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ABSTRACT

Despite the large number of noncoding RNAs in hu-
man genome and their roles in many diseases in-
clude cancer, we know very little about them due
to lack of structural clues. The centerpiece of the
structural clues is the full RNA base-pairing struc-
ture of secondary and tertiary contacts that can
be precisely obtained only from costly and time-
consuming 3D structure determination. Here, we per-
formed deep mutational scanning of self-cleaving
CPEB3 ribozyme by error-prone PCR and showed
that a library of <5 x 10* single-to-triple mutants
is sufficient to infer 25 of 26 base pairs including
non-nested, nonhelical, and noncanonical base pairs
with both sensitivity and precision at 96%. Such ac-
curate inference was further confirmed by a twister
ribozyme at 100% precision with only noncanonical
base pairs as false negatives. The performance was
resulted from analyzing covariation-induced devia-
tion of activity by utilizing both functional and non-
functional variants for unsupervised classification,
followed by Monte Carlo (MC) simulated annealing
with mutation-derived scores. Highly accurate infer-
ence can also be obtained by combining MC with
evolution/direct coupling analysis, R-scape or epis-
tasis analysis. The results highlight the usefulness
of deep mutational scanning for high-accuracy struc-
tural inference of self-cleaving ribozymes with impli-

cations for other structured RNAs that permit high-
throughput functional selections.

INTRODUCTION

The full base-pairing structure of RNA, resulted from the
interplay of secondary and tertiary interactions, serves as
a preformed frame for final folding of tertiary structure
and is evolutionarily conserved to maintain the structural
and functional integrity of an RNA (1). As such, it plays
a prominent role in the versatility of RNA structure and
function (2,3). To date, full base pairing structures at the
single base-pair resolution can only be obtained from high-
resolution RNA structures determined by X-ray crystallog-
raphy, nuclear magnetic resonance or cryogenic electron mi-
croscopy. However, these traditional techniques solved only
4112 RNA structures as of 4 November 2018 (or 3% of
all structures in protein databank (4) due to their require-
ment of nearly static structures that most RNAs do not
have. Given that proteins are vastly outnumbered by non-
coding RNAs (5) and the majority of these RNAs have un-
known structures and functions, complementary alternative
techniques for accurate determination of RNA base-pairing
structures are urgently needed.

The most economical method for locating base pairs
would be a computational prediction if its accuracy could
be assured. Such a computational approach is usually re-
ferred to as RNA secondary structure prediction although
many base pairs are associated with tertiary interactions
(6). These tertiary contacts include noncanonical (non-
Watson—Crick), non-nested (pseudoknot), and lone (single
tertiary base pair not associated with a helix) base pairs. De-
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spite the first secondary structure prediction method was
developed nearly 50 years ago (7) and many advances have
been made since (8,9), the problem remains unsolved: only
70% accuracy for predicted base pairs and 38% accuracy for
secondary structure topology according to the most recent
evaluation (10). In particular, lone and noncanonical base
pairs are commonly ignored in secondary structure predic-
tion, perhaps because they are not considered as a part of
the secondary structure (6).

Large improvement in secondary structure prediction can
be achieved (11,12) when computational algorithms are in-
tegrated with experimental restraints. These experimental
results can be generated from structural probes such as en-
zymes, chemicals, hydroxyl radical, cross-linking, and mass
spectrometry (13-15), in combination with next-generation
sequencing (16). However, most of these experimental tech-
niques measure one-dimensional reactivity profiles (17) and
rely on computational approaches to infer two bases paired.
As a result, they suffer the same limitations common for all
existing computational methods: poor accuracy in locating
lone, non-nested, and noncanonical base pairs (11,12,18).

Recently, more direct identification of base pairs can be
made by multidimensional chemical mapping methods. Ex-
amples are mutate-and-map (M2 (19)), SHAPE and mu-
tational profiling (SHAPE-MaP (20)), RNA interaction
groups by mutational profiling (RING-MaP (21)), multi-
plexed -OH cleavage analysis (MOHCA (22)), and modify-
cross-link-map (MXM (23)). While these multidimensional
chemical mapping methods can detect RNA base pairs at
the helix level (>2 bp) (24), they are not yet sensitive enough
to detect all base pairs individually, lone and two contigu-
ous base pairs, in particular. This is in part because the as-
sumption of a localized response upon perturbation is not
always true (23). Moreover, these experiments are labor in-
tensive and require sophisticated computationally-intensive
algorithms for data analysis (23,25).

Another powerful technique is deep mutational scan-
ning through function selection in combination with high-
throughput sequencing (26-33). However, current analy-
sis of deep mutation data has been limited to mapping
functional fitness landscape (26,28-30,32) or locating he-
lices via covariation analysis (27,31-33). Separately, sophis-
ticated statistical covariation analysis such as R-scape, evo-
lutionary coupling, or direct coupling has been success-
fully applied to naturally occurring mutant variants within
alarge RNA family (34-36). However, this analysis requires
a large number of known homologous sequences within the
same functional family, of which the majority of noncoding
RNAs do not have. Moreover, the accuracy of such analy-
sis strongly depends on the quality and quantity of homol-
ogous sequences.

Unlike naturally occurring homologous sequences, the
quality and quantity of functional mutants can be some-
what controlled in deep mutational scanning. Thus, it is
highly desirable if deep mutation data alone can be used to
reliably infer complex secondary and tertiary base pairing
structures including lone base pairs not detectable by cur-
rent chemical probing techniques. We demonstrate the fea-
sibility by employing self-cleaving ribozymes that catalyze
their own cleavage. These ribozymes are particularly suit-
able for deep mutational scanning (29) because the func-

tional activity of a mutant can be calculated by simply
counting the number of cleaved and uncleaved reads of that
mutant in high-throughput sequencing data. More impor-
tantly, self-cleaving ribozymes have complex base-pairing
structures, each of which has its own interesting mechanistic
difference (37-39). Thus, they offer an ideal testing ground
for inferring different base pairing topologies from deep
mutational scanning. Moreover, self-cleaving ribozymes are
broadly distributed in genomes of different organisms from
viroids to vertebrates (40—42). In human genome alone, we
have seven known self-cleavage ribozymes (CPEB3, LINEI,
OR4K 15, IGF1R, HH9, HH10 and CoTC ribozymes) (43—
45) and none of them has structure determined. This high-
lights the importance of solving structures of self-cleavage
ribozymes even if at the level of base pairing.

Here, we performed deep mutational scanning of the self-
cleaving 81-nucleotide CPEB3 ribozyme located at the in-
tron region of the human gene of cytoplasmic polyadenyla-
tion element-binding protein 3 (CPEB3). Although the ter-
tiary structure of CPEB3 ribozyme remains to be solved, it
will fold into a hepatitis delta virus-like base pair pattern
confirmed by mutational studies (43). This ribozyme was
chosen for its complex base-pairing structure. One pseudo-
knot is non-helical, made of one lone canonical Watson—
Crick (WC) pair and one noncanonical pair and the other is
capped by two noncanonical base pairs, all associated with
tertiary interactions (Figure 1A). Moreover, this ribozyme
is of biological significance because a single nucleotide poly-
morphism was found to affect CPEB3 ribozyme activity
with a difference in episodic memory (46). We established a
method that analyzes covariation-induced deviation of ac-
tivity (CODA) by using Support Vector Regression (SVR)
to establish an independent-mutation model and a naive
Bayes classifier to separate bases paired from unpaired.
This unsupervised CODA analysis improves the signal-to-
noise ratio by employing both functional and nonfunctional
variants. Moreover, incorporating Monte-Carlo simulated
annealing with a commonly-used energetic model and a
CODA scoring term further improves the coverage of the
regions under-sampled by deep mutations. Accurate deter-
mination of secondary and tertiary base pairs is further con-
firmed by CODA-based analysis of the available deep muta-
tion data of the downstream portion of the cleavage site of a
twister ribozyme (a 48-nucleotide fragment of 54 nucleotide
Oryza sativa Osa-1-4 ribozyme sequence) (29).

