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Floral signals evolve in a predictable way
under artificial and pollinator selection in
Brassica rapa
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Abstract

Background: Angiosperms employ an astonishing variety of visual and olfactory floral signals that are generally
thought to evolve under natural selection. Those morphological and chemical traits can form highly correlated sets
of traits. It is not always clear which of these are used by pollinators as primary targets of selection and which
would be indirectly selected by being linked to those primary targets. Quantitative genetics tools for predicting
multiple traits response to selection have been developed since long and have advanced our understanding of
evolution of genetically correlated traits in various biological systems. We use these tools to predict the
evolutionary trajectories of floral traits and understand the selection pressures acting on them.

Results: We used data from an artificial selection and a pollinator (bumblebee, hoverfly) evolution experiment with
fast cycling Brassica rapa plants to predict evolutionary changes of 12 floral volatiles and 4 morphological floral
traits in response to selection. Using the observed selection gradients and the genetic variance-covariance matrix
(G-matrix) of the traits, we showed that the observed responses of most floral traits including volatiles were
predicted in the right direction in both artificial- and bumblebee-selection experiment. Genetic covariance had a
mix of constraining and facilitating effects on evolutionary responses. We further revealed that G-matrices also
evolved in the selection processes.

Conclusions: Overall, our integrative study shows that floral signals, especially volatiles, evolve under selection in a
mostly predictable way, at least during short term evolution. Evolutionary constraints stemming from genetic
covariance affected traits evolutionary trajectories and thus it is important to include genetic covariance for
predicting the evolutionary changes of a comprehensive suite of traits. Other processes such as resource limitation
and selfing also need to be considered for a better understanding of floral trait evolution.
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Background
Understanding and predicting the evolutionary re-
sponses of phenotypes to selection remains a major chal-
lenge in evolutionary biology. This undertaking is not
trivial because phenotypes are often complex traits co-
evolving with each other underlain by complex genetic
architectures. Yet, understanding how such co-
evolutionary units evolve under natural selection is im-
portant to understand how species may respond to
changes in their environment. Flowers are complex or-
gans with enormous diversity in morphology, color and
scent, and thus comprise a complex set of interrelated
traits. These visual and olfactory components, which
characterize the radiation of angiosperms, are recognized
to evolve as a means of interaction with their biotic en-
vironment [1, 2]. One key driver, the pollinators, has
been emphasized to be important for floral trait evolu-
tion since long [3, 4]. Yet, only a handful of studies have
attempted to predict evolutionary responses of floral
traits to pollinator selection [5–9] . Moreover, these
studies only examined one or a few morphological traits
at a time, whereas interactions of flowers with other or-
ganisms are typically mediated by a combination of traits
of morphological and/or olfactory nature [10, 11]. A
multivariate approach can, therefore, help to unravel the
genetic architecture of floral traits and predict their joint
evolution.
A great number of empirical studies have documented

significant heritability and genetic (co)variance of diverse
floral traits [12–15], as well as phenotypic selection act-
ing on them [16–27]. Among those traits, floral scents
have started drawing more and more attention. Floral
scents are usually highly variable and diverse on all taxo-
nomic levels [28], and many studies have documented
natural selection on scent [22–25, 29, 30]. Earlier studies
have shown that scent phenotypic variation has a signifi-
cant heritable genetic component in fast-cycling Brassica
rapa (20–45%, [15]). In the same species, Gervasi and
Schiestl [25] showed in a greenhouse experiment that
bumblebee pollinator selection resulted in taller plants
with higher UV-reflecting flowers and increased
amounts of several floral scents, presumably used by the
bees as visual and olfactory signals. However, the selec-
tion intensities acting on each trait alone could not fully
explain the realized evolutionary changes [25]. Pheno-
typic trait responses to selection are known to depend
on the pattern of genetic variance-covariance among
them [31, 32]. In particular, traits that are genetically
correlated because of a shared genetic basis (e.g., pleio-
tropic genes) will indirectly respond to selection on
linked traits, which may mask the effect of direct selec-
tion on them. Therefore, the targets of direct selection
cannot be well characterized unless the selection re-
sponses are decomposed into their direct and indirect

components. This is best done using a multivariate
quantitative genetics framework [31, 33].
Quantitative genetics theory provides a means to make

such evolutionary predictions in the form of the multi-
variate breeder’s equation (or Lande’s equation), △z =Gβ
[31]. Lande’s equation predicts the per-generation
change in a set of quantitative traits in a population (△z)
as the product of their genetic variance-covariance
matrix (G-matrix) with the vector of selection gradients
acting on them (β). The components of Lande’s equation
can be estimated from phenotypic and individual pedi-
gree relationship data in an experiment by using the
classical tools of quantitative genetics [32, 34]. More im-
portantly, this multivariate approach can help distinguish
between the direct and indirect responses to pollinator
selection. The direct component of the response to se-
lection is obtained by multiplying the diagonal elements
of the G-matrix (Gii, the additive genetic variance of the
traits) with the β vector, which holds, for a single trait i:
△zi

