Accelerating Medicines Partnership Alzheimer’s Disease (AMP-AD) RNA sequencing from 

seven brain regions.72–77 To focus on novel genes, we removed GeneEMBED genes that 

overlapped with any of five curated AD gene sets (DisGeNet, CTD, ClinVar, GWAS Meta 1, 

and GWAS Meta 2).5,6,70,71,78 The remainder was significantly dysregulated in the temporal 

cortex of AD patients (TCX) (one-tailed hypergeometric p < 0.05; Figure 2A), independent 

of both the functional impact method (VISEA versus VISPPh2) and the cohort (Discovery 

versus Extension). However, GeneEMBED-VISEA candidates were also dysregulated in 

the parahippocampal gyrus (PHG) (Figure 2A) for both cohorts and in the cerebellum 

(CBE), frontal pole (FP), superior temporal gyrus (STG), and dorsolateral prefrontal cortex 

(DLPFC) (one-tailed hypergeometric p < 0.05; Figure 2A) for the Extension cohort, whereas 

that was only true for GeneEMBED-VISPPh2 on the CBE, also in the Extension cohort. 

MAGMA, in contrast, found no enrichment in dysregulated genes.

In addition to this, the number of brain regions with significant dysregulation of candidate 

genes for GeneEMBED-VISEA in the Discovery cohort and GeneEMBED-VISPPh2 in 

the Extension cohort was on par with the number from two AD GWAS meta-analyses 

(permutation-based one-tailed Z test p ≈ 1.2e–2, p ≈ 2.3e–3, pGWAS Meta 1–2.8e–3, and 

pGWAS Meta 2–4.9e–3, respectively). Remarkably, GeneEMBED-VISEA applied to the 

Extension cohort identified candidates significantly dysregulated in six brain regions in AD 

(p ≈ 1.6e–13) (Figure 2B). Moreover, many of these genes were also dysregulated in single 
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cells (Figure 2C). Together, these data indicate a strong link between this group of candidate 

genes and AD pathology. This link, however, could be either causative or responsive.

Next, we tested whether novel GeneEMBED candidates were connected to AD-reference 

gene sets. For this, we measured how well information propagated between them and AD-

associated genes in a protein-protein interaction (PPI) network79–81 using the nDiffusion 

method.82 Area under a receiver-operator curve (AUROC) measures the strength of their 

interaction, and a permutation-based Z score over 100 permutations is calculated for the 

significance of the observed AUROC compared with a distribution of random gene sets. 

We used two diseasegene association databases (DisGeNet–208 genes70 and CTD–103 

genes71) and three variant-based reference gene sets for AD (GWAS Meta 1–25 genes,5 

GWAS Meta 2–38 genes,6 and ClinVar 21 genes78). The GeneEMBED candidates showed 

statistically significant diffusion (ROC > 0.5 + Z score > 2) to most selected AD-associated 

gene sets, regardless of the cohort (Figure 3; Table S4; AUROC = 0.63–0.84; Z = 2.03–

5.64). Interestingly, MAGMA candidates also diffused significantly to DisGeNet, CTD, and 

ClinVar, but not to the two GWAS datasets. These data suggest that the GeneEMBED 

candidates are functionally and significantly connected to previously curated AD-associated 

genes, further suggesting an identification of disease-relevant signal.

To test GeneEMBED’s utility and robustness in alternate PPI networks, we replicated the 

experiments from the above sections using the HINT network45 of curated high-quality PPIs 

and a second network of physical PPIs specific to brain tissue.46,47 First, using the HINT 

network, only VISEA in Discovery showed significant recall of genes from the CTD, GWAS 

Meta 1, and GWAS Meta two references (one-tailed hypergeometric p = 0.0014, 0.0058, 

and 0.015) (Tables S5 and S6). However, nDiffusion found both VISEA and VISPPh2 in Disc 

were significantly connected to all curated gene sets except GWAS Meta 1, with AUROCs = 

0.62–0.77 (permutation-based Z score = 2.31–5.77) and AUROCs = 0.62–0.76 (permutation-

based Z score = 2.6–3.89) (Table S7), respectively. VISEA and VISPPh2 in Extension also 

had significant network connectivity with CTD and DisGeNet gene lists with AUROCs = 

0.75 and 0.7 (Z = 3.33 and 5.16) and AUROCs = 0.74 and 0.67 (permutation-based Z score 

= 3.32 and 4.91).

Alternately, using the brain-specific PPI, both VISEA and VISPPh2 in Discovery had 

significant interactions to the curated gene sets, with AUROCs = 0.63–0.78 (permutation-

based Z score = 2.11–3.91) and AUROCs = 0.64–0.82 (permutation-based Z score = 2.43–

6.07) (Tables S8, S9, and S10). VISEA in Extension found significant relatedness to CTD 

and DisGeNet with AUROCs = 0.77 and 0.69 (permutation-based Z score = 4.64 and 5.07). 

VISPPh2 in Extension did not show any significant links to the curated gene sets. These 

data show that GeneEMBED robustly identifies genes enriched for functional interactions to 

curated sets of AD-related genes using a variety of alternative PPI networks. Interestingly, a 

large number of genes were repeatedly identified among two or more GeneEMBED analyses 

across cohorts, VIS systems, and PPI networks (Figures S1 and S2; Table S11), suggesting a 

potential role in AD.
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GeneEMBED candidates are functionally connected and enriched for in vivo modulators of 
neuronal dysfunction triggered by tau and β-amyloid

The significant overlap in GeneEMBED candidate genes observed across cohorts and 

networks (Figure S2) indicates that GeneEMBED may be identifying specific pathways 

where an increased concentration of mutational load modulates AD risk. To investigate 

this, we performed functional enrichment analysis. We constructed a network in STRING 

with 143 high-confidence hits. These genes were selected using the criteria that they must 

have been identified at least twice in the same network either across cohorts or across VIS 
methods. Genes were prioritized based on the degree of overlap across networks with more 

recurrent genes ranking higher, provided that they were never identified in any of the healthy 

control versus healthy control assays (Figure S1; Table S11).

Interestingly, this network showed significant PPI enrichment (STRING PPI enrichment 

p = 9.56e–07). After clustering with a Louvain algorithm, 127 of the 143 candidate 

genes mapped to significantly enriched pathways (Figure 4), including, among others, (1) 

mechanisms involved in glial biology (glial-cell-derived neurotrophic factor receptor);83,84 

(2) inflammation (regulation of IP-10 production, positive regulation of transforming 

growth factor β1 (TGFβ1) production, and chemokine signaling), which is known to 

be dysregulated in AD;61 (3) clearance of protein aggregates (regulation of aggrephagy 

and MTOR signaling); and (4) extracellular signaling cascades. These cascades involved 

Wnt/β-catenin, G-alpha, or ErbB, which are dysregulated in AD63,85 and modulate 

neurodegeneration in animal models,86 or Syndecan-3, which may play a role in tau and 

β-amyloid internalization.87 (5) The largest functional module among the high-confidence 

GeneEMBED candidates is related to DNA double-strand break repair. Interestingly, genes 

involved in double-strand break repair regulation modulate neurodegeneration in animal 

models,59 and others involved in DNA quality control accumulate in AD brains.

These pathways suggest that modulating GeneEMBED genes may impact neuronal function. 

This hypothesis is supported by the fact that the 143 high-confidence hits are enriched in 

differentially expressed genes both in bulk and in single-cell transcriptomic datasets from 

AD post mortem brains (one-tailed Fisher’s exact test p = 0.0247; Figures 2C and 4).

While many genes have been investigated in AD mouse models to understand their 

contribution to disease, it is currently impractical to perform this type of analysis with 

large gene collections. To circumvent this limitation and systematically measure whether 

GeneEMBED candidates play important roles in CNS, we asked whether modulation of 

their mouse homologs would cause any neurological phenotypes as tallied in the Mouse 

Genome Informatics (MGI) database.88 This would reveal whether gene candidates are 

involved in neuronal maintenance and function and whether their loss of function may 

constitute a risk factor for AD or be a trigger for neurodegeneration.

