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Abstract: To identify the most accurate approach for constructing of the dynamic modulus master
curves for warm mix crumb rubber modified asphalt mixtures and assess the feasibility of predicting
the phase angle master curves from the dynamic modulus ones. The SM (Sigmoidal model) and
GSM (generalized sigmoidal model) were utilized to construct the dynamic modulus master curve,
respectively. Subsequently, the master curve of phase angle could be predicted from the master curve
of dynamic modulus in term of the K-K (Kramers–Kronig) relations. The results show that both SM
and GSM can predict the dynamic modulus very well, except that the GSM shows a slightly higher
correlation coefficient than SM. Therefore, it is recommended to construct the dynamic modulus
master curve using GSM and obtain the corresponding phase angle master curve in term of the K-K
relations. The Black space diagram and Wicket diagram were utilized to verify the predictions were
consistent with the LVE (linear viscoelastic) theory. Then the master curve of storage modulus and
loss modulus were also obtained. Finally, the creep compliance and relaxation modulus can be used to
represent the creep and relaxation properties of warm-mix crumb rubber-modified asphalt mixtures.

Keywords: dynamic modulus; phase angle; shift factor; master curve; Kramers–Kronig relations

1. Introduction

The mechanical behavior of viscoelastic materials is related to the frequency and loading
history [1,2]. Asphalt material is a typical viscoelastic material, so viscoelastic behavior is essential for
understanding road performance. Asphalt mixture will exhibit LVE (linear viscoelastic) properties in
small strain levels or a limited number of cycles load [3–6]. The complex modulus test in oscillating
load is the most conventional method for studying the LVE of asphalt mixtures. It can obtain the
dynamic modulus and phase angle of the asphalt mixture in the LVE range. The dynamic modulus is
easy to measure. However, due to the limitations of experimental equipment, the measurement of the
phase angle will inevitably be scattered, and even in some cases, it is difficult to obtain by using the
experimental method. Therefore, it is particularly important to establish the phase angle of the asphalt
mixture derived from the results of dynamic modulus. Then it is vital to obtain the functional form of
the dynamic modulus master curve. In the 1950s and 1960s, nomographs were widely used to represent
the rheological properties of asphalt binder and mixtures [7]. Besides the standard logistic sigmoidal
equation [8,9], the Weibull’s equations [10], and the generalized logistic sigmoid equation [11,12] were
used to characterize the function form of dynamic modulus master curve for kinds of asphalt materials
(binders or mixtures). Subsequently, Dickersen and Witt [13] proposed the relationship between phase
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angle, complex modulus, and frequency of asphalt binder. Christensen and Anderson [14] further
simplified the above model and proposed the CA (Christensen–Anderson) model; Marasteanu and
Anderson [15] proposed the CAM (Christensen–Anderson–Marasteanu) model in term of the CA
model. Unfortunately, the model proposed by Dickersen and Witt only used independent parameters
to establish the dynamic modulus master curves and phase angle master curve, respectively, which
makes it difficult to satisfy the K-K (Kramers–Kronig) relations [16], and although other models ensure
that the two kinds of master curves shared the same parameters, it is difficult to apply them for mixtures
and binders. To ensure that the master curve meets the K-K relations, Booij and Thoone [17] first
proposed that phase angles can be predicted by the slope of the complex modulus versus frequency
based on the generalized K-K relations. This approach was also used by Christensen and Anderson [14]
in obtaining phase angle of the Christensen Anderson model. Rowe [18] proposed a similar form of
S-shaped equation for the analysis of asphalt mixture. Based on the K-K relations, Mensching [19]
used the SM (sigmoidal model) and GSM (generalized sigmoidal model) to establish function form for
the phase angle master curve and used the Black space parameters to evaluate the low-temperature
performance of the asphalt mixture. Oshone [20] estimated phase angles based on dynamic modulus
data for asphalt mixtures and evaluated the validity of the predictions by Black space diagram. Liu [21]
also used the method to establish master curve model for the complex modulus of asphalt mixtures,
which is highly accurate and consistent with the LVE theory. Nobakht [22] investigated the effects
of aging on phase angle and dynamic modulus by performing complex modulus tests on asphalt
mixtures aged at nine different levels in laboratory, the results showed that the phase angle prediction
model based on the K-K relations could accurately predict the phase angle master curves after different
aging. According to the principle of viscoelasticity, all of these research results show that the feasible
to predict the phase angle master curve from the dynamic modulus. The purpose of this work is to
evaluate the effectiveness of using different shifting techniques to establish the master curve model of
dynamic modulus and phase angle for crumb rubber-modified asphalt mixtures by using the TTSP
(time-temperature superposition principle) [23]. Besides, the functional form of the phase angle master
curve can be predicted from the dynamic modulus master curve in term of the K-K relations [17,20].
And then, both the storage modulus master curve of and loss modulus master curve were obtained.
Finally, the creep and relaxation properties of warm mix crumb rubber-modified asphalt mixtures
(HMA) were investigated by the creep compliance and relaxation modulus, respectively.

2. Test Specimen Preparation and Testing

2.1. Materials and Specimen Fabricating Process

In this study, four kinds of laboratory-produced mixture were measured. Dense graded (AC-16)
was utilized in the following text. Limestone for fine aggregates, and Basalt for coarse aggregates.
Table 1 shows different aggregate stockpiles blended by the percentages, and Figure 1 shows the
gradation of the aggregates. The performance grade of virgin asphalt is PG 64-22. The crumb rubber
can be produced by mechanical grinding at ambient temperature. Besides, all of the crumb rubber
prepared from the same source of waste bias tire. The crumb rubber modified asphalt binder was
prepared by blending 20% of 60 (or compound) -mesh crumb rubber by the weight of virgin asphalt
at 180 ◦C and 700 rpm/min for half an hour using a high-speed open blade mixer. Warm mix crumb
rubber modified asphalt binder can be prepared by adding warm mix additive to the crumb rubber
modified asphalt binder. The Surfactant (SDYK) was used as the warm mix additive, it was purchased
from Wuxi Dowrid Chemical Technology Co (Wuxi, China). The content is 1% by the weight of asphalt
binder (recommended by the manufacturer). It can be blended into the asphalt binder at 180 ◦C
at 500 rpm for half an hour using a conventional mechanical mixer. Besides, the optimum asphalt
content (determine by the Marshall method) is 5.4% and 5.6% by the weight of mixtures for hot mix
60-mesh crumb rubber-modified asphalt mixture (HMA-60) and hot mix compound-mesh crumb
rubber-modified asphalt mixture (HMA-C), respectively. It can be learned from the Table 2 that the
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optimum asphalt content of HMA-C is greater than that of HMA-60. Because the former’s binder with
higher viscous than the latter; thus, more binder is required to coat the aggregates. The viscosity test
results of the crumb rubber modified bitumen binder can be obtained from Table A1 in the Appendix A.
The optimum asphalt content of warm mix crumb rubber-modified asphalt mixture (WMA-60, WMA-C)
is the same with the hot mix asphalt mixture. The compaction and mixing temperatures of HMA
is 170 ◦C and 180 ◦C, respectively. While the compaction and mixing temperatures of WMA is at
152 ◦C and 162 ◦C, respectively. The target void content was 4% by the total volume. Table 2 shows
the volumetric parameters of crumb rubber modified asphalt mixtures at optimum asphalt content.
The virgin specimens (Ø150 mm × H178 mm) were prepared by Superpave gyratory compactor (IPC
Global, Melbourne, Australia), then coring and sawing to produce the standard specimens (Ø100 mm
× H150 mm).