direct =Gii*βi, while its indirect component is the
product of the off-diagonal elements of G (genetic co-
variance: Gij) with β, summed over all traits j ≠ i: △zi

indir-

ect = ∑Gij*βj. The total response is the sum of these two
components. Traditionally, the distinction between dir-
ect and indirect selection has been made by comparing
the selection differential and the selection gradient act-
ing on each trait separately [32]. A selection differential
(S) is the phenotypic covariance between relative fitness
w and the trait z: S = Cov(w, z), while β is the coefficient
of regression of relative fitness on the trait value z: β = S/
VP (with VP the phenotypic variance) [32]. S includes the
direct and indirect effects of selection on the trait but it
cannot distinguish between them (unless in artificial se-
lection where the directly imposed selection is known).
Under this approach, a trait is said to be under direct se-
lection if its selection gradient estimate β is significant.
Otherwise, the selection represented by a significant se-
lection differential is interpreted as a mix of direct and
indirect selection. However, the relative importance of
direct and indirect selection can be established when
comparing the direct and indirect components of the
predicted selection response obtained from Lande’s
equation. In that case, if the total predicted response of
a trait is opposed to or smaller than its direct compo-
nent, then evolution of that trait will be said to be con-
strained by the genetic correlation among the traits.
Furthermore, if the observed response is well predicted
by the total response and the direct selection component
is in the same direction as the observed response, then
the trait can be said to be a target of direct selection.
Otherwise, if observed and direct responses are opposed,
the trait response is more influenced by indirect selec-
tion than direct selection and is thus likely evolutionarily
constrained. Because these inferences use the G-matrix,
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they are less influenced by non-genetic causes of associ-
ation among traits than inferences based on the selection
differentials. Finally, one key evolutionary insight we can
get from the multivariate quantitative genetic framework
presented here is that traits may deviate from their pre-
dicted changes under direct selection (β) because of in-
direct selection pressures caused by selection on the
other traits and their genetic correlation with them. In
other words, traits may deviate from their expected evo-
lutionary trajectory given by β, and thus be constrained
by genetic correlations with traits under a different set
of selection pressures [35, 36].
In this study, we predict floral traits evolution under arti-

ficial and pollinator selection from estimates of the G-
matrix and the selection gradients of the traits. We tested
how the evolutionary trajectory of a trait is affected by gen-
etic correlations among traits by dissecting the total re-
sponses to selection into their direct and indirect
components. By comparing the direction of the observed
trait responses with the directions of their direct and indir-
ect predicted responses, we tested whether traits were tar-
gets of direct selection in the pollinator experiment. We
also assessed the evolution of genetic architectures (G-
matrices) during the artificial selection process. We used
data from two forward-in-time experimental evolution

experiments that documented genetic co-variation and evo-
lutionary responses in floral traits of fast cycling Brassica
rapa plants. The G-matrix of the plant population was esti-
mated from a three-generation bi-directional artificial selec-
tion experiment on plant height [14]. In that study, tall-
and short-plants were selected artificially for building the
two directional lines, plus randomly selected plants for an
additional control line. Four morphological floral traits and
12 floral volatiles were measured in each generation. Con-
trol lines in this experiment were used to estimate the G-
matrix. The selection gradients β were estimated in four
evolutionary experiments: two for the tall- and short-
selection lines in the artificial selection experiment men-
tioned above [14]; the other two from a 9-generation pollin-
ator selection experiment [25]. The pollinator selection
experiment was carried out with bumblebees and hoverflies
as the selection agents separately. The same set of floral
traits were measured, and the parental plants were from the
same seed bank as in the artificial-selection experiment.

Results
Predictions in the artificial selection experiment
The direction of the response of plant height, the direct
and only target of artificial selection, was correctly pre-
dicted in the “tall” and in the “short” treatment (Fig. 1),

Fig. 1 Predicted and observed responses of measured traits to artificial selection. Green triangles are the observed changes. Black dots are the
predicted selection responses. The solid horizontal lines indicate the 95% HPD interval of the predictions. Both predicted and observed changes
were scaled by the phenotypic standard deviation of the trait. Sample sizes: plant height: 600; flower size traits (PW, PL, FD): 581; volatiles: 579.
Trait abbreviations: Plant height (Height), Petal width (PW), Petal length (PL), Flower diameter (FD), Benzaldehyde (Ben), Phenylacetaldehyde (PAA),
α-Farnesene (FAR), Benzyl nitrile (BenN), 2-Amino benzaldehyde (Aben), Indole (Ind), Methyl anthranilate (MA), Phenylethyl alcohol (PA), Methyl
salicylate (MS), Methyl benzoate (MB), Z-(3)-Hexenyl acetate (ZHA), 1-Butene-4-isothiocyante (ITC)
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although the observed responses of plant height were
smaller than their predictions in both experiments.
Given that all other traits are positively correlated with
plant height (see Table S4), their indirect responses are
predicted positive for tall lines and negative for short
lines. However, observed responses of the flower size
traits (petal width, PW; petal length, PL; and flower
diameter, FD) were positive in short lines and close to
zero in tall lines (Fig. 1). The direction of the correlated
responses of floral volatile organic compounds (VOCs)
were predicted well in most of the traits in both treat-
ments (Fig. 1), although the predicted responses were
not significantly different from zero in about half of the
traits because their highest probability density (HPD) in-
tervals overlapped with zero (Fig. 1).