MATERIALS AND METHODS
Deep mutational scanning of self-cleaving CPEB3 ribozyme

The overall procedure for deep mutational scanning of
CPEB3 ribozyme is shown in Figure 1B. All oligonu-
cleotides were purchased from IDT. The sequences of
oligonucleotides used in this experiment are listed in Sup-
plementary Table S1.

Firstly, a mutation library was constructed by randomly
mutating the wild type sequence of CPEB3 ribozyme with
several rounds of epPCR (47) using primer T7prom and
MI13F (Supplementary Table S1). The amplification prod-
uct of each round was purified, quantified, and diluted for
use as the DNA template in the next round of epPCR. PCR
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Figure 1. (A) The native base-pairing structure of the 81-nucleotide CPEB3 ribozyme contains three canonical helical regions. In addition, it has one
pseudoknot capped by two non-Watson—Crick (WC) base pairs (G6U41 and C12A35) and another pseudoknot made of a lone WC pair and one non-WC
pair (U26U43). (B) The deep mutational sequencing of CPEB3 ribozyme starts from random mutagenesis via error-prone PCR, followed by barcoding so
that the whole ribozyme sequences in DNA-seq can be mapped onto self-cleaving reaction products from the RNA-seq library. (C) Analyzing deep mutation
data by covariation-induced deviation of activity. This is done by constructing an independent-mutation model and building a naive Bayes classifier for
base pairs according to distributions of unlikely paired bases and likely paired bases (outliers of the independent-mutation model). (D) The activities of
double mutants observed from sequencing versus those predicted by the independent- mutation model. Outliers for likely base pairs are indicated by the

red circle.

products after several rounds of epPCR were barcoded us-
ing primer Bar_F and Bar_R (Supplementary Table S1) by a
low-cycle PCR (cycle number = 3). The purified barcoding
product was then loaded to a denaturing 8% PAGE with
8 M urea for separation. The target band containing bar-
coded DNAs was excised and recovered by passive elution
in crush-soak buffer (10 mM Tris-HCI, pH 7.5, 200 mM
NacCl, 5mM EDTA) overnight at 37°C followed by ethanol
precipitation. The recovered DNAs were dissolved in wa-
ter and then quantified by absorbance and qPCR. Approx-

imately 10° barcoded DNA molecules were amplified by
T7prom and M13F primers (Supplementary Table S1) in
order to produce enough DNAs for the downstream steps.

Then, the mutant DNA library was transcribed in vitro
in a 30 pl reaction system containing 5 pmol of the ds-
DNA template, 2 mM NTPs, I x RNAPol Reaction Buffer
(New England Biolabs), 1 U/ul Murine RNase Inhibitor
(New England Biolabs), and 5 U/l T7 RNA polymerase
(New England Biolabs) for 5 hours at 37°C. Template DNA
was removed by adding 58 wl nuclease-free water, 10 wl of
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10x DNase I Buffer (New England Biolabs), and 2 ul of
DNase I (2 U/pl, New England Biolabs) to 30 wl RNA
product, and incubated at 37°C for 15 min. The active ri-
bozyme mutants were simultancously cleaved during in vitro
transcription and DNase I treatment. The buffer condition
was not optimized as we employed the relative activity in-
stead of the cleavage ratio in our analysis. The relative ac-
tivity over wild type is much less sensitive to different ex-
perimental conditions than the cleavage ratio. 2 pl of 0.5 M
EDTA (to a final concentration of 10 mM) was added to
stop both ribozyme and DNase I activities. The transcribed
RNAs were purified using RNA Clean & Concentrator-5
kit (Zymo Research) and quantified by absorbance.

Afterward, ~10 pmol purified RNAs were mixed with 2
wl of 10uM RT_m13f adpl (Supplementary Table S1) and
1 wl of 10mM dNTP in a volume of 8§ wl and heated to
65°C for 5 min and placed on ice. Reverse transcription was
initiated by adding 4 p.l of 5x ProtoScript II Buffer (New
England Biolabs), 2 wl of 0.1 M DTT, 0.2 wl of Murine
RNase Inhibitor (40 U/ul, New England Biolabs), 1 .l Pro-
toScript IT RT (200 U/pl, New England Biolabs), and 2
wl 100pM template-switching oligonucleotide TSO (Sup-
plementary Table S1) to a total volume of 20 pl. The reac-
tion mixture was incubated at 42°C for 1 h, then inactivated
at 80°C for 5 min. RNA was removed by adding 1 ul SM
NaOH and heating at 95°C for 5 min.

Next, DNA-seq libraries were constructed by extend-
ing the ribozyme mutant library with P5R1_.ml13f and
P7R2_t7p (Supplementary Table S1) in the touch-up PCR
reaction (2 cycles of PCR with the annealing temperature
at 53°C, followed by 8 cycles of PCR with the annealing
temperature at 67°C). Similarly, the RNA-seq libraries were
constructed by extending the purified cDNA after template
switching reaction with PSR1_adpl and P7R2_adp2 (Sup-
plementary Table S1).

Lastly, the DNA-seq and RNA-seq libraries were se-
quenced on an Illumina HiSeq X sequencer with 25% PhiX
control by Novogene Technology Co., Ltd. The reads were
first assessed using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Raw paired-end reads
were merged using program SeqPrep (John, J.S., 2011. https:
/[github.com/jstjohn) to generate high-quality full-length
reads. For DNA-seq results, reads with a correct match
to primers Bar_F and Bar_R were extracted to generate
the projection map from barcodes to variants. For multiple
variant sequences mapped to one barcode, the partial se-
quence downstream to the cleavage site was employed as the
additional marker for tracking different mutants. If multi-
ple mapping was still an issue, only the consensus sequence
with the frequency larger than 50% was used. For RNA-
seq results, reads with a correct match to primer Bar_R
were extracted. The barcode together with partial sequences
downstream to the cleavage site was used to map the full-
length ribozyme sequence. Then, we counted the cleaved
and uncleaved read numbers for each variant to calculate
relative activity (RA), using the equation given by RA(var)
= Neleaved (Var) Nioal(Wt)/ Niotal(var) Neeavea (Wt). To compute
RA, we set the minimum number of reads to 5.

We performed three batches of experiments. They dif-
fer in the number of rounds in epPCR (3, 8 and 5 rounds
for Batches 1, 2, 3, respectively). Moreover, in Batch 2, the

cDNA with template switching was used to construct the
RNA-seq library directly. In Batches 1 and 3, the cleaved
and uncleaved cDNAs were separated by PAGE for RNA-
seq library construction and then mixed with a near equal
molar ratio for sequencing. The purpose was to improve the
sampling of functional sequences. The DNA and RNA se-
quencing results, the number of mutations, mutation rates,
and the median and maximal reads per variant in CPEB3
ribozyme for these batches were summarized in Supple-
mentary Tables S2-S5, respectively. Supplementary Figure
S1 also showed position-dependent mutation rates of three
batches. To obtain a higher coverage of mutation variants,
we merged the RA results together. Average RA was used
if a variant appeared in different batches. Because the cov-
erage for double mutations in CPEB3 ribozyme was low
(41.0%), we increased the coverage by including triple mu-
tants for those position pairs without double mutations in
our CODA analysis as follows. For a triple mutant XYZ,
we calculate RA(XY) = RA(XYZ)/RA(Z) when RA(Z) is
larger than 0.5. Here, we have assumed that Z mutation does
not covariate with XY mutations. In this way, these triple
mutants were treated the same as double mutants in CODA
analysis. This extension increased the double mutation cov-
erage from 41.0% to 61.3% (Supplementary Table S6). For
twister ribozyme, triple mutants are not included because
of 100% coverage of double mutations.