Table 1. Aggregate blend percentages [24].

Aggregate 10–20 mm 5–10 mm 3–5 mm 0–3 mm Filler

Blend Percentage by Weight/% 21 38 10 28 3

Figure 1. The gradation of crumb rubber-modified asphalt mixtures [24].

Table 2. Volumetric parameters of crumb rubber modified asphalt mixtures at optimum asphalt
content [24].

Asphalt
Mixture OAC/%

Gross
Density
g/cm3

Theoretical
Density
g/cm3

Void/% VMA/% VFA/% Stability/KN Flow
Value/mm

HMA-60 5.4 2.439 2.537 3.86 14.04 72.5 10.45 2.74
WMA-60 5.4 2.442 2.538 3.78 13.93 72.8 10.95 2.87
HMA-C 5.6 2.441 2.546 4.12 14.15 70.9 11.23 2.45
WMA-C 5.6 2.444 2.546 4.01 14.04 71.5 11.61 2.62
Standard - - - 3–5 ≥ 13 65–75 ≥ 8 2–4

2.2. Dynamic Modulus Test

The dynamic modulus test was conducted in a sinusoidal oscillating load, following in the
AASHTO TP 79-15 [25]. The UTM-100 (closed-loop servo-hydraulic universal testing machine, IPC
Global, Melbourne, Australia) was used to measure dynamic modulus and phase angle for all prepared
specimens. The test was performed at seven frequencies (25 Hz, 20 Hz, 10 Hz, 5 Hz, 1 Hz, 0.5 Hz,
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0.1 Hz) and four temperatures (5 ◦C, 20 ◦C, 35 ◦C, 50 ◦C). The axial strain was monitored by three
LVDT (linear variable differential transducers) with a gauge length of 70 mm, which were mounted
with 120 degree around the middle side of specimens. The average of three LVDT was retained as the
axial strain. The load level was auto-adjusted to ensure that the maximum axial strain no more than 70
µε, which was within the LVE domain [25]. Besides, the load was monitored by the load cell installed
on the actuator. The raw data of dynamic modulus and phase angle for types of mixture is shown in
Table S1. Besides, the Correlation coefficient between the measurement and prediction of the dynamic
modulus is shown in Table S2.

3. Methodology

3.1. Shift Factors Calculated Methods

In the process of implementing the TTSP (time-temperature superposition principle), various
shifting techniques were used to model the time-temperature superposition principle for asphaltic
materials. In this study, three different types of shift factor function, including the Arrhenius
equation [26], the WLF (Williams-Landel-Ferry) equation [27], and the second-order polynomial
equation [28,29] were established for the SM and the GSM, respectively.

Arrhenius equation developed using the Arrhenius apparent activation energy [26]. The apparent
activation energy describes the minimum energy required before any intermolecular motion can occur.
In general, it was used to calculate the shift factor below the glass-transition temperature (Tg). It is
also one of the oldest functions used to explain the relationship between viscoelastic properties and
temperature. Equation (1) is the Arrhenius equation.

lgαT =
∆Ea

2.303R

( 1
T + 273.15

−
1

Tr + 273.15

)
(1)

where: αT is the shift factor; R is the mole gas constant, it is equal to 8.314 J·mol−1
·K−1; ∆Ea is the

apparent activation energy of the material, J/mol; T and Tr are the experimental temperature and the
reference temperature, respectively, ◦C.

Williams, Landel, and Ferry have constructed mathematical expressions between the shift factor
and temperature based on free volume theory. That is the WLF (Williams-Landel-Ferry) equation [27].
It is noted that the WLF equation is used to characterize the relationship between the shift factor and
temperature over a wide range (Tg~Tg + 100), whether asphalt or mixtures. The function form was
shown in Equation (2).

lgαT =
−C1(T − Tr)

C2 + (T − Tr)
(2)

where: C1 and C2 are constants determined by the thermodynamic properties of the material, which is
used as fitting parameters in practical applications.

The second-order polynomial is also used to characterize function form between the shift factor
and temperature. The functional form was shown in Equation (3).

lgαT = a(T − Tr)
2 + b(T − Tr) (3)

where: a, b are fitting constants which depend on the material properties and reference temperature.

3.2. Master Curve Model of the Dynamic Modulus

The magnitude of the dynamic modulus can be obtained from the complex modulus test. Complex
modulus is the intrinsic material property of asphalt mixture. It is made up of the real part and the
imaginary part. The real part represents elastic properties, called storage modulus, and the imaginary
part represents viscous properties, called loss modulus [30]. The complex modulus can be estimated
from the ratio of the stress input to the strain response, as shown in Equation (4). The dynamic
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modulus is the absolute value of the complex modulus. It can be calculated by the ratio of amplitude
stress to amplitude strain, as shown in Equation (5). The dynamic modulus reflects the strength
characteristics of the asphalt mixture. The phase angle reflects the time lagging between stress and
strain. It can be calculated by the last five loading cycles. The function form can be obtained following
the Equation (6) [31]. In general, the phase angle of elastic materials is equal to 0◦. The phase angle of
viscous materials is equal to 90◦. the phase angle of viscoelastic materials varies from 0◦ to 90◦ [32,33].

E∗ =
σ0ei(wt+ϕ)

ε0eiwt = E′ + iE′′ =
σ0

ε0
cosϕ+ i

σ0

ε0
sinϕ (4)

|E∗| =
√
(E′)2 + (E′′ )2 =

σ0

ε0
(5)

ϕ = actan
E′′

E′
=

ti
tp
× 360 (6)

where: E∗ is the complex modulus, MPa; σ0 is the axial stress amplitude measured by load cell installed
on the actuator, MPa; ε0 is the axial strain amplitude measured by LVDT; i is the imaginary unit defined
by i =

√
−1; E′ is the storage modulus, MPa; E′′ is the loss modulus, MPa; ti is the average time lag

between the stress and strain for the last five loading cycles, s; tp is the average time of stress cycles for
the last five loading cycles, s; ϕ is the phase angle, ◦.

Dynamic modulus data measured at multiple temperatures and frequencies were horizontal
shifted to establish a single smooth and continuous master curve at arbitrary reference temperature
to predict the viscoelastic behaviour of asphalt mixtures. The theoretical base for constructing the
master curve of the dynamic modulus is TTSP. The master curve can be used to analyze the dynamic
mechanical properties of the asphalt mixture at different loading frequencies and temperatures. In this
study, 20 ◦C was used as the reference temperature.