Predictions in the pollinator evolution experiment
In the bumblebee treatment, our predictions overesti-
mated the evolutionary changes of flower morphological
traits and correctly estimated the response of plant
height and nine of the VOCs. Although the responses of
the nine scent compounds were in the same direction
and within the HPD intervals of their predictions, only
seven of the predicted responses were significantly dif-
ferent from zero (phenylacetaldehyde, PAA; α-farnesene,
FAR; 2-amino benzaldehyde, Aben; indole, Ind; methyl
anthranilate, MA; phenylethyl alcohol, PA; methyl
benzoate, MB; Fig. 2a; Table S6).
The response decomposition analysis showed that

most direct responses were much smaller and often in
the wrong direction relative to the observed responses.
The direct response was correctly predicted as positive
for plant height and flow diameter (FD) among morpho-
logical traits, and phenylacetaldehyde, 2-amino benzalde-
hyde, indole, and methyl benzoate among VOCs
(Fig. 2a). Selection gradients (direct responses) and ob-
served responses were thus correctly aligned for those
traits, making them good candidates for targets of direct
selection, although the response of flow diameter was
smaller than predicted. In contrast, the indirect compo-
nents of the predicted responses were all positive and
had much larger HPD intervals, often overlapping with
zero (although not for morphological traits, α-farnesene,
2-amino benzaldehyde, indole, methyl anthranilate, and
phenylethyl alcohol). Therefore, the indirect VOC re-
sponses compensated for negative direct selection re-
sponses in α-farnesene, methyl anthranilate, and
phenylethyl alcohol (for those traits with correct and sig-
nificant total predicted responses).
In the hoverfly treatment, most VOC trait responses

were small compared to the bumblebee treatment
(Fig. 2b). Evolutionary predictions were mostly not dif-
ferent from zero except for plant height, flower morph-
ology, α-farnesene and indole, although predicted

responses of flower traits were opposed to their observa-
tions. Of the 12 VOCs, only α-farnesene’s response was
within its prediction’s HPD interval and different from
zero (Fig. 2b; Table S6). From the decomposition of trait
responses, α-farnesene would be the most likely candi-
date for a trait under direct hoverfly selection. Other
traits also had observed and direct responses aligned but
their predictions were not significantly different from
zero (benzaldehyde, 2-amino benzaldehyde, phenylace-
taldehyde, phenylethyl alcohol, 1-butene-4-isothiocyan-
ate) or did not include the observed change within their
HPD (plant height, indole) (Table S6). The VOC indirect
response components were all positive and not signifi-
cantly different from zero (although not for α-
farnesene). All morphological traits’ indirect responses
were positive and significant (Fig. 2b; Table S6).

Effects of genetic covariance on predicting evolutionary
trajectories
We measured the overall constraining effect of genetic co-
variation on the response to selection by comparing the
angle θ between the selection response vector (△z) and the
first PC of G (PC1, or gmax, see methods) with the angle γ
between △z and the selection gradient (β). In the tall and
short artificial selection experiments, the trait responses
were strongly aligned with gmax, with θ angle of 8.9 degree
(95% HPD: 5.5, 13.7) and 20.1 degree (95% HPD: 17.5,
23.5), respectively. Given the close association of gmax with
the first trait axis (height) (Fig. 3c) and thus with the selec-
tion gradients under artificial selection, the angle γ between
△z and β is 6.8 and 16.7 degree in tall and short, respect-
ively. In contrast, under pollinator selection, △z is more
aligned with gmax than β, with θ of 50.6 degree (95% HPD:
44.7, 55.0) and 54.3 degree (95% HPD: 52.0, 57.0), when
compared to γ, equal to 62.96 and 83.2 degree for bumble-
bee and hoverfly treatments, respectively.

Evolution of the G-matrix during artificial selection
By examining the G-matrices of the three lines in the
artificial selection experiment (Gcontrol, Gtall, and Gshort),
we found a drastic decrease of the additive genetic vari-
ance of height in the tall line, with an estimate around
2.8 cm2, compared to the short line, which remained as
high as in the control line around 23 cm2. This resulted
in a large decrease of the contribution of gmax (PC1) of
Gtall to the total variance relative to Gcontrol and Gshort