Covariation-induced deviation of activity (CODA)

The overview of the method is shown in Figure 1C. Specific
details are described below.

The independent-mutation model.  The basic assumption of
CODA analysis is that the effect of two mutations on enzy-
matic activity is independent if they are not in close con-
tact. This assumption is an approximation in the case that
long-range interactions or allosteric effects are important.
Under this approximation, the RA of double mutants can
be modeled (predicted) by the RAs of two single mutants.
However, if two bases form a base pair, the RA of their dou-
ble mutation to another complementary pair will be higher
than two independent single mutations that are disruptive
to the wild-type pair. In other words, we can detect base
pairs by examining Covariation-induced Deviation of the
Activity (CODA) of a double mutant from the independent-
mutation model. We constructed this model by using an
SVR regression of the RA of all double-mutation variants
against RAs of their corresponding single-mutation vari-
ants. This was done by organizing RA data into a three-
dimensional vector of RAqps(bi), RAqps (bj), and RA gps(bi,
bj), which are RAs of two single mutation variants and
the double mutation variant, respectively. Then, these data
points are used to generate the SVR model to fit RAps(bi,
bj) as a function of RAyps (bi) and RAgps (bj). This SVR
model is used to predict the activity for any double mu-
tations as we have 100% coverage for single mutations of
twister and CPEB3 ribozymes. Comparison between ob-
served and predicted RA values is shown in Figure 1D
for CPEB3 ribozyme and Supplementary Figure S2 for a
twister ribozyme. Our nonlinear SVR regression model was
generated using the python package scikit-learn with a ra-
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dial basis function kernel K (x, x') = exp(—y||x — X'||?)
where x and x" are two feature vectors. In addition to the
v parameter, it has a hyperparameter C to control the mar-
gin of separating hyperplanes. We employed C = 2 x 103
and vy = 2.0 to optimize the regression. We found that C
from 1 to 10%, and vy from 0.01 to 10 did not change the
results (Supplementary Table S7). We emphasize that the
model is based on deep mutation data only without requir-
ing the knowledge of base pairs.

CODA calculation. The CODA score is defined as the dif-
ference between the actual RA value (RAgps) and the pre-
dicted RA (RApeq) from the above regression model nor-
malized by a shifted predicted R4 value. CODA = (RAps —
RApred)/(RApreq + 0.2). A shift (0.2) is used to avoid the
small value of RApq. The results do not depend on this
value from 0.1 to 0.5. Here, dividing by RApq is to obtain
the relative change in activity.

CODA distribution. We expected that the distribution of
CODA scores for double mutations is a mixture of two dis-
tributions approximated as Gaussian: one centered near 0
for structurally unpaired bases (two mutations are indepen-
dent) and one centered at a higher value for potential base
pairs as illustrated in Figure 1D and Supplementary Fig-
ure S2. However, the dominance of non-paired over paired
bases makes it challenging to de-mix the two distributions.
Thus, we employed the following empirical method. The av-
erage («;) and standard deviation (sd;) of the first distribu-
tion were obtained from all double mutation data, as the
effect of the second distribution is negligible. Then, the av-
erage (ay) and standard deviation (sd;) of the second dis-
tribution were obtained by the subset of data points with a
CODA score > a; + 3sd;. This subset also defines the overall
base-pair probability (P(paired)) calculated as the portion
of the subset in all double mutations. Varying this 3sd; cut
off from 1 sd; to 7 sd; makes minor changes in distributions
and the final result (Supplementary Table S7).

For CPEB3 ribozyme, the distributions for paired and
unpaired bases obtained by the above method have mean
values at 1.26 and -0.004 and deviations at 0.763 and
0.237, respectively, with the overall base-pair probability
(P(paired)) at 0.013. For twister ribozyme, the distributions
for paired and unpaired have mean valuesat 1.71 and —0.116
and deviation at 1.111 and 0.222, respectively, with the over-
all pair probability P(paired) = —0.079. Again, there is no
specific assumption about which two bases are paired or not
paired.

Puairing score by the Bayes classifier. The pairing score of
a double mutation (Ps) is calculated by a naive Bayes two-
state classifier with

p (CODA |paired)

Ps =1
S = T, (CODA)

with  p (CODA)=  p(CODA|paired) * p(paired) +
p(CODA |unpaired) * (1 — p(paired)). The probability is
derived from the Mixture Gaussian model, without using a
training set as described above.
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Secondary structure prediction by Monte Carlo simulated an-
nealing

We built a simple secondary structure predictor to examine
if it can be used to fill the gap in the region of contiguous
base pairs with weak covariation signals. We defined the en-
ergy score as follows.

E=AGy stacking + AG37 AU end penalty (Per AU Cl’ld)
+ AGione + AGron—AU/GC/GU

where the stacking energy AG37gacking and the penalty
of helical AU end AG37 AU end penalty(per AU end) were ob-
tained from Tuner 2004 experimental data (48). A Gjone
and A Gyon—au/Gesguare the penalties for a lone pair and
for non-AU, GC or GU (wobble) pairs, respectively. To
make the simplest model, we used a single value for both
AGione and A Gpon—ausGe/gupenalties. We found the low
penalty value by trials and errors to ensure this simple sec-
ondary structure prediction not to yield any lone or non-
AU/GC/GU pair. In each Monte Carlo step, a random ex-
isting pair was destroyed, or a new pair was generated. The
move is accepted according to the Metropolis criterion. At
each temperature, we performed 500 000 Metropolis steps.
The initial temperature was set at 10 and decreased by a fac-
tor of 0.95 at each round until temperature reached 0.1. The
results were stable when the single adjustable penalty pa-
rameter varied between 2 and 5 kcal/mol.

After the above energy function was defined, we car-
ried out the CODA-guided base-pairing prediction by using
E — W*Ps/mean with an optimized weight I, relative to the
mean of pairing scores. The simulated annealing procedure
was the same as above for using MC alone.

Covariation analysis by mutational coupling analysis

Defining functional sequences for mutational coupling anal-
ysis by an RA cutoff. Functional variants with high ri-
bozyme activity were used as the input sequences for covari-
ation analysis by R-scape, EC-RNA and mfDCA-RNA. We
have tested different RA cutoffs (0.0, 0.1,0.2,...,0.9, 1) for
defining functional sequences (1 can be used because many
sequences have stronger activities than the wild type). The
result was not sensitive to RA between 0.5 and 0.7 (See Sup-
plementary Figure S3). As a result, we mainly reported the
result with RA cut off at 0.5 (Table 1).

R-scape. R-scape was downloaded from http://eddylab.
org/R-scape/. Default parameters except E-value were used
in this paper. We changed the E-value significance threshold
from 0.05 to 1000 in order to achieve the best performance
for our datasets. We assigned a score of 0 to base pairs which
did not have a score in R-scape result.