Extensive research [34–37] shows that the dynamic modulus is close to maximum modulus value
as the loading frequency increases to infinity and close to a limiting equilibrium value as the loading
frequency approaches zero. Sigmoidal function and the generalized sigmoidal function can simulate
the above characteristics of asphalt mixtures very well, called the SM and GSM, respectively. In this
study, these two master curve models were used to fit the dynamic modulus obtained from different
testing temperatures.

Equation (7) is the SM of the dynamic modulus master curve.

lg|E∗| = δ+
α

1 + eβ+γ(log fr)
(7)

where: |E∗| is the predicted result of the dynamic modulus obtained from the SM, MPa; δ is the lower
asymptote of the |E∗|master curve in logarithmic coordinates; α is the vertical span between the lower
and upper asymptotes of the |E∗|master curve in logarithmic coordinates; β, γ is shape coefficients of
the |E∗|master curve, γ affects the rate of change between the lower asymptote and upper asymptotes,
β affects the horizontal position of the turning point; fr is reduced frequency, Hz.

Compared with SM, the GSM added the parameter λ to characterize asymmetric
characteristics [11,12]. It was presented as Equation (8).

lg|E∗| = δ′ +
α′(

1 + λeβ′+γ′(lg fr)
) 1
λ

(8)

where: |E∗| is the predicted result of the dynamic modulus obtained from the GSM, MPa; δ′ is the lower
asymptote of the |E∗|master curve in logarithmic coordinates; α′ is the vertical span between the upper
and lower asymptotes of the |E∗|master curve in logarithmic coordinates; β′, γ′ is shape parameters of
the |E∗|master curve obtained from the GSM.
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The reduced frequency fr is the equivalent frequency of the experimental temperature with respect
to the reference temperature. Moreover, the reduced frequency can be obtained by Equation (9) once
the shift factor is obtained.

lg fr = lg f + lgαT (9)

where: lg f is the frequency in experiment temperature; lg fr is the reduced frequency in
reference temperature.

3.3. Master Curve of the Phase Angle

Booij and Thoone [17] proposed that the function form of phase angle could be predicted by the
relationship of complex modulus against frequency, as Equation (10). However, the Equation (10) has
immense difficulties. For easy calculation, the equation was simplified appropriately, and the simplified
equation was described as Equation (11), which is in term of the approximate K-K relations [38,39].
Finally, the function form of phase angle can be obtained by the SM and the GSM in term of the
approximate K-K relations. The results were presented in Equations (12) and (13), respectively.

φ( fr) =
2 fr
π

∫ +∞

0

ln
∣∣∣E∗(u)∣∣∣

u2 − fr2 du (10)

φ( fr) =
π
2

d ln
∣∣∣E∗(u)∣∣∣

d ln u


u= fr

=
π
2

d lg
∣∣∣E∗(u)∣∣∣

d lg u


u= fr

(11)

φ′( fr) =
π
2

d(lg|E∗|)
d(lg fr)

= −
π
2
αγ

eβ+γ lg fr(
1 + eβ+γ lg fr

)2 (12)

φ′′ ( fr) =
π
2

d(lg|E∗|)
d(lg fr)

= −
π
2
α′γ′

eβ
′+γ′ lg fr(

1 + λeβ′+γ′ lg fr
)1+ 1

λ

(13)

where: φ′( fr) is the phase angle predicted from the SM, ◦; φ′′ ( fr) is the phase angle predicted from the
GSM, ◦; u is the integral variable; the other parameters are consistent with previously defined.

3.4. Determination of the Master Curve Model Parameters of Dynamic Modulus and Phase Angle

The master curves of dynamic modulus and phase angle for mixtures were constructed according
to the SM and GSM. Three kinds of shift factor techniques were used to apply the TTSP to constructing
the master curve model. There are five unknown model parameters (δ′, α′, β′, γ′, λ) for the generalized
sigmoidal dynamic modulus master curve model and four unknown parameters (δ, α, β, γ) for the
sigmoidal dynamic modulus master curve model. Besides, shift factor parameters were also calculated.
The error function e f was applied to the results of dynamic modulus and phase angle to solve Equations
(7) and (12) for the SM and Equations (8) and (13) for the GSM. The error function e f was demonstrated
as Equation (14). All of the model parameters and the shift factors parameters were obtained by using
the Microsoft solver function [40]. Finally, all parameter results (model fitting parameters and shift
factors parameters) were showed in Tables 3–8.

e f = e fE∗ + e fφ =
1
N

√√√ N∑
i=1

(
|E∗|m,i − |E∗|p,i

|E∗|m,i

)2

+
1
N

√√√√√ N∑
i=1


∣∣∣φ∣∣∣m,i −

∣∣∣φ∣∣∣p,i∣∣∣φ∣∣∣m,i


2

(14)

where: e f is the error function of dynamic modulus and phase angle; N is equal to 28, which is the
number of measured samples (dynamic modulus or phase angle); |E∗|m,i is ith sample of dynamic
modulus it can be obtained by measuring, MPa; |E∗|p,i is ith sample of dynamic modulus it can be
predicted by dynamic modulus master curve, MPa;

∣∣∣φ∣∣∣m,i is ith sample of phase angle it can also be
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obtained by measuring, ◦;
∣∣∣φ∣∣∣p,i ith sample of phase angle it can be predicted by phase angle master

curve, ◦.

Table 3. Fitting parameters of the SM (Arrhenius equation).

Mixture Type
Parameters Correlation

δ α β γ ∆E R2
E R2

ϕ

HMA-60 1.77 2.70 −0.55 −0.53 182899 0.998 0.911
WMA-60 2.18 2.30 −0.14 −0.29 158243 0.999 0.853
HMA-C 2.13 2.29 −0.53 −0.63 170479 0.998 0.976
WMA-C 2.18 2.34 −0.26 −0.55 174171 0.999 0.918

Table 4. Fitting parameters of the SM (WLF equation).

Mixture Type
Parameters Correlation

δ α β γ C1 C2 R2
E R2

ϕ

HMA-60 1.83 2.55 −0.51 −0.67 9.68 95.12 0.998 0.928
WMA-60 2.19 2.24 −0.14 −0.62 21.02 221.02 0.999 0.901
HMA-C 2.15 2.24 −0.53 −0.68 21.94 214.27 0.998 0.978
WMA-C 2.24 2.19 −0.28 −0.64 15.40 150.75 0.999 0.951

Table 5. Fitting parameters of the SM (Polynomial equation).

Mixture Type
Parameters Correlation

δ α β γ a b R2
E R2

ϕ

HMA-60 1.80 2.59 −0.53 −0.65 0.00092 −0.1061 0.998 0.945
WMA-60 2.19 2.24 −0.16 −0.62 0.00042 −0.0957 0.999 0.891
HMA-C 2.15 2.25 −0.53 −0.66 0.00044 −0.1033 0.998 0.980
WMA-C 2.23 2.19 −0.29 −0.64 0.00064 −0.1037 0.999 0.953

Table 6. Fitting parameters of the GSM (Arrhenius equation).