We found that, out of 139 high-confidence genes with homologs, 48 (35%) showed 

abnormal nervous system phenotypes (one-tailed Fisher’s exact test p = 0.00024) when 

modulated. Notably, among these, a subset of 25 mouse homologs also showed abnormal 

behavioral and neurological phenotypes (one-tailed Fisher’s exact test p = 0.049). Finally, 

an additional 11 homologs showed only abnormal behavioral and neurological phenotypes 

Lagisetty et al. Page 8

Cell Genom. Author manuscript; available in PMC 2022 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 4 shows genes whose modulation causes CNS-associated phenotypes in mice as red 

or yellow border nodes). Of note, neither the ADSP variant datasets nor the STRING or 

HINT networks used by GeneEMBED have any bias toward genes expressed in the brain or 

in neurons. Therefore, the observed enrichment in genes mediating normal neuronal function 

increases confidence in GeneEMBED and with the potential pathogenic or protective roles 

of the genes it finds.

To further ascertain the role of GeneEMBED genes in neurodegeneration, we next turned to 

in vivo experiments. Mouse models recapitulate neuronal dysfunction and neuropathological 

features of AD; however, they are not amenable for testing a high number of candidates 

using functional assays. Conversely, cultured cells fail to recapitulate core AD traits (age 

dependence, circuit dysfunction, and neuron-glia interplay). Therefore, to optimally validate 

the GeneEMBED candidates in the AD context in vivo, we resorted to Drosophila AD 

models, which capture important core AD traits, including age dependence and protein 

accumulation.89 This approach is supported by our previous Drosophila work in the 

context of AD and other neurodegeneration disorders, where therapeutic targets identified 

in Drosophila have gone on to be validated in mouse or induced pluripotent stem cell 

(iPSC)-derived neuronal models.48,49,89–94

For the GeneEMBED candidates, we modulated the levels of their Drosophila homologs 

in two well-validated Drosophila AD models48–50 to test the effect of each candidate 

on neuronal dysfunction caused by amyloid (secreted Aβ42) or Tau (2N4R hTau) in the 

CNS. Expression of secreted β42 or human tau specifically in post-mitotic neurons induces 

progressive nervous system dysfunction in Drosophila that can be monitored by measuring 

the motor performance of the animals as they age.

First, we filtered out high-confidence candidate genes that did not have Drosophila 
homologs or available alleles in public repositories. We then tested the resulting 43 

genes using both overexpression as well as loss-of-function alleles whenever possible. We 

found that 28 Drosophila genes were modifiers of the β42- and/or tau-induced neuronal 

dysfunction (Figures 4, green and yellow border nodes, S3, and S4). We further found that, 

of these 28 modifiers, five genes (UTRN, REST, PLEC, BAG3, and TP53) also showed 

evidence of dysregulation in human post mortem AD brain transcriptome and abnormal 

neurological phenotypes in knockout mice. Interestingly, both the MGI hits as well as the 

Drosophila modifiers are evenly distributed between the different functional clusters (Figure 

4), indicating that all these pathways may potentially modulate AD pathogenesis.

Importantly, some of the Drosophila alleles used (inducible overexpression and short hairpin 

RNA [shRNA] lines) were targeted specifically to neurons and therefore likely exerted 

their effects specifically in neuronal cells. However, other alleles used were classical loss-

of-function or classical rescue constructs (using the endogenous gene promoter); in those 

cases, the effect may be cell-autonomous or non-cell autonomous, for example, through 

modulation of important functions in glial or muscular cells. In addition, while some of the 

modifiers identified may exert their effect through modulating the accumulation of tau or 

β42, others may act by protecting or potentiating the predisposition of neurons to degenerate 

or even by causing certain levels of neurodegeneration themselves. A complete list of the 
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modifier alleles as well as brief description of their putative effect on their target gene are 

available in Table S12.

Given the likely neurological role of these high-confidence GeneEMBED candidates, we 

investigated their therapeutic potential. Among the 143 genes, 21 have drugs that have been 

characterized as agonists or antagonists of their function (Table S13). Interestingly, of the 

total 109 compounds activating or inhibiting these genes, 35 have co-mentions with AD in 

the PubMed database.

Noteworthy among these druggable candidates are EPHA2 and S1PR3, both of which were 

upregulated in AD brains. EPHA2 has two inhibitors (regorafenib and dasatinib), both of 

which have shown neuroprotective effects in mouse AD models.95,96 S1PR3 has an agonist 

(fingolimod) that also has therapeutic benefit in mice.97 In addition, two genes, FLT3 
and RET, are inhibited by sunitinib, which inhibits cerebrovascular activation to improve 

cognitive function mouse AD models.98

Among the genes whose knockdowns ameliorated neurodegeneration in Drosophila AD 

models, three (ABL1, TP53, and POLD1) have pharmacological agents with previously 

demonstrated inhibitory effects. While ABL1 inhibition is already being pursued in the 

context of AD,99,100 TP53 and POLD1 remain to be explored. Together, our results 

demonstrate that high-confidence GeneEMBED candidates show significant enrichment 

in modifiers of tau and β-amyloid phenotypes in Drosophila models, are differentially 

expressed in AD brain tissue, and show abnormal neurological phenotypes when modulated 

in mouse models. These findings highlight the ability of GeneEMBED to successfully 

identify genes involved in disease pathology, some of which have significant therapeutic 

potential.

DISCUSSION

AD is the leading cause of dementia worldwide. As its prevalence rises, the need to identify 

therapeutic targets, potential biomarkers, and risk predictive strategies is urgent. These 

tasks are complicated by the fact that, although several AD genes have been discovered, 

they only partially account for the role of genetics in the disease.10,11 Here, we developed 

GeneEMBED, a new approach to pinpoint genetic risk factors of disease by examining the 

differential perturbation patterns of gene interactions. Though, in this study, we analyze 

AD as proof of concept, GeneEMBED is a general approach applicable to many complex 

polygenic diseases.

When applied to the ADSP cohorts, GeneEMBED identified 143 candidate genes that 

interacted significantly with previously known AD genes (Z score = 2.03–6.07) and were 

differentially expressed in bulk tissue and single cells of AD cases (p = 0.0247). While 

testing such a large collection of genes in AD-related mouse models is currently not 

possible, we sought to identify experimental links between the GeneEMBED candidates 

and neuronal biology.

We validated candidate genes in vivo using two well-characterized Drosophila AD models 

and utilized the MGI database to identify functional links between the GeneEMBED genes 
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and neurological phenotypes. These genes were also linked to known AD pathways and 

revealed several novel and potentially druggable targets. These pathways included functions 

related to glial biology, inflammation, protein aggregate clearance, and signaling cascades.

While inflammation plays a large role in the pathogenesis of AD, our enrichments draw 

attention to the regulation of interferon-gamma-induced protein 10 (IP-10) production. In 

AD patients, IP-10 has elevated expression in astrocytes and shows positive correlation 

between cerebrospinal fluid (CSF) levels and cognitive impairment.101 In AD transgenic 

mice, it co-localizes with amyloid plaques.101 Interestingly, among genes responsible for 

enrichment in this function, three (NDUFA10, GOT2, and TLR10) show modulation of an 

abnormal phenotype in animal models (Figure 4), while another four (NDUFA10, NDUFA9, 
EPHX2, and CYP2C9) have approved pharmacological activators or inhibitors (Figure 4).

Functions related to glial biology highlighted glial-cell-derived neurotrophic factor (GDNF) 

receptor (GFRa1) signaling. Studies in transgenic AD mice found that overexpression of 

GDNF induced neuroprotective effects and improved learning and memory.83 Restoration 

of GDNF effects by introduction of exogenous GFRa1 into cortical AD neurons has been 

shown to alleviate neuronal death.84

Strikingly, we found that all eight genes (RET, ROR1, GRIN3A, PLEC, GFRA1, BAG3, 
NQ O 1, and BCLAF1) responsible for enrichment in this pathway showed modulation 

of abnormal neurological phenotypes in mice and Drosophila (Figure 4). Of these, RET, 
GRINA3, and NQ O 1 all have pharmacological activators or inhibitors that are US 

Food and Drug Administration (FDA) approved. GRINA3, specifically, interacts with 

acamprosate, which has been associated with decreased incidence of dementia in population 

studies and has been seen to alleviate cognitive defects in amyloid precursor protein (APP) 

transgenic mice.102,103 Further studies of these gene candidates are needed to disentangle 

their relationship with AD; however, they present interesting and viable targets for potential 

therapeutic research.