Direct[evolution coupling analysis. There are many pro-
grams for mutational direct coupling analysis. Here we only
employed two programs (EC-RNA and mfDCA-RNA, re-
spectively) applied to RNA previously (35,36). For EC, we
followed the pipeline https://github.com/debbiemarkslab/
plmc. Due to the high sequence identity of our mutation
library, we remove the sample reweighting process by mod-
ifying the reweighting parameter theta to 0. The maximum
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Table 1. Performance of R-scape, mean-field direct coupling analysis (mfDCA-RNA), evolutionary couplings (EC-RNA), covariation-induced deviation
of activity (CODA, this work), Monte Carlo simulated annealing (MC), R-scape+MC, mfDCA-RNA+MC, EC-RNA+MC and CODA+MC for inferring
base pairs from deep mutation data in term of area under the precision-recall curve (AUC_PR), Matthews correlation coefficient (MCC), sensitivity, and
precision for CPEB3 and twister ribozymes. Results for RNA secondary structure predictors (RNAfold and IPknot) are also shown for comparison

Method AUC_PR MCC Sensitivity Precision
CPEB3 (81 bases, 26 base pairs)

RNAfold - 0.66 0.65 0.68
IPknot - 0.71 0.73 0.70
R-scape 0.30 0.42 0.35 0.53
mfDCA-RNA 0.48 0.59 0.35 1.00
EC-RNA 0.44 0.59 0.38 0.91
CODA 0.53 0.62 0.38 1.00
MC 0.48 0.60 0.77 0.48
R-scape+MC 0.92 0.92 0.92 0.92
mfDCA-RNA+MC 0.88 0.90 0.88 0.92
EC-RNA+MC 0.95 0.93 0.96 0.89
CODA+MC 0.97 0.96 0.96 0.96
Twister fragment (48 bases, 17 bp)

RNAfold - 0.22(0.68 a) 0.18 (0.47a) 0.30 (1a)
IPknot - 0.0 (0.68 a) 0.0 (0.47a) 0.0(1a)
R-scape 0.54 0.64 0.47 0.89
mfDCA-RNA 0.66 0.66 0.71 0.63
EC-RNA 0.59 0.66 0.71 0.63
CODA 0.70 0.79 0.76 0.81
MC 0.58 0.67 0.59 0.77
R-scape+MC 0.84 0.84 0.76 0.93
mfDCA-RNA+MC 0.90 0.91 0.88 0.94
EC-RNA+MC 0.89 0.88 0.82 0.93
CODA+MC 0.91 0.91 0.82 1.00

Folded using the whole sequence (54 bases), rather than the 48-base fragment.

number of iterations was changed from default value 50—
500 in our paper, to achieve better performance. mfDCA-
RNA was downloaded from http://dca.rice.edu/portal/dca/
home. As in EC-RNA, we changed the sequence reweight-
ing factor theta from 0.2 to 0. Average product correction
to the final mfDCA score was not employed because it de-
creases the performance for inferring from mutational li-
braries.

Epistasis.  The fitness of a ribozyme variant was calculated
as the natural logarithm of the relative activity of the vari-
ant. Then epistasis was calculated from a non-parametric
null model following Schmiedel & Lehner (Epi-SL) (49).
The combined score from the three interaction scores was
used to estimate the epistatic interactions for our ribozymes.
We also directly obtained the result from epistasis analysis
of twister by Rollins e7 al. (Epi-Rollins) (50).

Performance measurement

For binary classification of bases paired and unpaired,
we measured the performance of different methods by
Matthews correlation coefficient (MCC), sensitivity (re-
call), and precision. MCC, sensitivity, and precision are de-
fined by

TP x TN — FP x FN

MCC = ,
(TP £ FP) x (TP + FN) x (TN + FP) x (TN + FN)

Sensitivit P

vity = ————,

Y= TP+ FN)
TP

Precision =

(TP + FP)

where TP, TN, FP and FN represent True Positive (base
pairs), True Negative (two bases unpaired), False Positive
(two bases unpaired but predicted as paired) and False Neg-
ative (two bases paired but predicted as unpaired), respec-
tively. Sensitivity (or recall) is a measure of the fraction of
correctly predicted base pairs in all known base pairs (i.e.
the percent of the coverage of all native base pairs). Preci-
sion is a measure of the fraction of correctly predicted base
pairs in all predicted base pairs. RNA bases unpaired are
about 50 times more than base pairs. For such an unbal-
anced system, MCC is a balanced measure (51). MCC is
determined by a threshold that separates paired from un-
paired. The maximum value of MCC along with sensitivity
and precision at the same cut off are reported here for the
comparison between different methods. We also employed
the precision-recall curve rather than the receiver operator
characteristic curve because our main interest is the minor
class of positive samples (51) (in this case, base pairs).

RNAfold and IPknot

Secondary structure predictions using RNAfold and
IPknot were calculated through their web servers at http:
/Irna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/R NAfold.cgi
and https://rtips.dna.bio.keio.ac.jp/ipknot/, respectively.

Self-cleaving twister ribozyme

Twister ribozyme data and processing perl scripts were
provided by Dr Yokobayashi (29). 43 229 917 un-
cleaved and 15 008 244 cleaved reads were extracted
from the raw data. Relative activity of each variant


http://dca.rice.edu/portal/dca/home
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
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was calculated by the following equation: RA(var) =
N, cleaved (Var)N total (Wt)/ N total (Var)N cleaved (Wt)

Fluorescence-based kinetic analysis

Firstly a ribozyme sequence was separated into two parts:
the substrate part (CP_S, Supplementary Table S1) and the
enzymatic part (CP_E, Supplementary Table S1). CP_S was
synthesized and HPLC purified by IDT with 5 6-FAM as
fluorophore and 3’ TAMRA as quencher. Cleavage of CP_S
by CP_E will relieve the quenching and therefore generate a
fluorescence signal. The T7 transcription cassette of CP_E
was constructed by PCR, digested by BspQI to make a de-
fined 3’ end, and then transcribed in vitro by T7 RNA tran-
scription system as described before. For one 100 wl reac-
tion system, 50 pmol purified CP_E was mixed with 10 pmol
CP_S. Prior to the cleavage reactions, the mixed RNAs were
denatured at 85°C for 5 min, then annealed in 0.5 mM Tris,
0.05mM EDTA at pH 7.5 and 37°C for 10 min. Prewarmed
10x RNAPol Reaction Buffer (New England Biolabs) and
H,0O were added to the annealed RNAs to start the reac-
tion. The fluorescence (Ex 488 nm/Em 520 nm) was mea-
sured at 37°C for 6h using TECAN infinite M200 PRO.
First-order rate constant of ribozyme cleavage k., was cal-
culated in a similar way as PAGE-based assay (52). The
kinetics data were fitted to F = A — Be %! where F is
the fluorescence intensity, ¢ is time, A is the fluorescence at
completion, and B is the amplitude of the observable phase.
Each data point in Supplementary Figure S5 is the average
of k¢y of 4 independent reaction systems.

RESULTS
Deep mutational scanning experiment

The deep mutational scanning experiment of CPEB3 ri-
bozyme was carried out by random mutations generated
from error-prone PCR (epPCR) as shown in Figure 1B
with mutation rates varied from 1.73% to 5.62% in three
different batches so as to maximize the coverage of dou-
ble and triple mutations. The resulting mutation library
was barcoded and separated for DNA sequencing (DNA-
seq) and in vitro transcription to RNAs, respectively. Tran-
scribed RNAs self-cleaved during the transcription pro-
cess. These self-cleaved and non-cleaved RNAs were then
reverse-transcribed back to DNA for sequencing (RNA-
seq). DNA-seq was used to obtain the full sequences of mu-
tation variants that can be mapped to the reaction products
from RNA-seq according to barcodes. This mapping was
necessary to calculate the relative activity of each variant
based on the fraction of cleaved fragments of the variant
from RNA-seq, relative to that of the wild-type sequence.
Combining three batches of experiments led to the deep mu-
tation data of CPEB3 ribozyme with a total of 243 single,
11968 double, 36 214 triple and 62 992 other (>3) mutants,
along with measured enzymatic activities. This represents
100% coverage of single mutations but only 41.0% cover-
age of all possible double mutations. The low coverage of
double mutations is in part because error-prone PCR tends
to have fewer mutations in the GC than in the AT region
(47,53). To expand the coverage of double mutations, we
approximated triple as double mutations for those position
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pairs not covered by double mutations (see Methods) and
improved the coverage to 61.3% of possible double mutants
with 86.9% for AT and 31.0% for GC pairs. The low muta-
tion coverage for GC pairs and the small library (<50 000
single-to-triple mutation variants) make it challenging for
covariation analysis.