(see Fig. 3a-b, Table S5). The orientation of gmax also
changed in Gtall, with reduced alignment with the height
axis (Fig. 3c). The other eigenvalues and eigenvectors
are, however, more constant across lines (Fig. 3a). For
instance, the second eigenvector (PC2) is more consist-
ently orthogonal to the height trait axis in the three G-
matrices (Fig. 3c).
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To further compare G-matrices, we used two different
approaches from the toolkit of G-matrix comparisons,
the random skewers and CPC approaches (Roff et al.
2012 [37], see Methods). Using the random skewers
method, we found strong correlations of the mean selec-
tion response among matrices, larger than 70% for all
three comparisons, although not significantly so between
Gtall and Gshort, and very strong similarity between Gcon-

trol and Gshort (Table 1). The three G-matrices thus
shared a significant portion of their structure. Gcontrol

would predict selection responses similar to Gshort and
to a lesser extent to Gtall. Further analysis of the similar-
ity of the size and orientation of the eigenvectors of the
G-matrices in the hierarchical analysis (CPC) confirmed
the similarity in shape between Gcontrol and Gshort and
the dissimilarity of Gtall with Gcontrol, and with Gshort to
a smaller degree (see Table 1). The G-matrix in the tall
lines thus evolved more than in the short lines mostly
because of the change in the genetic variance of plant
height. Gshort remained closer to the starting G-matrix
(Gcontrol) over the course of the experiment.

Evaluation of the estimation of the G-matrices
Permutation tests of G-matrices were conducted to
examine whether our G-matrix estimates captured the
meaningful biological structure of the data. The results
revealed that the majority of the genetic covariance ele-
ments (101 out of 120) and additive genetic variances
(14 out of 16) in Gcontrol were significantly different from
zero at the level of FDR < 0.05 with 500 permutations
and after correcting for multiple testing (false discovery
rate: Benjamini & Hochberg, 1995 [38]). In Gtall, 11 vari-
ance and 55 covariance elements were significant, and
15 and 72 elements, respectively, in Gshort (Table S4), at
the same FDR level. Furthermore, variance estimates had
much narrower 95% HPD intervals than covariance esti-
mates (from their posterior distributions, results not
shown), as evident in the size of HPD intervals of the
direct and indirect components of the selection re-
sponses (see Fig. 2).

Discussion
Total evolutionary trait responses are made of direct and
indirect responses. Evolutionary constraints emerge
when the two oppose each other. However, constraints
may evolve when selection or other evolutionary forces
alter the genetic variance and covariance among traits
(i.e., change the underlying genetic pleiotropic effects or
linkage disequilibrium). It is thus important to evaluate
the structure of the G-matrix and its evolution when try-
ing to understand the effects of selection on multiple
phenotypic traits. Moreover, being able to compare pre-
dicted and realized trait responses allows for a better un-
derstanding of the relationship between selection and

Fig. 2 Predicted and observed responses of measured traits to
pollinator selection, in the bumblebee (a), and hoverfly (b)
experiments. The total predicted response of each trait is
decomposed into its direct and indirect components (see text).
Green triangles are the observed changes. Black dots are the
predicted selection responses. The solid horizontal lines indicate the
95% HPD interval of the predictions. Both predicted and observed
changes were scaled by the phenotypic standard deviation of the
trait. Sample sizes pollinator selection: plant height: 524, flower traits:
525, volatiles: 414. Trait abbreviations: Plant height (Height), Petal
width (PW), Petal length (PL), Flower diameter (FD), Benzaldehyde
(Ben), Phenylacetaldehyde (PAA), α-Farnesene (FAR), Benzyl nitrile
(BenN), 2-Amino benzaldehyde (Aben), Indole (Ind), Methyl
anthranilate (MA), Phenylethyl alcohol (PA), Methyl salicylate (MS),
Methyl benzoate (MB), Z-(3)-Hexenyl acetate (ZHA),
1-Butene-4-isothiocyante (ITC)
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genetic constraints. In this study, by combining esti-
mates of the ancestral G-matrix of the traits with esti-
mates of the selection gradients acting on them, we
could predict the evolutionary response of floral traits
subject to two types of selection pressures, artificial and
pollinator selection. Importantly, we found that predic-
tions based only on the direct trait responses to selection
failed to predict the observed responses and that the

observed responses were biased towards the line of least
genetic resistance (gmax) of the G-matrix. The pattern of
genetic covariation among traits thus strongly affected
the outcome of selection in the artificial and pollinator
selection experiments. Although this pattern of trait co-
variation can change during evolution, we further
showed that using an ancestral G-matrix, here estimated
in the control lines, can lead to accurate evolutionary

Table 1 Comparisons of the three G-matrices using random skewers and hierarchical analyses (see also Table S3, S4). The random
skewers section reports the mean correlation among response vectors of two G-matrices subject to the same set of 10,000 random
selection vectors. The hierarchical analysis reports the P-values to reject the hypotheses of equality, proportionality, or common
principal components (CPC) in favor of unrelated matrices. The P-values are obtained by randomization (see Methods)