Several GeneEMBED hits represent novel and unsuspected candidates for AD. Particularly 

noteworthy were PLEC and UTRN, which, to our knowledge, have not been studied in 

AD. Both genes were repeatedly identified in multiple GeneEMBED analyses and were 

significantly upregulated in bulk tissue AD brains, their modulation causes abnormal 

neurological phenotypes in mouse models,104,105 and they are genetic modifiers of AD-

related phenotypes in Drosophila.

PLEC encodes for plectin, a cytoskeletal protein involved in intermediate filament networks 

and interacting with actinomycin and microtubules. Mice deficient in PLEC isoform P1c 
in neurons demonstrate altered pain sensation and reduced learning and long-term memory 

due to increased accumulation of tau proteins with microtubules.104 Proteomic studies 

have also associated PLEC with AD pathology.106,107 UTRN encodes for utrophin, another 

component of the cytoskeletal system. Though UTRN is downregulated in CA1 neurons 

containing neurofibrillary tangles,108 its role in the development of tangles is still unclear. 

The numerous modalities in which UTRN and PLEC show associations to AD phenotype 

warrant deeper and more detailed studies to unravel their role in the disease.
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In a similar vein, we found two additional genes with links to AD worth highlighting (TP53 
and POLD1)109,110 and whose knockdown in Drosophila alleviated AD-related phenotypes. 

Moreover, both of these genes have pre-existing FDA-approved pharmacological inhibitors. 

We found four compounds (clofarabine, cytarabine, fludarabine, and gemcitabine) that 

inhibit POLD1 and one compound (bortezomib) that inhibits TP53. Given the distinct 

effects of these genes in animal models and their druggability, these genes would be priority 

candidates for further characterization and study in animal models.

As a genomic tool, GeneEMBED searches for genes that influence disease risk by 

considering mutational perturbations of function in their molecular interaction network. 

This is in contrast to variant or gene-based association methods that treat individual 

genes or variants as independent and isolated risk loci.68,111–114 To evaluate the functional 

perturbation of a gene in a disease, GeneEMBED integrates two distinct techniques: variant 

impact estimators and node-embedding algorithms (Figure 1A).

The first of these, variant impact estimators, predict the probable effect of a coding mutation 

on protein function based on a variety of data. EA is an untrained approach that uses 

the evolutionary history of sequence variations and phylogenetic divergence to predict the 

impact of a variant. PPh2 evaluates impacts by applying machine learning tools on sequence 

and structure features. These estimates are combined across all variants in a gene to predict 

their total impact on protein function.

The second technique, node embedding, is a machine learning process that seeks to 

represent the complex topological properties of a node in an easily manipulatable form. 

By weighing the interactions of a gene with the sum of its mutational impact and those of 

its interactors, GeneEMBED uses the perturbed interactions of a gene as learning features 

rather than their singular mutational burden. Combining these features with node embedding 

allows GeneEMBED to estimate the differential perturbation of genes in cases versus 

controls, thereby identifying genes whose disease contribution would not have been apparent 

in single-gene analyses. For example, in AD, the single-gene approach MAGMA did not 

identify NQ O 1 (pMAGMA ≈ 0.33) as disease associated despite its links to AD.115–118 

However, its differentially perturbed network interactions between cases and controls allow 

GeneEMBED to identify NQ O 1 with statistical significance (Figure S5). This suggests that 

GeneEMBED identifies genetic processes distinct from those found by standard tools and 

can offer complementary insights into the factors defining complex diseases.

The integrative framework of GeneEMBED provides other advantages. First, the integration 

of network information allows GeneEMBED to be robust to sample sizes. In our analysis of 

AD, GeneEMBED was able to reliably reproduce findings from the full ADSP Discovery 

cohort with successively smaller subsampled cohort sizes (Figure S6A). More than that, 

GeneEMBED was robust to variations between different cohorts, recovering significant 

overlaps (p = 1.86e16 and 4.25–e15) in genes identified in the ADSP Discovery and 

Extension datasets, a challenging task for standard prioritization tools at these sample sizes. 

Nevertheless, in order to optimally account for the various factors leading to inter-cohort 

variability and increase robustness of findings, we recommend readers to validate potential 

candidate gene lists across two or more cohorts.
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This framework is also flexible in that it is compatible with many different variant impact 

estimators. Here, we used EA due to its consistently good performance in blind, objective 

studies119,120 and overall utility in genomic studies,121,122 in addition to a well-established 

alternative, PPh2. Despite their differences, we found significant overlap in their predictions 

(p ≈ 2.46e–64 to 1.46e–53), supporting the compatibility of GeneEMBED with multiple 

impact estimators. The GeneEMBED framework crucially relies on the PS metric, which 

is compatible only with estimators that have probabilistic interpretations. While some tools 

(REVEL, SIFT, MutPred2, or VEST) fit this criterion, many do not have such interpretations 

or may require further transformations (e.g., CADD or Eigen).

The flexibility of the GeneEMBED strategy also applies to different networks. We found 

that GeneEMBED consistently identified similar genes across the three PPI networks 

used in this study (p ≈ 1.06e–8 to 5.78e–28; Figure S2), suggesting that usage of any 

well-constructed and disease-relevant network will tend to converge on similar findings. 

While the use of networks is key in the GeneEMBED strategy, it also introduces a potential 

source of error. Even stringently curated networks may be prone to research bias. Unbiased 

networks built with high-throughput techniques may provide alternatives. However, they 

tend to be limited in size due to technical constraints, resulting in an insufficient capture 

of disease-relevant interactions (STAR Methods; Tables S14, S15, and S16). In this regard, 

the GeneEMBED strategy showed robustness to the presence of both false-positive and 

false-negative edges (STAR Methods; Figure S7).

The flexibility of the framework also provides a channel for improvement in predictive 

power, namely, the edge-weighting scheme. While other edge-weighting approaches 

were characterized (STAR Methods; Tables S13, S14, and S15), the current framework 

estimates the perturbation of each interaction independently but considers all edges equally 

important. However, biological networks are highly robust to mutations due to pathway 

redundancies.123,124 Among these, some are dominant while others are auxiliary,125 

suggesting that different parts of the network have varying levels of importance. This 

indicates a potential limitation and area for improvement in the GeneEMBED framework. 

Potential approaches to address this are to consider alternative methods of node embedding, 

including anisotropic diffusion techniques, which will be the focus of future work.

Limitations of the study

While we anticipate GeneEMBED to be broadly applicable to case-control germline studies 

across a wide variety of complex genetic diseases, we note that this study is not without 

limitations. First, though we strove to validate the involvement of candidate genes in 

AD biology, further in-depth experimental characterization is necessary to elucidate their 

roles in pathology. Second, while the integration of network data is a key innovative 

component of GeneEMBED, it also presents a limitation. The reliance on network data 

means that, in the absence of interactions or genes that may be central to disease pathology, 

GeneEMBED may not make informative predictions. This suggests that GeneEMBED 

may have limited compatibility with certain networks (e.g., unbiased networks built on 

high-throughput screens). Third, the current implementation of GeneEMBED considers only 

coding mutations. However, a growing body of literature suggests that non-coding changes 
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may also play an important role in AD pathology,126,127 as well as other complex diseases. 

Therefore, extending GeneEMBED to incorporate non-coding data may be a fruitful future 

direction.

Conclusions

In summary, using AD as a proof of concept, we show that, by placing genes in the 

context of their network interactions, GeneEMBED identifies novel disease genes that add 

to our understanding of pathology and which may harbor potential therapeutic value. This 

approach is general and can be applied to other sequenced case-control cohorts of a few 

thousands of subjects to decode gene variant interactions of interest in other complex genetic 

diseases.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Olivier Lichtarge (lichtarg@bcm.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the key resources table.