Confirmation of functional activity measured from deep mu-
tational scanning

To confirm functional activities of mutants measured from
deep mutational scanning, we chose the wild type ribozyme
and 11 mutants with varied relative activities in deep muta-
tional scanning, and measured their k., by a fluorescence
assay (Supplementary Figure S4). As shown in Supplemen-
tary Figure S5, the measured activities by the fluorescence
assay are highly consistent with those from deep mutational
scanning with 0.914 for the Pearson correlations. This con-
firms the quality of functional activities generated from
high-throughput techniques.

Covariation-induced deviation of activity (CODA)

The deep mutation data obtained above was employed to
search for the base pairs whose covariation (co-mutation)
would lead to the recovery of cleavage activity, disrupted
by single mutations. To build a sensitive method, we
first employed support vector regression to establish an
independent-mutation model in which the relative activity
of a double mutant is predicted by the activities of two
corresponding single mutants (Figure 1C). Then, the de-
viation of the observed activity from the predicted activ-
ity measures the strength of covariation, with outliers as-
sociated with potential base pairs (Figure 1D). The distri-
bution of these covariation-induced deviations of activity
(CODA) can be deconvoluted into two separate distribu-
tions for independent double mutations centered at CODA
= 0 and outlier double mutations for likely base pairs, re-
spectively (Figure 1C, see Materials and Methods). A naive
Bayes classifier was obtained to estimate the probability of
two bases paired. Both the SVR model and the Bayes classi-
fier were obtained from the deep mutation data alone with-
out making any explicit/implicit assumptions about which
two bases are paired or not paired (i.e. unsupervised). The
performance is robust against a few parameters employed
for unsupervised clustering (see Methods and below). In
other words, it is a predictive model applicable to RNAs
with unknown base-pairing structures.

Performance

Table 1 compares the performance of CODA on inferring
true base pairs from the deep mutation data of CPEB3 ri-
bozyme with R-scape, evolutionary couplings (EC-RNA)
and mean-field direct coupling analysis (mfDCA-RNA)
that have already been successfully applied to extract con-
tacts from RNA families (34-36). To enhance the perfor-
mance of EC-RNA and mfDCA-RNA, we increased the
maximum number of iterations from 50 to 500 in EC-RNA
and removed the reweighting scheme for sequences with dif-
ferent levels of sequence identities to the wild type because
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our sequences are all highly homologous to each other.
For R-scape, E-value was changed to 1000 to optimize its
performance. Unlike CODA, all mutants regardless of the
number of mutations are employed in R-scape, mfDCA-
RNA and EC-RNA. There are many other direct coupling
analysis techniques for inferring protein contact maps (e.g.
gplmDCA (54), PSICOV (55) and plmDCA20 (54)). We do
not compare them here because optimizing their parame-
ters for RNA is out of the scope of the current study. Here,
for method comparison, the thresholds for defining base
pairs were all chosen to maximize the Matthews correla-
tion coefficient (MCC) value. As Table 1 shows, EC-RNA
and mfDCA-RNA have the same performance in term of
Matthews correlation coefficients (MCC = 0.59, note that
MCC is 1 for perfect prediction and 0 for random predic-
tion) and mfDCA-RNA has a slightly higher area under
the precision—recall curve (AUC-PR = 0.48, 0.44, respec-
tively), while R-scape has a moderate performance in term
of MCC (MCC = 0.42) and AUC_PR (AUC_PR = 0.30).
CODA provides 10% improvement in AUC-PR and 5% im-
provement in MCC over mfDCA-RNA.

Figure 2A compares the actual secondary structure
given by various methods. Although Table 1 indicates that
the overall performance of mfDCA-RNA, EC-RNA, and
CODA is lower than secondary structure predictors (either
RNAfold (MCC = 0.66) or IPknot (MCC = 0.71)). How-
ever, RNAfold can only predict nested helical stems. [Pknot
can predict the pseudoknot with the long contiguous region
of stacked base pairs but not the short, nonhelical one. By
comparison, EC-RNA (but not mfDCA-RNA) and CODA
can capture some nested along with some non-nested base
pairs from both pseudoknots as shown in Figure 2A.

Figure 2B compares precision as a function of sensitivity
or precision-recall curves given by various methods. Sys-
tematic improvement of CODA over mfDCA-RNA and
EC-RNA is clearly demonstrated with 77%, 20% and 10%
increase, respectively, in AUC_PR over R-scape, EC-RNA
and mfDCA-RNA, respectively. At the maximal MCC
value, EC-RNA yields 10 correct base pairs and 1 false pos-
itive prediction and mfDCA-RNA has nine correct predic-
tions, compared to 10 correct base pairs at 100% precision
by CODA (Figure 2A), while R-scape has nine correct base
pairs and eight false positives (Supplementary Figure S6). It
is particularly encouraging to note that R-scape, EC-RNA
and CODA can capture one (UU) or two (UU and GU)
out of three noncanonical pairs. Neither RNAfold nor IP-
knot can predict any noncanonical pairs as these base pairs
are commonly ignored in secondary structure prediction.
This confirms the usefulness of deep mutational scanning
for revealing high-quality correlated mutations in tertiary
contacts.

What makes CODA a better performer in detecting base
pairs? Figure 2C—E shows the density plot for base-pairing
maps given by mfDCA-RNA, EC-RNA and CODA, re-
spectively. The predicted scores for all base pairs by CODA
have the widest distribution (from red to blue), indicating
the largest contrast between the scores for bases paired and
those for bases unpaired. This is confirmed by Supplemen-
tary Figure S7, which compares the score distributions of
bases unpaired, paired with double mutations fully covered,
and without fully covered (lack of statistics). These three

states are well separated in the distribution of Ps scores in
CODA, but neither in mfDCA-RNA, nor in EC-RNA. This
confirms the improvement of the signal-to-noise ratio by
CODA, due to the fact that CODA employs both functional
and non-functional sequences whereas mfDCA-RNA and
EC-RNA rely on functional sequences only. If we remove
non-functional sequences (defined as relative activity less
than one half of the wild type sequence), the performance of
CODA will drop drastically with AUC-PR decreasing from
0.53t00.39 and MCC from 0.62 to 0.48, indicating that ac-
counting for non-functional sequences is an integral part of
the CODA algorithm.

However, the helix regions derived from deep mutation
data are much shorter than the native ones (Figure 2A). Un-
detected base pairs usually occur at the edge of the region
with contiguous base pairs because the mutation at the edge
of a stem affects less on structural stability and thus leads
a weaker covariation signal. Moreover, the mutant library
is small and biases toward AT pairs because error-prone
PCR tends to have fewer mutations in the GC than in the
AT region (47,53). The low mutation coverage leads to low
base-pair coverage (or low sensitivity of mfDCA-RNA, EC-
RNA and CODA).