Random Skewers Hierarchical

Paired G Mean correlation P-value Equal Prop. CPC

Gcontrol - Gtall 0.734 < 0.01a < 0.005 < 0.005 0.002

Gcontrol - Gshort 0. 987 < 0.002b 0.23 0.23 0.32

Gtall - Gshort 0.722 < 0.21a 0.19 0.19 < 0.05
a: left tail; b: right tail

Fig. 3 Comparison of the size and orientation of the major and five first eigenvectors (PCs) of the G-matrices in the artificial selection experiment.
a Distribution of the eigenvalues (size) of each PC of the three G-matrices in the control (grey), tall (red), and short (blue) artificial selection
experiments. The scale of the y-axis is on the left for PC1 and on the right for PC2–5. b Contribution of PC1 to the total variation in the 16 traits,
measured as the size of PC1 relative to the sum of all PCs. c Angle of the first and second PC with the first trait axis (height) in degree. In all
cases, variation of all variables stems from the posterior distribution of each G-matrix estimated with MCMCglmm (see Methods and
Supporting information)
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predictions over just a few generations. This approach
allowed us to better understand how pollinators, the se-
lective agents, interact with the complex set of floral
traits composed of floral scent and morphology and may
influence their evolution.
Overall, bumblebee selection was in favor of taller

plants and increased emission of certain floral volatiles,
most notably indole (Ind), phenylacetaldehyde (PAA), 2-
amino benzaldehyde (Aben), and methyl benzoate (MB)
(see also [25]). Those traits had a significant positive dir-
ect selection response in the same direction as their ob-
served response making them candidates for direct
targets of bumblebee selection. The indirect components
of the responses were also all positive, enhancing the
total predicted responses, sometimes leading to over-
shooting of the observed responses. Because of the
largely positive genetic correlation of most floral traits
with height, it is not surprising to observe positive total
selection responses of most traits. In fact, our analysis of
direct and indirect responses indicated that the strong
increase in many volatiles observed by Gervasi and
Schiestl [25] is to some degree a consequence of indirect
selection, whereas the response in height is mostly
driven by direct direction. Therefore, bumblebees
seemed to primarily select for tall plants, and some vola-
tiles, too, although the evolutionary increase in height
carried them along. Our analysis also revealed that some
of the positive total responses in volatiles may actually
be maladaptive because they were opposed to the selec-
tion gradient acting on them (e.g., α-farnesene (FAR),
benzyl nitrile (BenN), methyl anthranilate (MA), pheny-
lethyl alcohol (PA), z-(3)-hexenyl acetate (ZHA), and 1-
butene-4-isothyocyanate (ITC), see Fig. 2a, Table S6).
This suggests that bumblebees tended to dislike flowers
with increased concentration of those volatiles, but their
evolutionary increase was indirectly caused by selection
on height and other positively correlated traits that were
under positive selection. These positive, non-adaptive re-
sponses thus point to the existence of strong evolution-
ary constraints stemming from the genetic architecture
of the traits. Overall, knowledge of the selection gradi-
ent, the G-matrix and responses of the traits showed
that they evolved in a direction biased towards gmax, the
“line of least resistance” [35], which constrained the evo-
lutionary response away from the selection gradient, al-
though the selection responses of some traits were
enhanced by trait covariation.
In contrast to predictions in the bumblebee-pollinated

plants, the ones in hoverfly-pollinated plants were largely
not different from zero or incorrect. The observed
changes were also not consistently in the same direction.
This implies that an evolutionary response along one
major axis of overall positive trait co-variation is not
likely, at least when estimating the co-linearity of the

response vector with gmax of Gcontrol, and that selection
was rather ineffective. Instead, the observed changes are
more consistent with altered patterns of trait covariation
and drift. Indeed, in the hoverfly-selection experiment,
a separate study found very little adaptive evolution
in plant traits with the exception of strongly increased
autonomous selfing [25]. Thus, increased selfing and
the associated reduction of genetic variation [39], pos-
sibly altered the G-matrix, leading to the low accur-
acy of our predictions and the reduced efficiency of
pollinator-induced selection. Previous studies in bot-
tlenecked insect populations have shown that rapid
changes in the G-matrix are expected in inbred popu-
lations (e.g., [40, 41]).
We observed further discrepancies between our evolu-

tionary predictions and observed responses that need to
be examined. In particular, the responses of the morpho-
logical traits in the artificial selection didn’t show the ex-
pected changes of plant height. Plant height did evolve
in the correct direction but with a smaller response than
expected from the estimate of the additive genetic vari-
ance in Gcontrol (see Table S4). The discrepancy can be
caused by a reduction of the genetic variance during the
selection experiment, as seen in the tall lines (Table S4).
The prediction didn’t take account of those changes.
However, the lack of response in the short line is stron-
ger and not likely caused by a reduction of genetic vari-
ance, not seen in Gshort (see Table S4). Instead, this
selection experiment may have revealed an underlying
resource allocation trade-off masked by the apparent
positive genetic covariation between plant height and
the size of the reproductive organs. This is reminiscent
of classical theory on the effect of variation in resource
acquisition and allocation on fitness components [42–
44], which states that a positive correlation between
fitness components can be observed despite an under-
lying trade-off when individuals vary more in the ac-
quisition than in the allocation of their resources.
Variation in resource acquisition among the genotypes
may have been pre-existing in the base population of
B. rapa, and lead to the observed positive correlation
between traits pertaining to two fitness components,
plant reproduction for flower size traits, and plant
somatic growth for plant height. Nevertheless, a re-
source allocation trade-off may have constrained evo-
lutionary changes of plant height and flower size
traits in both the tall and short lines as evidenced by
smaller than expected and even opposed changes in
flower size traits relative to plant height, and a lower
response of plant height.