• The code generated during this study is available at https://github.com/

LichtargeLab/GeneEMBED(https://doi.org/10.5281/zenodo.6654182).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila strains and neuronal dysfunction assay

Genetics and strains: Drosophila lines carrying UAS-Tau, and UASAos:β42 have been 

previously described49,50 and are available from the Bloomington Drosophila Stock Center 

(BDSC, University of Indiana). For post mitotic pan-neuronal expression we used the 

elav-GAL4(C155) driver from BDSC. The alleles tested as potential modifiers targeting 

the Drosophila homologs of GeneEMBED candidate genes were obtained from the 

BDSC. Homologs were identified using BLAST and also the DRSC Integrative Ortholog 

Prediction Tool (Diopt score)140,141(Table S12). For the neuronal dysfunction tests, we 

used a highly automated behavioral (motor performance) assay based on the Drosophila 
startle-induced negative geotaxis response as previously described.141,142 To assess motor 

performance of fruit flies as a function of age, we used 10 age-matched virgin females 

per replica per genotype. Four replicates were used per genotype. Flies are collected 

in a 24-hour period and transferred into a new vial containing 300μL of semi defined 

media (20g yeast, 20g Tryptone, 30g sucrose, 60g Glucose, 0.5g MgSO4^7H2O, 0.5g 

CaCl2^2H2O, 80g Inactive Yeast, 1L H2O) every day. Using an automated platform 
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that uses a mechanized arm and clamp (https://nri.texaschildrens.org/core-facilities/high-

throughput-behavioral-screening-core), the animals are tapped to the bottom of a plastic 

vials to trigger their negative geotactic response (climbing response) and are recorded for 

7.5 seconds as they climb on the walls of transparent plastic vials. Videos are analyzed 

using custom software (code available for download on ref. 141) that assigns movement 

trajectories to each individual animal, assesses their speed (mm/s) and returns an average 

per replicate per trial. Three trials per replicate are performed each day shown, and four 

replicates per genotype are used. A mixed effect model analysis of variance using spline 

regressions was run on Rstudio, using each four replicates to establish statistical significance 

across genotypes.142 Human genes POLD1 and ANLN were identified as modifiers in a 

separate manuscript currently under revision and were not directly tested here. All shown 

modifier alleles had a significant effect (p <0.01) compared to the disease controls.

METHOD DETAILS

Whole exome/genome sequencing data—Whole exome sequencing (WES) data 

from 5,169 individuals were downloaded from NIH NCBI study ID: phs000572.v8.p459 

(ADSP Discovery)128 and a further 969 whole genome sequences (WGS) were downloaded 

from National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site 

(NIAGADS) dataset: NG0006760 (ADSP Extension).129 Samples making up the Discovery 

and Extension cohorts were selected from a set of 24 well characterized cohorts from the 

Alzheimer’s Disease Genetics Consortium. The sample phenotypes were coded as 0 or 1 

indicating non-AD and AD, respectively in both cohorts. Only samples of European/White 

ancestry were used in the analyses of both cohorts. The mean age of AD onset for AD 

positive Discovery cohort samples was 75.3 years with a standard deviation of 8.3 years, 

while the mean age of last exam for control samples was 85.5 years and a standard deviation 

of 5.1 years. The mean age of AD onset for AD positive Extension cohort samples was 75.5 

years with a standard deviation of 7.8 years. Healthy controls of the Extension cohort had a 

mean age at last exam of 75 years with a standard deviation of 8.3 years.

Quality control and annotation of WES and WGS data: Although extensive QC 

procedures were performed on the WES Discovery and WGS extension cohorts by the 

ADSP and GCAD consortia,143 respectively, we generated QC statistics for Ti/Tv, number 

of variants, singletons, and missingness for each sample and HWE, genotyping rate 

(AC/AN) for each variant site across cases and controls. Then, potentially false-positive 

variants sites and outlier samples were removed. HWE (Hardy Weinberg Equilibrium) exact 

test144 was performed on the control samples of each cohort and the variants with HWE 

violations (HWE p-value < 5E-8) were removed. We also removed the variants that were 

genotyping rate less than 0.95 in either case and control and in combined case and control 

samples. Outlier samples including potentially non-whites were identified based on Ti/Tv, 

total number of variants, singletons, and missingness. To cluster samples with genetic 

background and identify outliers of clusters, we applied Principal Component Analysis 

(PCA) method. We identified potentially related samples by estimating genetic relationships 

between samples with kinship coefficients. We removed outliers that include non-European 

descendants. To annotate consequences of variants, we used the Annovar133. Then, non-

synonymous single nucleotide variants (SNVs) and small indels, which lead to frames-
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shift, excluding CNVs (copy number variants) were annotated with EA. BCFTOOLS,138 

KING,145 and SMARTPCA from Eigenstrat package were used for calculating variant and 

sample statistics, inferring relationships, and for estimating sample clusters with PCA,139 

respectively.

Variant scoring methods—Two variant scoring methods were used to describe the 

mutational impact of variant, separately. The first of these two methods are PolyPhen2 

(PPh2), which predicts the potential impact of an amino-acid substitution on protein function 

using a machine learning algorithm trained on sequence and structural information. Here, 

PPh2 HDIV raw scores were used. PPh2 scores range from 0–1, where increasing value 

indicates increasing severity of mutation.

The second scoring method we used was Evolutionary Action (EA), which expresses that 

the genotype-phenotype relationship can be written as f(γ) = φ, where evolutionary fitness 

function (f) maps genotype (γ) onto fitness landscape (φ). SNVs are considered small 

perturbation in the genome (dγ) and cause perturbation in fitness (dφ) : ∇f dγ = dφ. A 

missense mutation at residue rj, dγ ≈ Δrj, will cause all components of ∇f to be forced to 

zero except ∂f
∂rj

, and impact equation simplifies to Δφ ≈ ∂f
∂rj

Δγ. Evolutionary Trace146 is used 

to compute ∂f
∂rj

, and Δγ can be approximated with amino acid substitution log-odds ratios. 

EA scores are reported between 0–1 with increasing severity of functional impact, where 

EA = 0 indicates no effect on protein function and EA = 1 indicates loss of function. In the 

EA scoring systems, silent mutations are given a score of EA = 0, while frameshift and stop 

mutations are given a score of EA = 1.

GeneEMBED

Network construction: In the bulk of the work presented here, we use three biological 

networks for protein-protein interactions including STRING v10 44, HINT,45 and a brain 

specific network.46,47 The STRING network defines edges between genes using many forms 

of evidence including curated interactions, experimental interactions, protein homology, 

co-expression, text mining, etc. The HINT network consists of manually and systematically 

curated edges requiring interactions to have been reported at least twice in literature. The 

brain specific network consists of genes who demonstrate tissue specificity per Human 

Protein Reference database and BRENDA Tissue ontology. Edges in the brain specific 

network are listed only if there is experimental evidence for an interaction. For in-depth 

construction details, please see the appropriate publications. For use in this approach, all 

edge confidence scores in all networks were removed and replaced with a weight of 1, 

simply indicating an edge exists between two genes.

Networks are first made sample specific by integrating mutational information. First we 

compile the functional effect of a set of variants in an individual into one gene level 

score called a perturbation score (PS), defined as: PSgene = 1 − ∏i
V (1 − V IS)zyg, where v 

is the number of variants in a gene for the individual, i is the index over those variants 

and zyg ∈ {0, 1, 2} where 0 denotes wild type, 1 denotes heterozygous, and 2 denotes 

homozygous for variant i, and VIS denotes functional impact of variant (EA or PPh2 score). 
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To construct sample specific networks, we calculate edge weights as the sum of the PS of the 

two connected genes: Wedge = |PSx + PSy|. Characterization of alternative edge weighting 

schemes and their corresponding discussions can be found below and Tables S17, S18 and 

S19. Finally, to construct disease and control specific networks, edge weights are averaged 

over all cases and controls separately to build a case specific and control specific mutation 

weighted network.

Node embedding algorithms: In order to assess network perturbations in genes between 

cases and controls, we use the GraphWave algorithm51 to generate node embeddings. 

The GraphWave algorithm has advantages over other embedding algorithms in that it 

provides rigorous mathematical guarantees on identifying structure preserving embeddings. 

GraphWave performs unsupervised node embedding on node structure (i.e. topological 

patterns of node connectivity). Accordingly, the authors provide proof for the equivalency of 

embeddings between two structurally identical nodes a and b, which rests on the assumption 

that there exists a one-to-one mapping between the K-hop neighborhood of the two nodes. 