To remedy the problem of underestimating the length
of contiguous base-paired regions, we introduced a sim-
ple base-pair predictor by using experimentally measured
base-pair and stacking energies (48) and a restraint that one
base cannot be paired with more than a single base. Us-
ing energy optimization for determining base-pairing struc-
tures also removes the need to set a threshold to separate
paired from non-paired bases because such a threshold is
not known « priori. Only a single adjustable parameter was
employed to penalize lone pair and non-AU, GC or wob-
ble GU pairs by setting it to 3 kcal/mol so that the pre-
dictor does not produce any lone and base pairs beyond
AU, GC and GU in base-pair prediction by Monte Carlo
(MC) simulated annealing alone (MC results are the same
for CPEB3 to the value between 2 and 5 kcal/mol). As
shown in Table 1, MC alone can yield a reasonable perfor-
mance (although not as accurate as RNAfold in term of the
MCC value). Then, we incorporated the pairing score (Ps)
from CODA as an additional energetic term with a relative
weighting factor over the mean Ps scores. Here, we incor-
porate Ps scores for all possible pairs of bases without using
any threshold to pre-define base pairs or exclude any specific
pairs. As the Supplementary Figure S8 shows, the perfor-
mance of CODA+MC is stable after the weighting factor
>2. We performed MC simulated annealing with random
initial seeds 100 times to obtain contact probabilities. Ta-
ble 1 shows that incorporating CODA to MC increases the
number of correctly predicted base pairs from 10 to 25 bp as
shown in Figure 2A. A nearly perfect precision-recall curve
by CODA+MC (Figure 2B) highlights the power of com-
bining a secondary-structure folding algorithm with CODA
analysis. By comparison, we also combined MC with R-
scape, mMfDCA-RNA and EC-RNA (Table 1) with the opti-
mized weighting factor of 0.8, but 0.5 for R-scape (Supple-
mentary Figure S8). Similar to CODA+MC, R-scape+MC,
mfDCA-RNA+MC and EC-RNA+MC yield significant
improvement over R-scape, mfDCA-RNA and EC-RNA
with MCC =0.92,0.90 and 0.93, respectively, although they
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Figure 2. (A) The native base pairs of the CPEB3 ribozyme along with base pairs predicted by secondary structure predictors RNAfold and IPknot
and inferred from its deep mutation data by mean-field direct coupling analysis (mfDCA-RNA), evolutionary couplings (EC-RNA), covariation-induced
deviation of activity (CODA), and CODA integrated with a Monte Carlo simulated annealing (CODA+MC). Native Watson—Crick and non-Watson—Crick
base pairs are shown in blue and green, respectively. False positive predictions are shown in red. (B) Precision (fraction of correct base pairs in predicted base
pairs) versus sensitivity (coverage of known base pairs) by R-scape, nfDCA-RNA, EC-RNA, CODA, MC and CODA+MC, using the deep mutation data
from CPEB3 ribozyme. Results from secondary structure predictor (RNAfold and IPknot) are also shown as points. (C) The comparison between native
base-pairing map (upper triangle) of CPEB3 ribozyme and the map inferred from CPEB3 ribozyme deep mutation data (lower triangle) by mfDCA-RNA.
(D), (E) and (F) are the same as (C) but for EC-RNA (D), CODA (E) and CODA+MC (F), respectively.
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contain 2-3 false positive predictions (Supplementary Fig-
ures S6A and S9A). CODA+MC continues to improve over
these two methods with MCC = 0.96.

It is of interest to note that Rfam (56) contains 110
homologous sequences for CPEB3, applying R-scape,
mfDCA-RNA and EC-RNA to Rfam sequences yield
AUC-PR at 0.09, 0.14 and 0.15 (Supplementary Table S8),
respectively. These values are much smaller than to the use
of sequences from deep mutations by the same methods
(0.30, 0.48 and 0.44, respectively). The result supports the
usefulness of randomly mutated sequences to reveal evolu-
tionary coupling.

Twister ribozyme

To confirm the improvement of CODA analysis over R-
scape, EC-RNA and mfDCA-RNA and high-accuracy in-
ference of base-pairing structure by using MC simulated
annealing, we obtained the raw deep mutation data of a
twister ribozyme from Kobori and Yokobayashi (29). The
ribozyme can self-cleave into two RNA fragments of 6 and
48 bases long. The ribozyme mutant library is in the C-
terminal 48-nucleotide fragment only. Thus, we will focus
on this fragment whose base-pairing structure (57) is shown
in Figure 3 (PDB ID: 40JI). The base pair pattern contains
three noncanonical pairs (A2G39, A22A40, and Hoogsteen
base pair U18A23), one lone pair (C9G13) as well as two
long-distance loop-loop pseudoknots (or kissing interac-
tions) that were considered as tertiary interactions (6,57).
The high throughput sequencing data from Kobori and
Yokobayashi (29) contains a library of mutants including
144 single, 10 152 double, 240 967 triple and 272 690 other
(>3) mutated variants. This is 100% coverage of all possible
single and double mutations.

Table 1 compares the performance of various methods
for the twister ribozyme. The overall trend is the same as
CPEB3 ribozyme. CODA increases 30%, 6% and 19% in
AUC-PR over R-scape, mfDCA-RNA and EC-RNA, re-
spectively, and 23%, 20%, 20% in MCC values over R-
scape, mfDCA-RNA or EC-RNA. In particular, CODA
has 5% and 18% absolute increase in sensitivity and pre-
cision, respectively, over either mfDCA-RNA or EC-RNA.
For R-scape, CODA has 29% absolute increase in sensitiv-
ity but 8% absolute decrease in precision. It is of interest
to note that commonly used secondary structure predictors
RNAfold and IPknot perform poorly if applying directly to
the Twister cleavage fragment (48 bases) with MCC = 0.22
and 0, respectively. RNAfold and IPknot yield comparable
performance to R-scape, mfDCA-RNA or EC-RNA only if
the full twister sequence is provided for structural folding.

The base-pairing plot (Figure 3) shows that CODA yields
overall correct topology with lone pair and pseudoknots but
misses 4 bp with three false positive predictions. These false
positives are associated with an obvious error of one base
paired with more than a single base. Supplementary Fig-
ure S10 further compares the precision-recall curve given by
R-scape, EC-RNA, mfDCA-RNA and CODA. CODA has
zero false positives (100% precision) for the first 7 base pairs
(41% sensitivity), indicating that these seven base pairs can
be identified without any ambiguity, compared to five by R-
scape, six by EC-RNA and five by mfDCA-RNA. The den-

sity plot for the base-pairing map (Supplementary Figure
S11) and score distributions (Supplementary Figure S12)
confirm that the greater separation of bases unpaired and
paired is the reason for better performance of CODA, rela-
tive to R-scape, EC-RNA and mfDCA-RNA.

More importantly, CODA+MC determines all 14 canon-
ical base pairs at 100% precision, including lone and non-
nested base pairs. This further confirms the complemen-
tary power of mutation-derived and experimental base-
pairing energetic scores. Similar to CPEB3, the combina-
tion of MC with R-scape, EC-RNA and mfDCA-RNA (Ta-
ble 1, Supplementary Figures S6B and S9B) yields signif-
icant improvement over R-scape, EC-RNA and mfDCA-
RNA, respectively, with a performance much closer to
CPEB3 although a different weighting factor of 1 has
to be used to maximize the performance of mfDCA-
RNA (Supplementary Figure S8). However, unlike CPEB3
ribozyme, CODA+MC missed three noncanonical base
pairs (A2G39, A22A40 and Hoogsteen base pair UI18A23)
whereas EC-RNA+MC and mfDCA-RNA+MC captured
A22A40 with one false positive in the same stem. It is noted
that Rfam contains (56) only 31 homologous sequences for
twister, too few to achieve a reasonable performance by R-
scape, EC-RNA and mfDCA-RNA.