The role of genetic covariance in adaptive evolution
Our results are in line with the established expectation
that genetic covariance can influence traits’ evolutionary
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responses by constraining or augmenting their response
to selection depending on the relative signs of genetic
covariances and selection gradients [31, 33, 45]. This ex-
pectation has been rarely directly tested with experimen-
tal evolution as we did here (see also [46]). More
commonly, empirical studies use estimates of contem-
porary selection gradients and G-matrices to evaluate
the potential for evolutionary constraints, which are
present in some cases (e.g., [47–50]) but not in others
(e.g., [36, 51, 52]).
The relevance of predictions of evolutionary con-

straints depends on the constancy of patterns of genetic
variance-covariance over time. Our study shows that
constancy cannot be assured when selection strongly re-
duces the genetic variance of a trait, as during artificial
selection for taller plants (see also [46, 53, 54]). Yet,
using Gcontrol as an estimate of the ancestral G-matrix
allowed us to make correct evolutionary predictions of
the direction of selection responses in most cases. Had
we used Gtall in the tall selection experiment, we would
have badly underestimated the selection response of
plant height and floral scents (results not shown). This
illustrates two important points concerning the evolu-
tionary significance of the structure of the G-matrix.
First, changes in G can happen quickly, over just a few
generations, and we have illustrated a rapid change in
trait variance caused by selection. Second, despite those
changes, estimation of G is still useful to make predic-
tions of future trait changes over few generations. This
can be useful to predict evolution and adaptation under
rapid environmental changes, for instance, because the
state of the G-matrix before a change in selection pres-
sures will strongly influence the resulting evolutionary
trajectory of a population, as we have shown here.
The evolutionary significance of the structure of the

G-matrix is still debated, especially regarding the inter-
pretation of the constraining effects of the main eigen-
vectors of G (especially gmax). The debate, however,
mostly crystallized on inferences of past evolutionary
constraints from contemporary estimates of trait
variance-covariance patterns. The retrospective use of G
is questionable knowing how evolutionarily labile are
patterns of variance-covariance, an important caveat
already emphasized by Turelli [55]. Indeed, many pro-
cesses may affect the evolution of trait variance and co-
variances because they depend on variation in allele
frequencies in a population. As such, genetic drift [56]
and fluctuating selection [57], have been shown to re-
duce the stability of the G-matrix, while migration [58],
correlational selection [56], and mutation [56, 59] can
improve its stability (reviewed in [60]). Those changes
thus make retrospective use of G at the least dangerous,
unless its long-term stability can be determined. Pro-
spective use of G is potentially less sensitive to such

variations when predicting short term selection re-
sponses. Our analysis provides a good illustration of the
prospective versus retrospective usage of a G-matrix
when considering the changes in G’s structure between
Gcontrol and Gtall and the respective predictions and in-
ferences we can make from them.

Conclusion
Our study showed that even highly plastic chemical
traits such as floral scent, can be successfully included
into predictive models of floral trait evolution. Even
more so, we show that a complementary set of traits is
important to consider, because pollinator selection acts
on multiple traits, and genetic correlations link them in
their evolutionary response. In the future, improved
sampling and analysis techniques may allow the standard
inclusion of a large set of traits and large sample sizes
into evolutionary studies. Larger sample sizes may allow
for more accurate predictions by incorporating the dy-
namics of G-matrix evolution over multiple generations.
In addition, more assessments of selection on those
traits in nature by specific groups of interacting organ-
isms [21, 23, 24, 30, 61] may further improve our ability
to predict evolutionary changes in the face of environ-
mental change in natural habitats.

Methods
Plant species and focal traits
In our experiment, we used the lab-standard rapid cyc-
ling accession of Brassica rapa L. (syn. B. campestris:
Brassicaceae) obtained from the Wisconsin Fast Plants™
Program (Carolina Biological Supply Company, Burling-
ton, NC, USA). The rapid cycling accession was selected
for short generation time, rapid seed maturation, ab-
sence of seed dormancy, small plant size and high female
fertility [62]. Brassica rapa is generally recognized as a
self-incompatible species with a generalized pollination
system (e.g. bees, syrphid flies and butterflies as pollina-
tors). However, the level of self-compatibility of this
breed can evolve under selection [25]. The line used
needs only ca. 35 to 40 days to complete a life cycle and
maintains sufficient genetic variability for selection ex-
periments [14, 15, 63, 64]. No specimen was deposited
by us in a herbarium.
Our analysis includes a total of 16 traits with 12 floral

volatile organic compounds (VOCs), and 4 morpho-
logical traits (plant height, petal width, petal length, and
flower diameter). The measurement methods were de-
scribed in detail in Zu & Schiestl [14]. Floral VOCs were
collected from at least four freshly opened flowers per
plant at a flow rate of 100mL per min for 3 h. Floral
VOC amounts were standardized in amounts per flower
per liter sampled air, and ln(x + 1) transformed to ap-
proach normal distributions and z-scored (mean = 0,
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SD = 1) to normalize differences in scale between gen-
erations. Scent collection and analysis details can be
found in Supporting information. The whole experi-
ment was conducted at the Botanical Garden of the
University of Zürich.