Mixture Type
Parameters Correlation

δ α β γ λ ∆E R2
E R2

ϕ

HMA-60 1.70 2.86 −0.54 −0.47 0.80 182721 0.998 0.922
WMA-60 2.33 2.10 −0.10 −0.62 0.82 158255 0.999 0.876
HMA-C 2.10 2.44 −0.54 −0.50 0.55 170464 0.999 0.982
WMA-C 2.30 2.23 −0.31 −0.52 0.58 174172 0.999 0.923

Table 7. Fitting parameters of the GSM (WLF equation) [24].

Mixture Type
Parameters Correlation

δ α β γ λ C1 C2 R2
E R2

ϕ

HMA-60 1.62 2.84 −0.60 −0.56 0.80 8.93 87.75 0.999 0.935
WMA-60 2.29 2.13 −0.14 −0.62 0.81 19.14 202.14 0.999 0.884
HMA-C 2.12 2.40 −0.54 −0.51 0.51 19.13 187.95 0.999 0.978
WMA-C 2.33 2.14 −0.31 −0.56 0.52 14.02 138.11 0.999 0.955
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Table 8. Fitting parameters of the GSM (Polynomial equation).

Mixture Type
Parameters Correlation

δ α β γ λ a b R2
E R2

ϕ

HMA-60 1.69 2.79 −0.57 −0.55 0.8 0.00094 −0.1060 0.999 0.948
WMA-60 2.29 2.14 −0.15 −0.61 0.75 0.00046 −0.0954 0.999 0.903
HMA-C 2.11 2.43 −0.55 −0.50 0.51 0.00050 −0.1029 0.999 0.981
WMA-C 2.32 2.17 −0.33 −0.55 0.50 0.00069 −0.1033 0.999 0.964

From these tables (Tables 3–8), it can be drawn that the model’s estimated value of dynamic
modulus and phase angle are in good agreement with the experimental results. These results indicate
the reliability of these model.

4. Results and Discussion

4.1. Comparison of the Shift Factors

Substitute the fitting parameters of Tables 3–8 into the shift factor calculation equation to obtain
the shift factor. For comparison purposes, all shift factor results of each mixture are shown in the same
figure. Figures 2–5 presents the shift factor results of four types of mixtures. These figures show no
significant difference among the different shift factor techniques, especially for WLF equation and
second-order polynomial equations. The specific manifestation is that the shift factor calculated by
the Arrhenius equation is always smaller than the WLF equation and the second-order polynomial
equation, and the higher temperature, the more significant. It is mainly due to the apparent activation
energy being approximated as a temperature-independent constant in lower temperatures. However,
in higher temperatures, it is the function of the temperature [41]. In other words, the Arrhenius
equation is more suitable for use below the glass-transition temperature. Besides, the Arrhenius
equation has only one freedom degree. However, the WLF equation and the second-order polynomial
equation have multiple freedom degrees. The more freedom degrees, and better fitting.

Figure 2. Shift factors of HMA-60.
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Figure 3. Shift factors of WMA-60.

Figure 4. Shift factors of HMA-C.

Figure 5. Shift factors of WMA-C.
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4.2. Comparison of Dynamic Modulus Master Curve

4.2.1. Sigmoidal Dynamic Modulus Master Curve

The sigmoidal dynamic modulus master curve model of HMA-60 and WMA-C was shown in
Figures 6 and 7. It was established using the WLF equation, the second-order polynomial equation,
and the Arrhenius equation to calculate the shift factor, respectively. Compared with the experimental
results of the laboratory, the master curves obtained by the first two methods showed a higher
correlation. Although the sigmoidal dynamic modulus master curve model established by the
Arrhenius shift factor calculation method has good agreement with the experimental results, the
goodness of fitting is not as good as the first two methods, especially for HMA-60. It is because the
shift factor calculated using the Arrhenius equation is always smaller than the WLF equation and the
second-order polynomial equation. Compared with the dynamic modulus measured, the sinusoidal
dynamic modulus master curve obtained by using the Arrhenius shift techniques is always slightly
overestimated. Besides, the lower frequency, the more significant. Considering the paper’s page length
limitations, only HMA-60 and WMA-C were selected for the illustration.

Figure 6. Sigmoidal dynamic modulus master curve of HMA-60.

Figure 7. Sigmoidal dynamic modulus master curve of WMA-C.
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4.2.2. Generalized Sigmoidal Dynamic Modulus Master Curve

Figures 8 and 9 illustrated the result of the generalized sigmoidal dynamic modulus master curve
model. It was also established by using the WLF equation, the second-order polynomial equation,
and the Arrhenius equation to calculate the shift factor, respectively. The predicted value of each
method shows a higher correlation with the experimental results of the laboratory, and there is almost
no significant difference in the predicted results of the generalized sigmoidal master curve calculated
by the first two shift factor methods. Although the generalized sigmoidal dynamic modulus master
curve model established by the Arrhenius shift factor calculation method is also in good agreement
with the experimental test results, the goodness of fitting statistic is not as good as that of the first two
methods, especially for HMA-60. The primary reason for this is that the Arrhenius equation has only
one freedom degree. However, the WLF equation and the second-order polynomial equation have
multiple freedom degrees, the more freedom degrees, the better fitting. Considering the page length
limitations of the paper, only two types of asphalt mixtures (HMA-60 and WMA-C) were selected for
the illustration.

Figure 8. Generalized sigmoidal dynamic modulus master curve of HMA-60.

Figure 9. Generalized sigmoidal dynamic modulus master curve of WMA-C.
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4.2.3. Compared Sigmoidal Dynamic Modulus Master Curve and Generalized Sigmoidal Dynamic
Modulus Master Curve

Figure 10 shows that there is no significant difference between the master curve model of sigmoidal
and generalized sigmoidal constructed according to the Arrhenius equation. Besides, the predicted
values of these two master curve models are significantly different from the experimental results
of the laboratory in the low-frequency region. The figure also shows the predicted values of the
sigmoidal dynamic modulus master curve and the generalized sigmoidal dynamic modulus master
curve constructed by the WLF equation and the second-order polynomial equation. These results are
consistent with the experimental results of the laboratory, whether low-frequency or high-frequency.
It can also be learned from the figure that the master curve constructed in term of the Arrhenius
equation cannot provide a good characterization in the low-frequency region. Therefore, it is not
suitable for estimating the dynamic modulus in the low-frequency region. On the contrary, the dynamic
modulus master curve model based on the WLF equation and the second-order polynomial equation
can accurately predict the dynamic modulus at all frequencies. Compared with the experimental
results of the laboratory, the generalized sigmoidal dynamic modulus master curve has better goodness
of fitting than the sigmoidal dynamic modulus master curve. This is because it can characterize the
asymmetry of the dynamic modulus master curve. The result is consistent with Yusoff’s work [42].
Due to page’s length limitations, only HMA-60 is selected for presenting.