We can extend this proof to claim that the embeddings of a node from two identical graphs 

must also be equivalent since there will exist a mapping between the node neighborhoods. 

Thus, when comparing disease and healthy graphs wherein the node connectivities are 

largely unchanged, the descriptive features captured by each dimension in the embedding 

space are the same, thus allowing for direct comparisons. The GraphWave algorithm is 

briefly described below.

Let V denote the eigenvectors and γn denote the eigenvalues (Λ = diag(λ1;λ2, …, λ)) of 

the graph Laplacian L = D – A = VLVT, where D denotes the degree matrix and A denotes 

the adjacency matrix of the graph. Now consider a low-pass filter kernel gs = e–λs, where 

s is some scaling factor, we may define spectral graph wavelets by modulating the graph 

Laplacian by kernel gs:

Ψa = V Λ gs λ1 , …, gs λn V Tδa

where da is a Dirac signal about node a, ψa is an n-dimensional vector representation of the 

spectral graph wavelet of node a, and s is a scaling factor corresponding to the radius of 

the neighborhood around node a. GraphWave samples over a set of sj for sj ∈ {smin, smax } 

where smin and smax are automatically calculated.

We can recover coefficients of the graph spectral wavelet Ja corresponding to a neighbor 

node m by:

Ψma = ∑
i = 1

N
gs λi V miV ai

Where ψma represents the signal received by node a from a neighbor node m, and Vmi, Vai 

denote the i-th value of the eigenvectors of m and a. Similarities in node characteristics are 

carried in ψma coefficients. GraphWave proposes to use the ψma coefficients as components 
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of a characteristic function, which, when sampled at d evenly spaced points, allows a 2-d 

representation of ψa:

φa tj = 1
N ∑

m = 1

N
eitΨma

where tj comes from the set of d evenly spaced points ({t1;t2,…,td}), and i is the imaginary 

unit (i = −1). The final embedding of the node is then collected as:

Xa = Re φa tj , Im φa tj t1, ..td

Gene identification—In order to find genes with differentially perturbed network 

characteristics between case and control, GraphWave is applied to both networks. Each 

gene will now have two embeddings, one corresponding to the case network and another 

from the control network. The GeneEMBED hypothesis supposes that genes contributing 

to disease will have significantly differing case and control embeddings. To prioritize genes 

accordingly, we perform principal component analysis (PCA) on the node embeddings 

and measure distances between case and control embeddings in the PCA space. The 

role of PCA in the methodology is to aid in denoising the full dimensional embeddings 

retrieved by GraphWave. The full dimensional embeddings produced by the algorithm 

can encompass signals ranging from immediate neighborhoods to the complete graph. As 

a result, the full dimensional embedding of a node will be influenced by any change 

in the edge weight anywhere in the graph. In order to remove some of these noisy 

influences, we perform a PCA on the full dimensional embeddings and use the first 

principal component to measure distances as this component recovers between 78–92% 

of the variability explained. Characterization of performance between distances computed 

on full dimensional embedding against distances measured on PCA is shown in Tables S17, 

S18 and S19 and discussed further below. By defining distances as the square root of the 

L2-norm of each gene measured between case and control, we are able to reconstruct a 

gaussian-like distribution from the positive and negative values. We then compute z-scores 

and their corresponding one-tailed Z-test p-values for each distance value relative to the 

full distribution. Then, we perform false discovery rate (FDR) corrections on the p-values 

using the Benjamini-Hochberg method and genes corresponding to distance values passing 

FDR <0.01 are selected as pre-candidate genes. Lastly, the full GeneEMBED process is 

performed on healthy controls vs healthy controls (details of healthy control selection are 

discussed below). Genes passing FDR <0.01 threshold in this control vs control analysis 

are removed from the list of pre-candidate genes. This is done to filter potential sources of 

variation which may not be disease specific (false positives, discussed below, Tables S20 and 

S21). The final set of genes passing FDR <0.01 threshold and not removed by control vs 

control analysis are considered candidate genes.

Computational efficiency/requirements—GeneEMBED offers an analytical 

framework to appraise all coding genes in the human genome with respect to their attributes 

in a molecular network. Accordingly, this can be computationally demanding depending on 
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the size of the network being used. In this study we used three different PPI networks, a 

brain specific network, HINT, and STRING. After annotation and preprocessing of exomic 

variant calling file (VCF), the computational time required for the brain network consisting 

of 3.2k nodes and 48k edges was 649 seconds (10.8 minutes). Similarly, for the HINT 

network consisting of 12.6k nodes and 146k edges, the computational time from annotation 

of networks with mutational information to identification of candidate genes was 3058 

seconds (51 minutes). Lastly, for the STRING network consisting of 15k nodes and 1.9m 

edges, the computational time was 6.2 hours. All network analyses were performed on a 

server with specifications of Intel Xeon Gold 5222 CPU at 3.8GHz with 8 cores and 348gb 

RAM. GeneEMBED is implemented in python 3137 and is publicly available as noted in the 

Data and Code Availability section.

Use of PCA vs full embedding distances—In order to assess the effects of PCA 

on the GeneEMBED methodology, we tested the utility of computing distances based 

on the full dimensional embedding outputs from the GraphWave algorithm compared to 

PCA-distances. We ran GeneEMBED with both weighting metrics on the Discovery-VISEA 

cohort using the STRING network and recovered 82 genes with full embedding distances 

and 69 with PCA-distances. To test the relevance of the identified gene to AD, we measured 

their: (i) recovery of AD-associated genes, (ii) connectedness to known AD-associated 

genes, and (iii) differential expression in postmortem AD brains. We found that distances 

based on full dimensional embeddings were able to recover statistically significant overlaps 

(one-tailed hypergeometric test) with GWAS Meta 1, GWAS Meta 2, and DisGeNet. PCA-

distance gene set recovered significant overlaps with DisGeNet and CTD (Table S13). Next, 

we found that genes identified by full dimensional embeddings were significantly connected 

to GWAS Meta 1, GWAS Meta 3, and CTD gene sets. Comparatively, PCA-distance gene 

set showed significant connectivity to all five reference gene sets (Table S14). Finally, genes 

identified by full dimensional embeddings showed no statistically significant enrichment 

for differential expression in post-mortem AD brains, while PCA-distance gene set was 

enriched in two brain regions with significance (permutation-based Z-test p = 0.012) (Table 

S15). These data show that distances based on PCA performs better than full dimensional 

embeddings. Further examination of the genes identified by both approaches showed 

that 74% of genes identified by the full dimensional embeddings were also identified in 

the PCA-distance framework. However, of the 20 genes unique to the full dimensional 

embeddings’ gene set, only 3 were dysregulated in AD brains. Comparatively, of the 7 genes 

unique to the PCA-distance framework, 4 were dysregulated in AD brains. Overall, this 

demonstrates the role of principal component analysis in denoising the raw outputs of the 

GraphWave algorithm.

Downsampling analyses—While large sequencing cohorts are becoming more 

commonplace in recent years, for some rarer phenotypes and diseases, it is still a challenge 

to produce such sample sizes. In order to characterize its performance at various cohort 

sizes, we performed an iterative downsampling analysis of GeneEMBED (detailed in 

methods) on the Discovery cohort. Using the gene set identified with the full cohort as 

ground truth, we calculated precision and recall of GeneEMBED gene sets identified at 

sub-cohort sizes of 80%, 60%, 40%, 20%, 10%, and 5% of the original cohort. Performing 
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this experiment with both EA and PPh2, we found that sub-cohort size could be dropped 

as far as 40% of the original cohort before recall fell below 0.6 for PPh2 and EA analyses 

(Figure S6A).

Next, we examined the relationship between network connectivity and gene identification 

by GeneEMBED at various cohort sizes. We correlated the PCA-distances based ranking 

of identified genes with their ranking by betweenness, degree, and eigen centrality using 

STRING network. We measured correlation with the Spearman rank-order correlation test. 

We found that for both EA and PPh2 based analyses, the correlation with these centrality 

measures was relatively stable regardless of the decrease in cohort size (Figure S6C). 