Experiment I: artificial selection experiment
Details of the experimental procedure for artificial selec-
tion can be found in Zu & Schiestl [14]. To summarize,
we sowed out 150 seeds to form the parental generation.
Up and down directional artificial selection on plant
height were imposed to produce a tall and a short line
with the ten tallest and ten shortest plants, respectively.
Additionally, ten randomly selected plants were chosen
to form a control line. Selected plants were randomly
hand pollinated within each line. Pollen donor, pollen
receiver and their offspring were labeled for each fruit to
generate a breeding pedigree. After fruit maturation,
around 50 seeds from each of the three lines were sown
out to form the next generation. The same procedures
were carried out to obtain three generations of selection.
Extra seeds were sowed out to ensure a minimum of 150
individual plants in each generation. In total, we ana-
lyzed 628 plants. The experiment was conducted in a
phytotron with 24 h fluorescent light per day, 22 °C, 60%
relative humidity, and regular watering twice a day (at
08:00 and 18:00).

Experiment II: pollinator selection experiments
The procedures of experimental evolution experiment
can be found in detail in Gervasi & Schiestl [25]. To
summarize, we sowed out 300 seeds to generate 108 full
sib families by manual cross pollination. These 108 full
sib families were then equally divided into three repli-
cates each containing 36 plants, for each of the three
treatments (bumblebee, hoverfly, and hand pollination
treatment). In each replicate, the 36 plants were placed
in a 6*6 array with a distance of 20 cm from each other
in a flight cage (2.5 m*1.8 m*1.2 m). In bumblebee and
hoverfly treatments, five pollinators (either Bombus ter-
restris or Episyrphus balteatus) were introduced one at a
time in the flight cage, with each allowed to freely visit
maximal three different plants before being removed
from the cage. A total number of 12–15 out of 36 plants
per replicate received one or more pollinator visitation.
The average (± s.d.) visitation (in visited plants) was
1.35 ± 0.63 for bumblebee-pollinated plants and 1.28 ±
0.53 for hoverfly-pollinated plants. In the control treat-
ment 12 plants were randomly chosen and were manu-
ally pollinated among each other. Floral traits were
measured prior to pollinators’ visits or hand pollination.
The number of seeds were recorded after fruit matur-
ation. Seeds from the pollinated plants were sown out
proportionally (36/(replicate sum of seeds/individual

seed set), values below 0.5 were rounded up to 1) to
form again a total number of 36 plants for the next
generation of each replicate. The same selection and
sowing-out procedures were conducted for 9 genera-
tions, after which plants were sowed out again and
randomly hand crossed between the replicates within
each treatment to get rid of potential inbreeding de-
pression. Fruits from random crosses were sown out
to form the 11th generation and the measurements of
floral traits in this generation were used as observed
responses to selection.

Estimation of the genetic variance-covariance matrices (G-
matrix)
With known breeding pedigree and plant trait values for
each individual in the control and treatment lines of the
artificial selection experiment, we were able to estimate
three genetic variance-covariance matrices: Gcontrol in
control, Gtall (or Gshort) in selection lines for increased
(or decreased) plant height (see Table S3). The pedigree
of the seeds sowed in the pollinator experiment was un-
known. We thus used Gcontrol from artificial selection
experiment for evolutionary predictions in both experi-
ments. More specifically, we estimated the G-matrix of
the 16 traits by using a multivariate animal model in
which the kinship (relatedness) matrix was obtained
from the four-generation pedigree of the plants crossed
within the experiments (sire = pollen donor, dam =
pollen receiver), independently in the control, tall, and
short experimental lines (Table S3). We fitted a linear
mixed model using the Bayesian method implemented
in the MCMCglmm R package [65] to estimate random
effect variance components for additive genetic effects
(VA) from which we estimated the G-matrix, and
among-dam (VD) and among-sire (VS) components to
remove potential maternal and paternal effects, respect-
ively. We added generation as a block factor modeled as
a fixed effect. This method was previously shown to have
good applications with a few traits [50, 66].
In MCMCglmm, we used weakly informative inverse-