Figure 10. Compared the dynamic modulus master curve obtained by different methods.

4.3. Comparison of Phase Angle Master Curve

According to Equations (12) and (13), the slope method can be used to predict the function form
of phase angle from the dynamic modulus on the basis of K-K relations. In this paper, the functional
form between the dynamic modulus and frequency has been characterized previously using the
sigmoidal master curve model and the generalized sigmoidal master curve model, respectively. Finally,
the predicted results of the phase angle can be obtained by substituting the parameter results of
Tables 3–8 in Equations (12) and (13), as detailed in Figures 11–14.
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Figure 11. Predict phase angle master curve of HMA-60 from SM.

Figure 12. Predict phase angle master curve of WMA-C from SM.

Figure 13. Predict phase angle master curve of HMA-60 from generalized sigmoidal.
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Figure 14. Predict phase angle master curve of WMA-C from generalized sigmoidal.

4.3.1. Prediction the Phase Angle Master Curve from Sigmoidal Dynamic Modulus Master Curve

Figure 11 gives the predictions of the phase angle master curve by using SM for the HMA-60.
Considering that three kinds of shifting technique have been used to construct the sigmoidal dynamic
modulus master curves, namely the WLF equation, the second-order polynomial equation, and the
Arrhenius equation, then the phase angle master curve constructed based on the sigmoidal dynamic
modulus master curve also has three predictions. As shown in Figure 11, the phase angle master curve
predicted by the sigmoidal dynamic modulus master curve is consistent with the experimental results
of laboratory. The phase angle master curve predicted by the sigmoidal dynamic modulus master curve
constructed based on the Arrhenius shift technique is closer to the left than the other two methods.
Besides, the phase angle master curve obtained based on the first two shift factor calculation methods
have a better goodness of fitting than the Arrhenius equation. A similar observation is made for the
WMA-C. The results are presented in Figure 12. Considering the paper’s page length limitations, only
two types of asphalt mixtures, that is HMA-60 and WMA-C, were selected for the illustration.

4.3.2. Prediction the Phase Angle Master Curve from Generalized Sigmoidal Dynamic Modulus
Master Curve

Figure 13 gives the predicted results of the phase angle master curve for HMA-60. It can be
obtained from the GSM based on the K-K relations. The predicted phase angle master curves have a
good agreement with the experimental results of the laboratory. Similar to previous, the phase angle
master curve predicted by the generalized sigmoidal dynamic modulus master curve constructed
based on the Arrhenius shift technique is closer to the left than the other two methods. The phase
angle master curves obtained from the WLF equation and the second-order polynomial equation have
a better goodness of fitting than the Arrhenius equation. A similar observation is made for WMA-C.
The results are shown in Figure 14. Considering the paper’s page length limitations, only two types of
asphalt mixtures, that is HMA-60 and WMA-C, were selected for the illustration.

4.3.3. Compared Phase Angle Master Curve Obtained by the Sigmoidal Dynamic Modulus Master
Curve and Generalized Sigmoidal Dynamic Modulus Master Curve

Figure 15 shows the predicted results of the phase angle master curve for WMA-C by using the SM
and GSM over a wide range of reduced frequency. As mentioned before, both the SM and GSM were
constructed by using the Arrhenius equation, the WLF equation, and the second-order polynomial
equation to calculate the shift factor. Compared with the laboratory’s experimental results, these phase
angle predictions obtained based on SM and GSM show a high correlation, except that the latter has a



Materials 2020, 13, 5051 15 of 26

slightly better prediction accuracy than the former. It was also proved that this method has a better
application prospect, especially for the condition of lacking phase angle information [43] (for example,
the long-term pavement performance). The phase angle master curve obtained by the WLF equation
and the second-order polynomial equation has better goodness of fitting than the Arrhenius equation.
The reason is that the Arrhenius equation has only one freedom degree. However, the WLF equation
and the second-order polynomial equation have multiple freedom degrees. The more freedom degrees,
the better fitting. Considering the page length limitations of the paper, only WMA-C, was selected for
the illustration.

Figure 15. Compared phase angle master curve obtained by different methods.

4.4. Verification of Compliance with LVE Theory between Dynamic Modulus and Phase Angle Master Curves

Plotting the dynamic modulus in logarithmic coordinates and the phase angle in arithmetic
coordinates, then the Black space diagram [44] was obtained. Here, it was also used to assess the
predicted results of the dynamic modulus and phase angle as well as monitor the results’ quality.
Figure 16 presents the Black space diagrams of WMA-C. In the Black space diagram, the measured
value and the predicted value from model curves were shown and compared. The predicted value
of dynamic modulus obtained from the GSM and shift factors obtained from the WLF equation.
The estimated value of the phase angle obtained from the GSM base on the K-K relations. The results
show that all the test data lie on or stay close to a unique smooth curve, which verified that the
constructed dynamic modulus and phase angle master curves were consistent with the LVE theory.
As Figure 17, the results have also been proven on the Wicket diagram (storage modulus and loss factor
were plotted against each other in a semi-log graph) [21]. Considering the limitation of the document,
other types of asphalt mixtures are not demonstrated here.

Finally, the master curves of dynamic modulus and phase angle for the four kinds of crumb
rubber-modified asphalt mixtures are plotted together in Figure 18, where the GSM is used to construct
the dynamic modulus master curve, then the phase angle master curve could be obtained in term of
the K-K relations. Besides, the shift factors could be obtained by using the WLF equation.
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Figure 16. The Black space diagram of the asphalt mixture.

Figure 17. The Wicket diagram of the asphalt mixture.

Figure 18. Dynamic modulus and phase angle of the asphalt mixtures [24].
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It can be observed in Figure 18 that the master curve of the dynamic modulus exhibits the
S-shaped. It means that the crumb rubber-modified asphalt mixtures mainly characterize elastic in
higher frequency (or low temperature) but are viscous in lower frequency (or high temperature).
The master curve of the phase angle exhibits bell-shaped. It increased with the increase of frequency to
the maximum phase angle and then decrease with the further increase of frequency. The phase angles
are close to zero when the frequency close to zero or infinity, indicating that the crumb rubber-modified
asphalt mixtures exhibit elastic characteristics at extremely low or high frequencies. This is because
in high frequency (or low temperature), the asphalt mixture behaves as elastic in nature and is
mainly subjected to asphalt binder, thus shows a higher dynamic modulus and smaller phase angle.
When decreasing frequency (or increases temperature), the asphalt binder becomes soft and approach
viscous, leading to the decreased dynamic modulus and increased phase angle. In lower frequency
(or higher temperature), asphalt mixture mainly behaves as viscous, and the influence of the asphalt
binder on the mixture becomes weak while the interlocking force between aggregates on mixture
becomes distinct, then leading to the decrease dynamic modulus and phase angle. With the further
decrease frequency (or increase temperature), the phenomenon where the aggregates skeleton mainly
bears the loading stress becomes more obvious, then leading to a lower dynamic modulus and smaller
phase angle [45]. However, the frequency dependence of phase angle for the crumb rubber-modified
asphalt binder was not consistent with that of the corresponding mixture (see Figure A1 in Appendix A).
It can be learned that the phase angle of the binder decreases monotonically with the frequency increases.
When the frequency approach infinity, the phase angle close to a limiting equilibrium value; when the
frequency approach 0, the phase angle close to 90◦. It can be attributed to the significant influence of
the aggregate at low frequencies.