Together, these data suggest that the utility of GeneEMBED is not limited to large cohort 

sizes but can sufficiently extended to much smaller cohort sizes.

Negative control experiment—In order to characterize the behavior of GeneEMBED in 

the absence of disease specific mutational information, we performed the analysis on only 

healthy controls from the Discovery cohort. Healthy samples were defined to be individuals, 

from the ADSP Discovery cohort, who were homozygous for the APOEε3 variant, and 

had low BRAAK staging (1 or 2). This filtering resulted in 725 control samples which 

were randomly split into two groups. We then tested the Spearman rank-order correlation 

of genes which pass FDR threshold with ranks generated by connectivity measures used 

above. Strikingly, we observed that in GeneEMBED analysis using the STRING network, 

the PCA-distances correlated with degree, betweenness, and eigenvector centralities at more 

than twice the rate in healthy vs healthy (r = 0.273, 0.215, 0.282) than in case vs control 

analyses (r = 0.121, 0.085, 0.103), and that correlations for healthy vs healthy were all 

statistically significant while the case vs control analyses were not (Figure S6B). Even more 

notable were the disparities of correlations in the Brain Specific PPI network, correlations 

with degree, betweenness, and eigenvector centralities in the healthy vs healthy analysis (r 

= 0.596, 0.481, 0.630) which were all statistically significant and case vs control analyses 

(r = 0.111,0.358,−0.103) which were not significant. These findings were again echoed in 

the HINT network analyses where healthy vs healthy gene set correlated significantly with 

network centrality measures. The findings suggest that in the absence of disease-relevant 

mutational data, GeneEMBED prioritizes genes with large network connectivity as small 

mutational differences are likely amplified by the gene’s network influence.

Characterizing alternative weighting schemes—In order to characterize the 

performance gain or drop-off of GeneEMBED to differences in edge weighting schematics, 

we tested two alternative weighting approaches. The first alternative approach was to assign 

the edge weight between two nodes as the maximum PS score between them (max(PS)). 

The second approach was to assign edge weight between two nodes based on a PS 

threshold. If either one of the connected genes had a PS above PS > 0.7 threshold, then 

the edge is considered dead, otherwise the weight is determined by the previous method. We 

ran GeneEMBED with both weighting metrics on the Discovery-VISEA cohort using the 

STRING network and compared outputs with the original framework which uses sum(PS). 

We recovered 73 genes from max(PS) and 72 genes from PS threshold. Interestingly, 

nearly 90% of identified genes overlapped with the sum(PS) based gene set. To test the 
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relevance of the two gene sets to AD, we measured their: (i) recovery of AD-associated 

genes, (ii) connectedness to known AD-associated genes, and (iii) differential expression 

in postmortem AD brains. Both max(PS) and PS threshold schemes recovered statistically 

significant overlaps in the DisGeNet reference gene set (Table S13). Comparatively, the 

current weighting scheme, sum(PS), recovered similar statistically significant overlaps in 

DisGeNet as well as significant overlaps with the CTD gene set. Next, max(PS) showed 

significant diffusion to ClinVar and GWAS Meta 1 gene sets, while PS threshold showed 

significant diffusion to all gene sets except CTD (permutation-based Z-test, Table S14). 

Comparatively, sum(PS) showed statistically significant diffusion to all gene sets. Lastly, 

we found that genes identified by max(PS) were enriched for differential expression in one 

brain region out of seven, though this was not significant (permutation-based Z-test p = 

0.076). The genes identified by the PS threshold scheme, like sum(PS), were enriched for 

differentially expressed genes in two brain regions (permutation-based Z-test p = 0.0014 

and 0.012 respectively) (Table S15). These data suggest that though the three weighting 

schemes overlap in close to 90% of their identified genes, sum(PS) performs better than 

alternative weighting methods. This is because sum(PS) allows each interaction to be 

described independently. For example, consider a protein with many interactions. If the 

protein has a mutation in some binding site, this may lead to a high PS due to the 

inactivation of the binding site. In this case, the interaction between the protein and any 

interactor which is mediated by the mutated binding site is significantly perturbed. However, 

this does not necessarily mean that the protein’s interactions mediated by other unaffected 

binding sites are perturbed to the same degree. Sum(PS) allows for this flexibility while the 

other weighting schemes do not, which leads to its improved performance.

Sensitivity to false negative/positive edges—While the curation of biological 

networks has become increasingly more sophisticated, it is important to recognize that 

even networks built upon stringent curation of experimentally validated edges may be prone 

to research bias. In order to characterize the sensitivity of GeneEMBED to false negative/

positive edges, we applied GeneEMBED to the Brain Specific network while iteratively 

deleting (or adding) edges. Candidate genes identified by GeneEMBED on the unmodified 

Brain network using the Discovery-VISEA cohort were used as ground truth for comparison.

Sensitivity of GeneEMBED to false negative edges was assessed by iteratively and 

randomly deleting edges in the brain network in increments of 5% from 5% to 70%. At 

each increment, GeneEMBED was applied to the modified Brain network and identified 

candidate genes were used to measure recall and precision relative to ground truth as defined 

above. We found that up to 55% of the edges in the original network could be randomly 

deleted before either recall or precision fell below 0.6 (Figure S7A). Moreover, when we 

restricted random deletion of edges to those involving any of the genes identified in the 

unaltered Brain specific PPI network, we found that up to 30% of their edges could be 

deleted before either recall or precision fell below 0.6 (Figure S7A).

Sensitivity of GeneEMBED to false positive edges was assessed by iteratively and randomly 

adding edges to the Brain network in increments of 5% from 5% to 110%. Percentage is 

measured relative to the size of the unmodified Brain network and the pool of possible edges 

to add was taken from the full set of edges required to make the network fully connected. 
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Recall and precision of candidate genes identified on the modified network are measured in 

the same manner as specified above. We found that we could randomly add edges totaling up 

to 80% of the original network size (~38.4k edges) before either the precision or recall fell 

below 0.6 (Figure S7B).

These data suggest GeneEMBED is highly robust to both false positive and false negative 

edges. In the case of random deletion of edges (FN edges), it is likely that there are more 

genes that do not play a role in AD pathobiology than genes that contribute significantly 

to pathogenesis. Accordingly, there will be more edges that are not associated with AD 

than edges that are associated with AD. Therefore, it is possible to randomly delete a large 

number of edges while maintaining a high recall and precision. However, when there is 

a bias in the edge deletion process to informative edges, the methodology becomes more 

sensitive to FN edges. Similar reasoning can be applied to the case of random edge addition 

(FP edges), as there are likely more edges that are not associated with AD it is possible to 

have large numbers of FP edges before recall or precision drop below 0.6. Overall, these 

data show that while there may be potential research bias in curated biological networks, the 

strategy employed by GeneEMBED allows for its robustness to the presence of false positive 

and false negative edges.

GeneEMBED performance in an unbiased network—In order to benchmark the 

GeneEMBED strategy with a network without any functional bias or literature curation, 

we employed the HuRI network.130 The HuRI network is the largest unbiased interactome 

map of binary protein-protein interactions. The network contains 8,275 nodes and 52,569 

edges generated from an impressive array of nine different ‘all-by-all’ screens of 17,408 

proteins. Using this network as a starting point, we ran GeneEMBED using the Discovery-

VISEA cohort and identified a candidate gene set. To test the relevance of the identified 

genes to AD biology, we examined: (i) direct overlaps with reference gene sets discussed 

previously, (ii) connectedness between reference gene sets and identified genes, and (iii) 

dysregulation of identified genes in postmortem AD and non-AD samples from the AMP-

AD dataset. Performing these experiments, we found that there was no significant recovery 

of known AD-associated genes. We also found no significant preferential connectivity 

between candidate genes and known AD-associated genes (Tables S16 and S17). We did 

find an enrichment of the candidate genes for differentially expressed genes in AD vs 

non-AD brains with marginal significance (permutation-based Z-test p = 0.06) (Table S18). 

While these results would seem to suggest that GeneEMBED is unable to perform on such 

unbiased networks, it is important to consider the HuRI network in the context of AD. 