One interesting question is how the performance of
CODA depends on the total number of reads. Supplemen-
tary Figure S13 shows that the MCC value as a function
of the total number of reads by randomly removing the
reads in the twister data. All of R-scape, mfDCA-RNA and
EC-RNA show large fluctuation whereas the MCC value of
CODA is stable ~0.75 from 5% (10%3) to 100% (107-%) reads.
This result suggests that CODA is more robust against the
size variation of the mutation data.

For CODA analysis, we have included triple mutants for
those position pairs not covered by double mutations. As
shown in Supplementary Table S9, there is a significant re-
duction in the performance in CPEB3 if only single and
double mutants are utilized. AUC-PR reduced from 0.53 to
0.42 and MCC from 0.62 to 0.52. This indicates the utility
of triple mutants when the coverage of double mutations is
low, similar to the beneficial use of all mutants in R-scape,
EC-RNA and mfDCA-RNA.

DISCUSSION

Base pairing is responsible for stabilizing overall structural
fold of RNA structures and the key for understanding func-
tional mechanisms. A full base-pairing structure is more
than secondary structure because it contains tertiary con-
tacts such as lone base pairs and kissing loop pseudo-
knots. This work shows that these challenging tertiary con-
tacts can be inferred from deep mutation data by analyzing
covariation-induced deviation of double-mutation activity
from the independent-mutation model (CODA). The com-
bination of CODA with a Monte Carlo simulated annealing
leads to detection of all WC pairs (except non-WC pairs but
including lone WC pairs) for twister ribozyme at 100% pre-
cision and all WC pairs plus two non-WC pairs for CPEB3
ribozyme at 96% precision, despite that CPEB3 ribozyme
has only a small library of <50 000 single-to-triple mutants
and the mutation data of twister ribozyme is limited to the
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Figure 3. The base-pairing structure of the twister ribozyme along with base pairs predicted by secondary structure predictors RNAfold and IPknot
and inferred from its deep mutation data by mean-field direct coupling analysis (mfDCA-RNA), evolutionary couplings (EC-RNA), covariation-induced
deviation of activity (CODA), and coupling of CODA and Monte Carlo simulated annealing (CODA+MC). In the right panel, native Watson—Crick and
noncanonical base pairs are shown in blue and green, respectively. False positive predictions are shown in red.

large fragment from self-cleavage. Moreover, two pseudo-
knots associated with tertiary interactions in CPEB3 and
twister were both captured.

The CODA analysis developed here has a better perfor-
mance than R-scape, EC-RNA and mfDCA-RNA. This is
reflected from 19% and 5% increases in MCC by CODA
over the next best (mfDCA-RNA) for CPEB3 and twister,
respectively. More importantly, CODA is more robust
against changes in the number of reads (Supplementary
Figure S13) and the weighting factor when combining with
MC simulated annealing (Supplementary Figure S8). This
improvement in performance is likely due to an increase in
the signal-to-noise ratio as a result of employing all mu-
tation variants functional or non-functional in CODA as
shown in Supplementary Figures S7 and S12. It should be
mentioned that this comparison is not entirely justifiable be-
cause EC-RNA and mfDCA-RNA were developed for di-
verging mutations rather than close homologs of a few mu-
tations. A more justifiable comparison is made to epistasis
analysis below.

Identification of noncanonical, lone and non-nested base
pairs is not a trivial exercise. Double-stranded long helical
stems with many stacked base pairs are relatively easy to
detect because they serve as core structural elements and a
mutation at the center of these stems will have a large im-
pact on the overall structural stability. Pseudoknots, on the
other hand, are often involved with a few base pairs between
two distant hairpin loops (loop-loop pseudoknots or kiss-
ing stem-loop (6,58)) as shown in Figures 1 and 3. These
base pairs are considered as a part of tertiary contacts to

help to stabilize the overall 3D shape. CODA as well as
evolutionary or direct coupling analysis can capture one or
more base pairs within a region of contiguous base pairs re-
gardless if the pair is nested or non-nested (pseudoknots). In
other words, it offers an excellent base-pairing topology for
expanding into the full base-pairing structure. This is con-
firmed by a combination of CODA or evolutionary/direct
coupling with MC simulated annealing, which significantly
increases sensitivity while maintaining high precision.

A total of three base pairs were missed by the combi-
nation of CODA and Monte Carlo simulated annealing in
twister ribozyme, all of which are noncanonical pairs. They
are A2G39, A22A40 and Hoogsteen base pair U18A23.
The backbone orientations of these noncanonical pairs are
quite different from Watson—Crick pairs so that all double
mutations on these sites yield negative signals in CODA.
Moreover, these three noncanonical base pairs are all at
the edge of a helical stem (Figure 3). Their mutations
may not necessarily have a detrimental effect on the ri-
bozyme’s function. By comparison, all three noncanoni-
cal base pairs in CPEB3 ribozyme (G6U41, C12A35 and
U26U43) have positive signals in CODA although only two
have signals strong enough to be detectable by the combi-
nation of CODA and MC simulated annealing. One of the
noncanonical base pairs is a lone pair in pseudoknot, which
may have played an important role in the overall stability of
the ribozyme’s structure. Interestingly, mfDCA-RNA+MC
and EC-RNA+MC can capture one noncanonical base pair
with one false positive in twister as well as one or two non-
canonical base pairs in CPEB3 with some false positives
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(Supplementary Figure S9), suggesting that it is possible
to further enhance the signals of noncanonical base pairs
in CODA. Because canonical and noncanonical base pairs
are treated equally in CODA, a CODA version that treats
canonical and noncanonical base pairs separately will likely
improve the sensitivity of detecting noncanonical base pairs.
However, this separation will increase the risk of over train-
ing and is a good subject for a future study when more data
is available.

This study investigated two self-cleaving ribozymes as
proof of concept. There is a question if the parameters used
in CODA+MC could have overfitted the two ribozymes
tested here. The independent-mutation model in CODA is
an unsupervised model generated from non-linear regres-
sion between single and double mutations with the param-
eters optimized to produce the best fit between predicted
and actual relative activities of double mutants. We have em-
ployed the default C and y parameters (C = 2000 and v =
2.0) where C is a hyperparameter to control how much to
penalize the misclassification and v is a hyperparameter for
the non-linear Gaussian kernel. In addition, we define out-
liers (base pairs) according to 3 standard deviations (SD)
away from the fitted model. Supplementary Table S7 shows
the variation of maximal MCC for CPEB3 as we change the
number of SDs from 1 to 7, C from 1 to 10 000, and y from
0.01 to 10 while fixing the other two values at their default
values. MCC values change little in a wide range tested. This
result confirms the robustness of the model obtained.