Compared to the dynamic modulus master curves of the four types of mixtures, it learns that
the dynamic modulus of HMA-60 always has smaller than that of HMA-C. However, once the warm
mix additive was added, the dynamic modulus of the mixture in high-frequency becomes smaller
and larger in low-frequency. The dynamic modulus of WMA-60 is always smaller than WMA-C,
which shows that the strength of HMA-C is better than HMA-60. Once the warm mix additive was
added, the strength of the mixture in low-frequency (high temperature) increased and decreased
in high-frequency (low temperature), and the strength of WMA-C is better than that of WMA-60.
Compared to the phase angles master curves of four types of mixtures, it is found that the phase angle
of HMA-60 is always greater than that of HMA-C. Once the warm mix additive was added, the phase
angle of the mixture at high-frequency becomes larger and smaller in low-frequency. From the above,
it is clear that once the warm mix additive was added, the viscous flow of the asphalt mixture decreases
in the low-frequency region (high temperature) and increases in the high-frequency region (low
temperature). It is because the viscosity of the 60-mesh crumb rubber-modified asphalt binder is less
than the compound-mesh crumb rubber-modified asphalt binder. Then the adhesion of the mixture
produced from the former is less than the latter, which results in the 60-mesh crumb rubber-modified
asphalt mixture with lower dynamic modulus and higher phase angle. Once warm mix additive was
added, the mixing temperature of the mixture will be reduced. This process also reduces the aging of
the asphalt binder. The fluidity of the asphalt binder was also improved, the aggregate can absorb
more asphalt, and the content of the structural asphalt will increase, so the dynamic modulus of warm
mix crumb rubber-modified asphalt mixture is greater than hot mix crumb rubber-modified asphalt
mixture in the lower frequency range (high temperature).

4.5. Comparing Other LVE Response Function of the Asphalt Mixture

4.5.1. Comparing the Storage Modulus and the Loss Modulus

The storage modulus and loss modulus can be calculated according to Equations (15) and (16),
respectively, once knowing the dynamic modulus and phase angle at different frequencies and
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temperatures. The storage modulus master curve and loss modulus master curve are also established.
The results are shown in Figure 19.

E′ = |E∗| cos(φ) (15)

E′′ = |E∗| sin(φ) (16)

where: E′ is the Storage modulus, MPa; and E′′ is the Loss modulus, MPa.

Figure 19. Storage modulus and loss modulus of the asphalt mixtures [24].

Figure 19 is the Storage modulus master curve and Loss modulus master curve for four kinds of
asphalt mixture. It is obvious that the storage modulus master curve is similar to the dynamic modulus
master curve, especially at the high frequencies range. As the frequency increases, the storage modulus
increases gradually, and there is the minimum value in the low-frequency region and the maximum
value in the high-frequency region. The master curve is a typical S-shape. This is because the phase
angle of the mixture is very low, especially at high frequencies, where it is approach to a very small
magnitude. The storage modulus of HMA-C is always greater than HMA-60. The mixture’s storage
modulus in the low-frequency range increased and decreased in the high-frequency range after warm
mix additive was added. The storage modulus of WMA-C is always greater than WMA-60. Obviously,
the elastic deformation resistance of HMA-C is better than HMA-60. Once warm mix additive was
added, the elastic deformation resistance could be improved in the low-frequency (high temperature)
range. Moreover, the elastic deformation resistance of WMA-C is better than WMA-60.

Figure 19 also illustrates that the master curve of the loss modulus. It can be learned that the loss
modulus first increases and then slightly decreases with the frequency increases. The loss modulus
of HMA-C is always greater than HMA-60. Once warm mix additive was added, the loss modulus
of HMA-60 the mixture in the low-frequency range becomes larger and in the high-frequency range
becomes smaller, but the Loss modulus of HMA-C in the high-frequency range becomes larger and
smaller in the low-frequency range. The loss modulus of WMA-C is larger than that of WMA-60 in
the middle and low-frequency range. It showed that the viscous deformation resistance of HMA-C is
better than HMA-60. Once warm mix additive was added, the viscous deformation resistance could be
increase in the low-frequency range and decrease in the high-frequency range. Moreover, the viscous
deformation resistance of WMA-C is better than WMA-60.

In summary, it can be learned that both elastic deformation resistance and viscous deformation
resistance of HMA-C is better than HMA-60. Once the warm mix additive was added, the elastic
deformation resistance and viscous deformation resistance of the mixture could be improved in
high temperature; WMA-C shows a better deformation resistance than WMA-60. It is because the
viscosity of the compound-mesh crumb rubber-modified asphalt binder is greater than 60-mesh crumb
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rubber-modified asphalt binder. The adhesion of the mixture produced from the former is greater
than the latter, which results in the compound-mesh crumb rubber-modified asphalt mixture with
higher strength and better resistance to deformation. Once warm mix additive was added, the mixing
temperature of the mixture will be reduced. This process also reduces the aging of the asphalt binder.
The fluidity of the asphalt binder was also improved, the aggregate can absorb more asphalt, and the
content of the structural asphalt will increase, so the deformation resistance of warm mix crumb
rubber-modified asphalt mixture is better than hot mix crumb rubber-modified asphalt mixture in high
temperature. From the molecular point, the primary reason for the above results can be attributed
to the decrease in molecular weight and the concentration of polar functional groups in the asphalt
binders after the warm mix additive was added [46].

4.5.2. Comparing to the Relaxation Modulus

Viscoelastic properties are inherent properties of asphalt materials. In the effect of temperature
and vehicle load, the pavement structure’s internal stress will gradually dissipate with the increase of
time, which is stress relaxation [47]. The stress accumulated in the pavement structure will quickly
dissipate due to the strong relaxation ability in the higher temperature; However, when in the lower
temperature, the relaxation ability of the asphalt pavement is weak, the relaxation speed is slow, and
there is excessive stress accumulation in the pavement structure. Once the stress accumulation exceeds
the strength of the mixture, the asphalt pavement will crack, so it is essential to study the asphalt
mixture’s relaxation modulus.

According to the relation between complex material functions and operational functions [48],
we can obtain the storage modulus and loss modulus expressed in the Prony series, and the expression
is as Equations (17) and (18).