Despite being the largest of its kind to date, due to technological limitations, the HuRI 

network comprises only half the exome. Accordingly, only half or less of the genes in the 

reference gene sets were present in the HuRI network. Indeed, several genes which are 

core to AD pathobiology, such as APOE, TREM2, or MAPT, were absent in HuRI. The 

stringency of the HuRI network’s construction suggests that while it has a low FP rate, it 

may be depleted in protein-protein interactions. Indeed, we have observed that GeneEMBED 

is more robust to FP edges than FN edges (Figure S7). Overall, these data emphasize the 

importance of appropriately selecting a starting network. While it is recommended to use an 
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unbiased network when possible, it is also crucial to ensure the network is reflective of the 

biology of the target disease.

Shuffled label experiments—In the presence of counterproductive mutational data and 

large influence from network inputs, similar genes will be recovered from various shuffled 

label experiments leading to inflated overlaps. Indeed, it is likely that due to ambiguous 

mutational input the identified overlapping genes from randomly shuffled trials are less 

related to AD than case vs control overlaps. Moreover, the large reliance on network 

information suggests that identified gene lists may be strongly correlated with network 

connectivity. To test this hypothesis, for VISEA and VISPPh2 separately, we shuffled the 

labels (case or control) of individuals in both cohorts and applied GeneEMBED, repeating 

this 5 times due to computational time of the approach. We then measured, the number of 

genes overlapping between GeneEMBED applied to shuffled Discovery cohort and shuffled 

Extension cohort, giving 25 pairwise comparisons.

We found that for VISEA, an average of 31.7 genes overlapped among gene sets identified 

using label shuffling for the Discovery and Extension cohorts. Comparatively, an overlap 

of 14 genes was observed in the original framework after removing potential FPs from 

control vs control analysis. Importantly, we found that the 14 genes identified in the original 

analysis showed significant hypergeometric overlap with all five of the reference gene sets 

of known AD-associated genes (p = 0.019–0.0039). The overlaps identified by shuffled 

labeling showed few to no significant overlaps with any of the five reference gene sets 

(Table S19). Next, to further assess the relationship of the identified overlaps to AD, we 

performed literature curation analyses. For each gene in a gene set, we queried the PubMed 

database for publications co-mentioning the genes with AD in abstracts. Genes were only 

considered related to AD if they had at least 5 co-mentions. Statistical significance was 

determined using a permutation testing strategy. We randomly generated 50 gene sets of the 

same size and counted the number of genes that were related to AD. We then measured the 

z-score of the observation relative to the background. We found that the original observation 

of 14 overlapping genes had a z-score of 6.86. Comparatively, the overlaps identified by 

random shuffling had an average z-score of 3.43 and stdev of 1.57. Lastly, we found that 

ranked gene lists derived from random shuffling were significantly correlated with degree 

centrality (Pearson correlation coeff. = 0.2–0.36, p = 0.037–1.7e-5), whereas the gene list 

derived from case vs control analysis was not correlated with Pearson correlation coefficient 

of 0.085 and a pvalue = 0.43.

Similarly, in VISPPh2 analysis, an average of 37.5 genes overlapped among gene sets 

identified by label shuffling. In contrast, 16 genes were found overlapping between 

Discovery and Extension cohorts using the original framework after removing potential 

FPs. While no significant overlaps were observed with the reference gene sets (Table S20), 

we found that the PubMed literature curation analysis showed significant association of 

overlap genes identified from case vs control analysis to AD with a z-score of 4.49. In 

comparison, overlaps obtained from label shuffling had an average z-score of 0.97 and stdev 

of 0.82. These data suggest that overlaps observed between Discovery and Extension cohorts 

in the original analysis are much smaller than expected by label shuffling trials. Despite 

these large differences in sizes, overlaps from the original framework are more related to 
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AD. Further, they tend to rank genes independently of their pure connectivity, whereas label 

shuffling leads to a heavy dependence on network information. Overall, these observations 

demonstrate that during a lack of informative mutational data, GeneEMBED will tend to 

depend heavily on network information, identifying genes which are less relevant to AD 

than genes identified through productive (case vs control) mutational data.

MAGMA analyses—We used MAGMA as a methodological control and analysis was 

performed on the same datasets. The variants were annotated with each corresponding NCBI 

reference genes of GRCh37 or 38. Next, we calculated each gene’s one-sided regression 

p-values based on the snp-wise Mean model with a ‘–burden flag’ to avoid deteriorating 

power of extreme rare alleles and the allele frequency threshold ‘0.1’. A threshold of p 

< 0.001 was used because the FDR thresholds resulted in too few genes for meaningful 

comparison to GeneEMBED.

Recall of known AD genes—To test whether our approach could recover known genes 

related to AD we assessed direct overlaps. five gene sets were used to define known AD 

related genes: Comparative Toxicogenomic Database (CTD) gene set of 103 AD related 

genes,71 a set of 25 genes identified by meta-analysis of large scale GWAS of diagnosed 

AD (GWAS Meta 1),5 a set of 38 genes identified by another meta-analysis of AD GWAS 

studies (GWAS Meta 2),6 a set of 208 genes with associations to AD from DisGeNET 

(DGN),70 and a set of 21 genes acquired from the ClinVar database.78 Significance of direct 

overlaps was assessed with one-tailed hypergeometric tests between sets of known AD genes 

and candidate gene sets.

Network analyses—nDiffusion82 was applied to measure how well GeneEMBED 

candidates were connected to known AD genes (defined above). nDiffusion relies on graph 

information diffusion methods79–81 wherein signals are propagated from genes of interest to 

all genes in a network through their connections. Genes that receive more signal are more 

connected to genes of interest. Therefore, if known AD genes receive more diffusion signal 

from GeneEMBED candidates than other genes in the network, they are more connected. 

This diffusion connectivity is quantified by measuring the area under receiver operating 

characteristic curve (AUROC). nDiffusion also selects random sets of genes with similar 

degrees of connectivity as genes of interest and measures their AUROC. This permutation is 

performed 100 times to produce a background random distribution of AUROC, from which 

z-scores of the experimental observation are calculated using a one-sided Z-test. Two sets of 

genes are then deemed significantly connected if their AUROC is >0.5 and has a z-score > 2. 

The nDiffusion webtool was used to perform these analyses with the preset default settings.

RNA sequencing analysis—In order to assess whether expression changes of 

GeneEMBED candidates in AD brain tissue, we used the AMPAD data sets.74,131–135 

Significant differentially expression (DE) was defined, per brain region, as genes which had 

log2(fold-change) > 0.263 or log2(foldchange) < 0.263 and FDR <0.05, as measured by 

AMPAD. This thresholding provided 1880 DE genes for cerebellum (CBE), 2952 genes 

for temporal cortex (TCX), 56 genes for frontal pole (FP), 73 genes for inferior frontal 

gyrus (IFG), 1579 genes for parahippocampal gyrus (PHG), 271 genes for superior temporal 
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gyrus (STG), and 161 genes for dorsolateral prefrontal cortex (DLPRC). AD case versus 

non-AD control differential expression analysis results from all brain regions listed above 

are available online (https://doi.org/10.7303/syn9702085). To assess whether GeneEMBED 

candidates were enriched for DE genes, we performed one-tailed hypergeometric tests per 

brain region. These hypergeometric tests were limited only to the set of genes which were 

present in both the RNA-sequencing data from AMP-AD cohort and the WES data from 

the ADSP Discovery and Extension cohorts (i.e. only genes sequenced in both data sets 

were used). We performed these tests over all seven brain regions to identify region specific 

enrichments. Next, to determine statistical significance of having enrichment in n out of 

seven brain regions, we adopted a permutation testing strategy. We repeated the above 

analysis 1000x with randomly selected gene sets of similar size as candidate gene set. 

One-tailed Z-test p-values were calculated for the observed number of enriched regions in 

candidate gene set relative to the distribution observed from random gene sets. This analysis 

was repeated for all GeneEMBED candidate gene sets, GWAS Meta 1 gene set, and GWAS 

Meta 2, gene set.