For MC simulated annealing, one parameter introduced
is the energy penalty that discourages lone pairs and non-
canonical pairs by MC alone. The parameters for simulated
annealing were chosen to ensure the identification of the
global minimum within a reasonable computing time. A
value between 2-5 kcal/mol for the energy penalty makes
no changes to the outcome of MC alone. Another param-
eter is the weighting parameter for the CODA score (or R-
scape, EC-RNA and mfDCA-RNA scores) before mixing
with experimentally measured base-pairing energy scores.
Supplementary Figure S8 confirms that the CODA+MC
method is more robust than R-scape+MC, EC-RNA+MC
and mfDCA+MC as the latter two methods achieve their
best performance within a narrow range of the weight-
ing factor (~0.8-1) while CPEB3 has a stable performance
for the weighting factor >2. The robustness of CODA is
also reflected from the fact that its performance is indepen-
dent of the total number of reads over a wider range than
EC-RNA and mfDCA-RNA (Supplementary Figure S13).
However, to truly prove the general applicability of CODA
to other RNAs, more experimental studies for RNAs with
known structures or RNAs with unknown structures have
to be performed and validated. Participation of RNA puz-
zles (blind prediction) (25) will be the ultimate test for fu-
ture consideration. Nevertheless, this work clearly demon-
strates the potential in utilizing deep mutation data for pin-
pointing both secondary and tertiary base-pair contacts as
multiple methods (R-scape+MC, EC-RNA+MC, mfDCA-
RNA+MC and CODA+MC) can achieve highly accurate
performance (MCC > 0.9).

Obtaining structural clues of self-cleaving ribozymes are
important because self-cleaving ribozymes are broadly dis-
tributed in genomes of different organisms from viroids

to vertebrates (40-42). Understanding their structures and
functions is only at the beginning (37) with almost all
the known ribozymes having interesting mechanistic dif-
ferences (37-39). This deep-mutation-based method can
infer base-pairing structures at the single base-pair level
with sensitivity and precision inaccessible to current multi-
dimensional chemical probing methods.

The method, however, is not limited to self-cleaving ri-
bozymes. Previously mutational scanning was applied to in-
vestigate tRNA (28), RNA catalysis (26,59), RNA-protein
interactions (31,32), and RNA-RNA interactions (27,30).
The high-throughput techniques employed for function se-
lection prior to sequencing includes in vitro affinity/activity
selection (26,31-33) and in vivo assay according to cell
growth (28,30) and fluorescence intensity (60). The success
of these ingenious in vitro and in vivo techniques for func-
tion selections indicates the wide applicability of deep mu-
tational scanning in determining in vitro and in vivo base-
pairing structures of many types of RNAs beyond self-
cleaving ribozymes. Not all RNAs will be suitable for high-
throughput deep mutation analysis, however. The method
will require an RNA whose phenotype is strongly depend-
ing on its unique structure. This phenotype has to be mea-
sured quantitatively by a high-throughput technique. The
effect of RNA modification on function is not consid-
ered. In addition, not all noncanonical base pairs were de-
tected for twister and CPEB3. Furthermore, base triplets,
although rare (61), are simply ignored in secondary struc-
ture folding. Nevertheless, a deep mutational analysis will
make more RNAs accessible for high-quality determina-
tion of base pairs. The technique will be complementary to,
but certainly not as a mean for the replacement of existing
structure-determination technologies.

Another limitation for deep mutation studies is RNA se-
quence length. A long RNA would have to overcome an
increased difficulty in amplification of RNA libraries with
high mutation rates, reduced coverage due to fast increase in
the number of possible double mutations, decreased quality
of reads for longer RNAs, and the reduced ability to reach
the global minimum for long RNAs by MC simulated an-
nealing. We demonstrated that the CODA analysis is capa-
ble of detecting nested and non-nested base pairs as well
as some noncanonical base pairs even from a small mutant
library of <5 x 10* mutants for 81-nucleotide CPEB3 ri-
bozyme. This suggests that the method may be applicable to
RNAs with 800 bases or less for an achievable library of 5
x 10% mutants (or 600 bases due to the current read length
limit of the next-generation sequencing platforms). While
this number may be a theoretical upper bound, RNAs of
200-300 nucleotides are certainly approachable.

However, it is important to note that combining CODA
with MC simulated annealing can fold the complex base-
pairing pattern of the twister fragment correctly. By com-
parison, the secondary structure predictors RNAfold and
IPknot have to use the whole sequence to achieve a rea-
sonable prediction. For example, MCC = 0.22 if using the
twister fragment sequence for RNAfold, compared to 0.68
when using the whole twister sequence (Table 1). Solving
fragment base-pairing structures may be an approach for
probing those long RNAs if proved challenging to perform
deep mutation on the whole chain.



In addition to its own importance, the accurate, full base-
pairing structure obtained from deep mutational scanning
should benefit high-quality 3D structure modeling. This is
because a full base-pairing structure contains not only sec-
ondary structure motif but also important tertiary contacts
of lone, noncanonical, and non-nested base pairs. Thus, it
can serve as a preformed, quasi-three-dimensional frame
for correctly folding into the right RNA tertiary struc-
ture. Its usefulness for 3D structure modeling has been
demonstrated in RNA Puzzles (blind RNA structure pre-
diction) even with the data not yet at the single-base-pair
level (25). We have attempted 3D structure prediction by
using Rosetta (62) and 3dRNA (63) and found that the
number of restraints is not large enough to fold the so-
phisticated topology of twister. We will defer this to future
studies.

Moreover, the CODA analysis should be a powerful
tool for analyzing deep mutation data of proteins. This
transferability is reflected from migration of protein mu-
tational coupling analysis programs (EC and mfDCA) to
RNAs although they were originally designed for pro-
teins. Hydrogen-bonded base-pairing interactions in RNA
structures are the dominant interaction with the strongest
covariation signals. As a result, what emerges from the
CODA analysis will be the base-base contact map in term
of base pairing. On the other hand, hydrophobic pack-
ing with complementary shapes and sizes of side chains is
the dominant driving force for protein folding (64). Thus,
CODA analysis will lead to residue-residue contact maps
based on distance proximity of amino acid residues. Be-
cause an accurate determination of protein contact maps
has been demonstrated to yield high-resolution protein
structure (65), the results reported here suggest the poten-
tial of protein structural inference from deep mutational
scanning (66,67).

Indeed, after the completion of this work, Rollins et al.
(50) and Schmiedel and Lehner (49) published their studies
of employing deep mutational scanning for highly accurate
inference of several protein contact maps for protein fold-
ing. In particular, Rollins ez al. (50) further applied their
epistasis method to twister ribozyme. For completeness, we
obtained the result of Rollins et al. (Epi-Rollins for short)
and implemented the epistasis program of Schmiedel and
Lehner (Epi-SL for short) with minor adaption for RNA.
Their results for the Twister fragment, shown in Supplemen-
tary Table S10 with corresponding base-pairing structures
shown in Supplementary Figure S14. AUC-PR and MCC
are 0.50 and 0.59, respectively, by Epi-Rollins, 0.59 and 0.67,
respectively, by Epi-SL, compared to 0.72 and 0.79, respec-
tively, by CODA. The combination of Epi-SL with MC sim-
ulated annealing with a specifically optimized a weight of
0.8 improves over Epi-SL with MCC = 0.91, matching the
performance by CODA+MC. The matching performance,
however, appears only at weight of 0.8 whereas the perfor-
mance of CODA+MC is stable for weight >2 (Supplemen-
tary Figure S8). Nevertheless, the result further confirms
that highly accurate structural inference can be achieved by
coupling statistical covariation analysis of deep mutation
data with a secondary-structure folding algorithm.
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DATA AVAILABILITY

Illumina sequencing data for the CPEB3 ribozyme were
submitted to the NCBI Sequence Read Archive (SRA) un-
der SRA accession number PRIJINAS15794 (https://www.
ncbi.nlm.nih.gov/sra/PRINAS515794).

All custom scripts needed to repeat the analyses are avail-
able at https://github.com/zh3zh/CODA. The code takes
about | hour for preprocessing sequencing data, 1 second
for generating CODA values and pairing probabilities, and
another hour for Monte Carlo simulated annealing using a
workstation with 16 core (2.6GHZ) and a maximum RAM
of 128G.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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