E′(w) = Ee +
m∑

i=1

w2ρ2
i E2

i

w2ρ2
i + 1

(17)

E′′ (w) =
m∑

i=1

wρiEi

w2ρ2
i + 1

(18)

where: Ee is the long-term equilibrium modulus. It is equal to the dynamic modulus as the reduced
frequency approach to zero, MPa; Ei is the relaxation strengths of ith Maxwell component, MPa; ρi is
the relaxation time of ith Maxwell component, s; w is the reduced angular frequency and is equal to
2π fr, rad/s.

To obtain equilibrium modulus and relaxation strength of all Maxwell component. The error
function e f1 was applied to the test data of storage modulus and loss modulus to solve
Equations (17) and (18) simultaneously. It was demonstrated as Equation (19), relaxation time taken
with equidistant intervals on the logarithmic t axis [41] as Table 9. The detailed calculation process can
be found in the results of Zhang [24]. Finally, the results for both the long-term equilibrium modulus
and the relaxation strength are also presented in Table 9.

e f1 = e fE′ + e fE′′ =
1
N

√√√ N∑
i=1

(
|E′|m,i − |E′|p,i

|E′|m,i

)2

+
1
N

√√√ N∑
i=1

(
|E′′ |m,i − |E′′ |p,i

|E′′ |m,i

)2

(19)

where: e f1 is the error function of storing modulus and loss modulus; N is equal to 28, it is the number
of measured samples; |E′|m,i is ith data point of the storage modulus, it can be obtained by measurement,
MPa; |E′|p,i is ith data point of storage modulus, it can be predicted by Prony series, MPa; |E′′ |m,i is ith
data point of the loss modulus, it can be obtained by measurement, MPa; |E′′ |p,i is ith data point of loss
modulus, it can be predicted by Prony series, MPa.
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Table 9. Discrete relaxation spectrum of crumb rubber-modified asphalt mixture [24].

i
HMA-60 WMA-60 HMA-C WMA-C

ρi Ei ρi Ei ρi Ei ρi Ei

1 2 × 10−5 3852.1 2 × 10−5 2650.0 2 × 10−5 3087.9 2 × 10−5 4910.2
2 2 × 10−4 5434.5 2 × 10−4 4580.1 2 × 10−4 5998.5 2 × 10−4 5693.3
3 2 × 10−3 6061.5 2 × 10−3 5233.2 2 × 10−3 5665.0 2 × 10−3 5464.6
4 2 × 10−2 3680.0 2 × 10−2 3208.0 2 × 10−2 4254.5 2 × 10−2 3717.2
5 2 × 10−1 1751.0 2 × 10−1 1476.5 2 × 10−1 2239.5 2 × 10−1 1920.1
6 2 566.5 2 610.9 2 1054.3 2 758.0
7 2 × 101 223.2 2 × 101 271.7 2 × 101 394.9 2 × 101 318.4
8 2 × 102 35.8 2 × 102 105.4 2 × 102 165.9 2 × 102 120.9
9 2 × 103 11.8 2 × 103 40.4 2 × 103 30.0 2 × 103 32.8

10 2 × 104 5.3 2 × 104 10.1 2 × 104 4.1 2 × 104 7.91
11 2 × 105 1.9 2 × 105 1.2 2 × 105 1.5 2 × 105 1.65

Ee = 121.58 Ee = 193.10 Ee = 183.34 Ee = 209.75

Once the Equation (19) can be calculated, Equation (20) can demonstrate relaxation modulus.
The function of relaxation modulus verse time was revealed in Figure 20.

E(t) = Ee +
m∑

i=1

Eie
−

t
ρi (20)

where: E(t) is relaxation modulus, MPa.

Figure 20. Relaxation modulus and creep compliance of the asphalt mixtures [24].

As illustrated in Figure 20, The relaxation modulus of HMA-C greater than that of HMA-60.
Once the warm mix additive was added, the relaxation modulus will decrease in the shorter time
range and increase in the longer time range; the relaxation modulus of WMA-C is always greater than
WMA-60. It showed that the relaxation ability of the HMA-60 is always better than HMA-C. Once the
warm mix additive was added, it can improve the low-temperature relaxation ability, and the relaxation
ability of WMA-60 always better than that of WMA-C. This is also because the viscosity of the 60-mesh
crumb rubber-modified bitumen binder is less than that of the compound-mesh crumb rubber-modified
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bitumen binder. Then the mixture produces by using the latter binder with more pronounced elastic
properties, which resulting in the compound-crumb rubber-modified asphalt mixture with poor
relaxation characteristics. Once the warm mix additive was added, the mix temperature of the mixture
will be reduced. This process also reduced the aging of the asphalt mixture. In addition, it also
improves the fluidity of the mixtures, so the warm-mix crumb rubber-modified asphalt mixture with
better relaxation characteristics than the hot-mix crumb rubber-modified asphalt mixture in lower time
range (low temperature).

4.5.3. Comparing to the Creep Compliance

Similarly, according to the relation between complex material functions and operational functions.
The storage compliance D′(w) and loss compliance D′′ (w) can be determined by the interconversion
between the complex modulus and complex compliance as Equation (21). Then storage compliance
and loss compliance can be rewrite in the Prony series as Equations (22) and (23).

D∗ =
1
E∗

= D′ − iD′′ =
E′

E′2 + E′′2
− i

E′′

E′2 + E′′2
(21)

D′(w) = Dg +
n∑

j=1

D j

w2τ2
j + 1

(22)

D′′ (w) =
1
η0w

+
n∑

j=1

wτ jD j

w2τ2
j + 1

(23)

where: Dg is the long-term equilibrium compliance, It is equal to the reciprocal of the dynamic
modulus as the reduced frequency approach to zero, MPa−1; η0 is the zero shear or long time viscosity
(for asphalt mixture η0 = ∞), cP; D j is the retardation strengths of ith Kelvin component, MPa−1; τ j is
the retardation times of ith Kelvin component, s; w is the reduced angular frequency and it is equal to
2π fr, rad/s.

To obtain equilibrium compliance and retardation strength of all Kelvin component. The error
function e f2 was applied to the test data of storage compliance and loss compliance to solve
Equations (22) and (23) simultaneously. It was demonstrated as Equation (24), the retardation time can
be obtained from Park and Schapery method [48], and the results were shown in Table 10. Similarly,
the detailed calculation process can be found in the results of Zhang [24]. Finally, the results for both
the long-term equilibrium compliance and the retardation strengths are also presented in Table 10.

e f2 = e fD′ + e fD′′ =
1
N

√√√ N∑
i=1

(
|D′|m,i − |D′|p,i

|D′|m,i

)2

+
1
N

√√√ N∑
i=1

(
|D′′ |m,i − |D′′ |p,i

|D′′ |m,i

)2

(24)

where: e f2 is the error function of storing compliance and loss compliance; N is equal to 28, which is
the number of measured samples; |D′|m,i is ith data point of the storage compliance, it can be obtained
by measurement, MPa−1; |D′|p,i is ith data point of storage compliance, it can be predicted by Prony
series, MPa−1; |D′′ |m,i is ith data point of the loss compliance, it can be obtained by measurement,
MPa−1; |D′′ |p,i is ith data point of the loss compliance, it can be predicted by Prony series, MPa−1.
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Table 10. Discrete retardation spectrum of crumb rubber-modified asphalt mixture [24].