Pathway enrichment analysis—Protein-protein interaction network of high confidence 

GeneEMBED candidates was built with the Homo sapiens STRING v11147 using the 

combined score of all evidence types at a threshold of 0.400. HiDef-Louvain algorithm 

tool in the Community Detection extension algorithm of Cytoscape was used for clustering 

followed by functional enrichment analysis of each of the 21 main clusters. Gene set 

enrichment analysis was performed using the iQuery, EnrichR and Gprofiler community 

detection interfaces. Enrichments were considered significant if gene set FDR <0.05. 

Network was represented using Cytoscape v3.8.2 152.

Mouse phenotype analysis—To assess the relationship between high-confidence 

GeneEMBED genes and mouse phenotypes, we downloaded the files 

VOC_Mammalian_Phenotype.rpt and HMD_HumanPhenotype.rpt from the Mouse Genome 

Informatics (MGI) database (downloaded Nov. 2021). Within the downloadable database, 

we queried our full set of 143 genes and found that only 139 were documented in the 

database. These 139 genes mapped to 182 mouse homologs/orthologs. We then tallied the 

number of mouse genes in our candidate set which had annotations for the high-level 

mammalian phenotype of ‘Nervous system phenotype’. We then tallied the total number 

of mouse genes in the downloadable database which had the same high level mammalian 

phenotype annotation. We then performed a one-tailed Fisher’s Exact Test to determine the 

statistical significance of our observations. Additionally, we repeated this analysis for high 

level mammalian phenotype categories of (i) ‘Behavioral/Neurological phenotype’ and (ii) 

‘Nervous system phenotype’ AND ‘Behavioral/Neurological phenotype’.

Drug interaction analysis—To assess whether any of our high confidence candidate 

genes were potential therapeutic targets, we used the Drug-Gene Interaction database 

(DGIdb).148 The set of high-confidence candidate genes were input into the ‘Search Drug-

Gene interactions’ webtool on the DGIdb website. We applied preset filters of ‘Approved’ 

indicating FDA-approved drugs only. We then filtered the subsequent list of drug-gene 

interactions for those which were annotated as having a directional (inhibiting or activating) 
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effect. The resulting genes were then queried through PubMed database for co-mentions 

with ‘Alzheimer’ in abstracts.

QUANTIFICATION AND STATISTICAL ANALYSIS

All of the quantitative and statistical methods, strategies, and analyses are described in the 

relevant sections of the method details or in the table and figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• GeneEMBED combines cohort exomic data with molecular network 

information

• GeneEMBED identifies 143 high-confidence candidate genes in two 

Alzheimer’s cohorts

• Candidate genes are dysregulated in bulk brain tissue and single-cell RNA 

expression

• Modulation of candidate genes in animal models altered neurodegeneration
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Figure 1. Overview of GeneEMBED and AD candidate genes
(A) GeneEMBED: for an individual, genes are first assigned a perturbation score (PS) 

consolidating information from all the gene’s variants appearing in the individual. The gene 

PS estimates the total loss of function probability given various combinations of variant level 

loss-of-function probabilities. Edge weights for an individual’s network are calculated by the 

sum of the PS of the connected genes. Edge weights are then averaged over to construct one 

case specific and one control specific graph. Node embedding is performed on the genes in 

the two networks. Finally, embeddings are projected in a PCA space to measure distances 

between nodes in case and control networks.

(B) GeneEMBED using EA identified 69 candidate genes in Discovery and 119 in Extension 

with 14 overlapping genes, significant by one-tailed hypergeometric test. In PPh2 analyses, 

128 candidate genes were found in Discovery and 120 in Extension with 16 overlapping 

genes, significant by one-tailed hypergeometric test. A large portion of overlapping genes 

have been previously implicated in AD biology.
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Figure 2. GeneEMBED candidates are differentially expressed in AD brain tissue
(A) One-tailed hypergeometric enrichment of GeneEMBED candidates against differentially 

expressed genes from seven brain regions: cerebellum (CBE), temporal cortex (TCX), 

frontal pole (FP), inferior frontal gyrus (IFG), parahippocampal gyrus (PHG), superior 

temporal cortex (STG), and dorsolateral prefrontal cortex (DLPFC).

(B) Comparison of RNA-sequencing-based enrichment between known AD gene sets 

and GeneEMBED candidates. Stars indicate the number of brain regions with significant 

enrichment in each gene set by permutation testing. Violin plot shows the distribution of 

expected number of enriched brain regions when using random gene sets.

(C) Among the 143 high-confidence genes, a significant number (22; one-tailed Fisher’s 

exact test; p = 0.0247) showed differential expression in both bulk tissue from various brain 

regions and in single-cell sequencing of neuronal cell types.
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Figure 3. GeneEMBED candidates are significantly related to curated sets of AD genes
(A) Receiver operator characteristic curves are shown for Disc. VISEA for network diffusion 

to CTD and ClinVar AD gene sets. To determine significance of observed area under 

the curve (AUC), a permutation testing strategy is used wherein random gene sets of the 

same size are generated 100 times and analyzed through nDiffusion to create a random 

distribution of AUCs. Reported Z-scores are calculated relative to these backgrounds. y axis 

of the ROC plots are true positive rates (TPRs), and x axis is false-positive rate (FPR). 

Similarly, y axis of the Z score distribution is probability density, and x axis is the AUROC 

score of random gene sets.

(B–D) Analogous plots are shown for (B) Ext VISEA, (C) Disc VISPPh2, and (D) Ext 

VISPPh2.
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Figure 4. Interaction network among 143 high-confidence genes
Network is built using STRING edges. Nodes are colored based on their differential log2 

fold change expression in AD brains. Red rings around genes indicate that they were 

reported in MGI to have abnormal neurological phenotype when knocked out. Green rings 

indicate that the gene was observed to modify AD phenotype in in vivo experiments on 

AD Drosophila models. Yellow rings indicate genes that were observed to both modify 

AD phenotype in Drosophila models and have reported abnormal neurological phenotype 

in knockout (KO) mouse models in MGI. Genes with asterisk next to them are those that 

have pre-existing FDA-approved pharmacological activator or inhibitors, indicating potential 

targets for drug-repurposing studies.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ADSP - Discovery Cohort Whole Exome 
Sequencing data

Alzheimer’s Disease Sequencing Project 
(128)

phs000572.v8.p4; https://
www.ncbi.nlm.nih.gov/gap/

ADSP – Extension Cohort Whole 
Genome Sequencing data

Alzheimer’s Disease Sequencing Project 
(129)

https://www.niagads.org/adsp/content/home

Post-mortem differential expression data 
for Alzheimer’s disease

Accelerating Medicines Partnership – 
Alzheimer’s Disease (130–135)

https://doi.org/10.7303/syn9702085

Mouse Genome Informatics (MGI) 
database

Bult et al. (88) http://www.informatics.jax.org/

Drug-Gene Interaction database (DGIdb) Freshour et al. (136) https://www.dgidb.org

STRING protein-protein interaction 
network

Szklarczyk et al. (44) https://string-db.org/

HINT protein-protein interaction 
network

Das et al. (45) http://hint.yulab.org/

Brain specific protein-protein interaction 
network

Green et al.(46), Zitnik et al. (47) http://snap.stanford.edu/ohmnet/

Experimental models: Organisms/strains

D. melanogaster: UAS-Tau Lasagna-Reeves et al. (49), Bloomington 
Drosophila Stock Center

BDSC strain#: 51363

D. melanogaster: UAS-Aos:β Chouhan et al. (50), Bloomington Drosophila 
Stock Center

BDSC strain#: 33769

Software and algorithms

Python 3.7 Python Software Foundation (137) https://www.python.org/

GraphWave Donnat et al. (51) https://github.com/snap-stanford/graphwave

PolyPhen 2 variant impact scores Adzhubei et al. (43) http://genetics.bwh.harvard.edu/pph2/dokuwiki/
start

Evolutionary Action variant impact 
scores

Katsonis et al. (42) http://lichtargelab.org/software/dashboard/

BCFTOOLS Danecek et al. (138) https://samtools.github.io/bcftools/bcftools.html

Eigenstrat Patterson et al. (139) https://reich.hms.harvard.edu/software

MAGMA De Leeuw et al. (68) https://ctg.cncr.nl/software/magma

GeneEMBED This study https://github.com/LichtargeLab/GeneEMBED 
https://doi.org/10.5281/zenodo.6654182
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