i
HMA-60 WMA-60 HMA-C WMA-C

τj Dj τj Dj τj Dj τj Dj

1 2.40 × 10−5 5.70 × 10−5 2.30 × 10−5 5.69 × 10−7 2.30 × 10−5 4.97 × 10−6 2.50 × 10−5 8.82 × 10−6

2 2.82 × 10−4 3.12 × 10−5 2.80 × 10−4 2.79 × 10−5 2.80 × 10−4 2.01 × 10−5 2.90 × 10−4 2.32 × 10−5

3 3.72 × 10−3 5.46 × 10−5 3.63 × 10−3 6.83 × 10−5 3.31 × 10−3 4.00 × 10−5 3.47 × 10−3 5.04 × 10−5

4 4.47 × 10−2 1.66 × 10−4 4.27 × 10−2 1.55 × 10−4 3.98 × 10−2 1.04 × 10−4 4.07 × 10−2 1.24 × 10−4

5 5.50 × 10−1 3.94 × 10−4 4.37 × 10−1 3.45 × 10−4 4.37 × 10−1 2.41 × 10−4 4.57 × 10−1 2.91 × 10−4

6 5.10 1.05 × 10−4 4.07 7.66 × 10−4 4.68 6.04 × 10−4 4.27 6.74 × 10−4

7 4.90 × 101 2.01 × 10−3 3.63 × 101 1.23 × 10−3 4.17 × 101 1.32 × 10−3 3.80 × 101 1.23 × 10−3

8 2.63 × 102 3.00 × 10−3 2.95 × 102 1.60 × 10−3 3.72 × 102 1.43 × 10−3 3.09 × 102 1.21 × 10−3

9 2.15 × 103 1.66 × 10−3 2.40 × 103 1.01 × 10−3 2.34 × 103 1.01 × 10−3 2.34 × 103 3.28 × 10−4

10 2.09 × 104 2.68 × 10−4 2.09 × 104 3.34 × 10−3 2.04 × 104 2.94 × 10−4 2.09 × 104 1.00 × 10−4

11 2.04 × 105 1.70 × 10−5 2.04 × 105 3.94 × 10−5 2.04 × 105 5.94 × 10−6 2.04 × 105 2.47 × 10−6

Dg = 4.60 × 10−5 Dg = 5.4 × 10−5 Dg = 4.33 × 10−5 Dg = 4.41 × 10−5

It is clear that, once Equation (24) can be calculated, then Equation (25) can be used for
demonstrating creep compliance D(t). The function of creep compliance against time was also
shown in Figure 20.

D(t) = Dg +
t
η0

+
n∑

j=1

D j

(
1− e

−
t
τ j

)
(25)

Figure 20 also shows that the creep compliance of HMA-C is always less than HMA-60. Once the
warm mix additive was added, the mixture’s creep compliance will increase in the shorter time range
and decrease in the longer time range. The creep compliance of WMA-C is always less than WMA-60.
It showed that the deformation resistance of the HMA-C is always better than HMA-60. Once the
warm mix additive was added, it can improve the deformation resistance ability at high temperatures,
and the deformation resistance of the WMA-C is always better than WMA-60.

5. Conclusions

This study involves constructing SM and GSM for dynamic modulus of crumb rubber-modified
asphalt mixtures using different shifting techniques. The phase angle can be obtained from the dynamic
modulus master curve by K-K relations. The Black space diagram and Wicket diagram were used
to evaluate the predicted results of the dynamic modulus and phase angle. Finally, the relaxation
modulus and creep compliance can be used to characterize the relaxation and creep properties of
warm mix crumb rubber-modified asphalt mixture. Based on the results of this study, the following
conclusions were drawn:

(1) The shift factor calculated by the Arrhenius equation is always smaller than the WLF equation
and the second-order polynomial equation, and the higher temperature, the more significant.

(2) Both SM and GSM can be used as the master curve models of dynamic modulus, except that GSM
presents slightly excellent fitting than SM.

(3) Compared with the laboratory results, the prediction of phase angles constructed based on the
K-K relations shows a higher correlation coefficient. Moreover, the accuracy of the predicted
phase angle depends on the accuracy of the dynamic modulus master curve.

(4) The Black space diagram and the Wicket diagram demonstrate that the master curve of dynamic
modulus and phase angle is constructed by the slope method compliance LVE theory.

(5) According to the viscoelastic theory, the storage modulus master curve and the loss modulus
master curve can be obtained from the complex modulus test. Furthermore, the storage compliance
master curve and the loss compliance master curve can also be obtained. Finally, the master curve
of the relaxation modulus and creep compliance can be obtained in the region.



Materials 2020, 13, 5051 23 of 26

(6) From the results of dynamic modulus and phase angle, we can obtain that the deformation
resistance of HMA-60 is not as good as HMA-C. Once the warm mix Additive was added,
the mixture’s deformation resistance in the low-frequency region (high temperature) will be
improved, the viscous flow in the high-frequency region (low temperature) will also be enhanced.
The WMA-C presents a better deformation resistance at high temperature, while WMA-60
presents better crack resistance at low temperature.

(7) From the results of relaxation modulus and creep compliance, it can be learned that the HMA-60
exhibits better low-temperature deformation but less high-temperature deformation resistance
than the HMA-C. In addition, the WMA exhibits better low-temperature deformation and
high-temperature deformation resistance than the corresponding HMA.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/21/5051/s1,
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Appendix A

Appendix A.1. Conventional Properties of Crumb Rubber Modified Asphalt Binder

There are many conventional properties of asphalt binders, but only penetration, ductility,
softening point and rotational viscosity are listed in Table A1.

Table A1. Conventional properties of crumb rubber modified asphalt binder.

Binder Penetration
@25 ◦C/0.1 mm

Ductility
@5 ◦C/cm

Softening
Point/◦C

Viscosity @175 ◦C
20 RPM/cP

H-CR-60 73.2 16.5 53.9 1452
W-CR-60 70.8 15.2 56.8 1148
H-CR-C 67.3 25.3 60.1 1633
W-CR-C 65.7 22.9 62.3 1384

Appendix A.2. The Master Curves of the Crumb Rubber Modified Asphalt Binder

The master curves of complex modulus G* can be constructed by CAM
(Christensen–Anderson–Marasteanu) model. Similarly, the master curve of phase angle δ

can be obtained by shifting the measured phase angle horizontally in logarithmic coordinates of
frequency. The shift factor is consistent with the complex modulus. The results were shown in
Figure A1.

http://www.mdpi.com/1996-1944/13/21/5051/s1


Materials 2020, 13, 5051 24 of 26

Figure A1. The master curve of complex modulus and phase angle for binders.

The figure shows that the complex modulus master curve of the asphalt binder increases with the
increase of frequency; conversely, the phase angle master curve decreases with the increase of frequency.
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