Wishart prior with limit variance of one and covariance
of zero and low degree of belief (0.002). Posterior distri-
butions were robust to several different prior settings
(e.g. V = diag(n)*0.1, V = diag(n)*10, n = number of
traits). We used 1,200,000 iterations, with a burn-in of
200,000 and a thinning of 500 to ensure convergence
and low autocorrelation among thinned samples (< 0.1).
The thinning resulted in a posterior distribution with
2000 samples.
Finally, because the Bayesian approach does not allow

us to directly test for the accuracy of our estimates of
the G-matrices, we implemented a permutation test in
which we randomly shuffled the dam and sire of each off-
spring within each generation and re-estimated the G-
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matrix for each of 500 replicates using the same
MCMCglmm procedure as before. To evaluate the accur-
acy of the observed G-matrices (Gcontrol, Gtall, and Gshort),
we then compared them to their randomized estimates,
element by element. For each element, we computed an
empirical P-value as: P = (Nrandom.estimates < observed.value)/
500. If the observed value was smaller than the mean of
the random estimates, then (1 – P) was used instead of P.
The random estimates were obtained from the posterior
mode of the 500 random estimates of each G-matrix. An
element of G (a variance or covariance term within G)
was considered significant if its P-value was < 0.05. If it
was not the case, then the specific element estimation did
not capture its biological meaning.

Estimation of selection gradients
In the artificial selection experiment, we calculated the
selection gradient on height (βh) by using

βh ¼ S=V P;

where VP is the phenotypic variation of height and S the
selection differential calculated as the difference between
the mean plant height of the selected plants and all mea-
sured plants in the same generation.
We calculated βh in each generation and each se-

lected line (Table S1) and used its sum over the three
generations to predict the total evolutionary responses
in each line.
In the pollinator selection experiments, we estimated

the selection gradients following the partial correlation
approach of Lande and Arnold [32]. To this end, we
used a multi-linear regression model with relative seed
set as dependent variable, replicate as factor and mor-
phological and scent variables as covariates. Relative
seed set was calculated as total number of seeds pro-
duced by a plant, divided by the mean number of seeds
produced by all plants in the replicate. The regression
coefficient estimates (selection gradients) were obtained
from the multi-linear regression. The selection gradients
(β) were calculated separately per treatment (bumblebee
and hoverfly), for all the measured generations and repli-
cates combined (for details, see [25]). The non-
significant selection gradients were still used as the best
approximate estimations of selection.

Calculation of predicted and observed evolutionary
changes
To estimate the predicted responses to selection, we
used the multivariate breeder’s equation [31], △z = Gβ
(see Introduction). We used G from the control group in
the artificial selection experiment (Gcontrol, Table S3, S4)
for predictions as the best estimation of genetic architec-
ture of the original population. We used the 2000

posterior samples of the G-matrix to generate a distribu-
tion of predicted trait changes from which we could
evaluate the accuracy of our evolutionary prediction
using its 95% highest posterior density (HPD) interval.
To calculate the observed trait changes, we calculated

the observed phenotypic changes between the last and
the first generation (△z_obs. = XFn - XP, where n is 3 in
artificial selection experiment, and 11 in pollinator selec-
tion experiment) for each line or each treatment, and P
stands for ‘parental’ (generation 1 in Control condition
in the pollinator selection experiment). We present the
observed and predicted changes scaled by the pheno-
typic standard deviation of each trait in the parental
generation.

Direct and indirect selection responses
To examine the importance of trait covariance in affect-
ing evolutionary trajectories, we separated the total se-
lection response △z of each trait into its direct and
indirect components. The direct component of the pre-
dicted selection response of trait i is the product Gii*βi,
with Gii the additive genetic variance of the trait (diag-
onal element of Gcontrol). The indirect component is the
product of the off-diagonal elements of G (genetic co-
variance: Gij) with β, summed over all traits j ≠ i: △zi

indir-

ect = ∑Gij*βj. The total response is the sum of these two
components. The three predictions, indirect, direct, and
total response were compared to the observed change of
each trait to evaluate when the direct response is con-
strained (direct and indirect components of opposite
sign) or enhanced (direct and indirect components of
same sign) by genetic covariance.
Finally, we measured the constraining effect of genetic

co-variation on the response to selection by comparing
the angle θ between the selection response vector (△z)
and the first PC of G (PC1, or gmax) with the angle γ be-
tween △z and the selection gradient (β). We generated
the posterior distribution of θ from the posterior distri-
bution of Gcontrol, which allowed us to test whether γ is
larger (smaller) than θ, which tests if △z is biased (un-
biased) in the direction of gmax by genetic correlations.

G-matrices similarity among artificial selection lines
We compared the G-matrices from control, tall and
short selection lines to assess the stability of G between
treatments and control. We used the random skewers
(RS) method in one comparison test because it examines
the similarity between two G-matrices of their expected
evolutionary response to a random set of selection vec-
tors (skewers), which fits our purpose of evaluating the
stability of such predictions using different estimates of
the G-matrix. We used Roff et al.’s (2012) implementa-
tion of the RS method, and report the mean over 10,000
random selection skewers of the correlation between the
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selection response vectors of the two G-matrices com-
pared. Significance was obtained from the distribution of
the test statistics obtained from the 500 random esti-
mates of each G-matrix. We performed a further test of
shape similarity between the G-matrices using the hier-
archical approach of Phillips and Arnold [37], also
known as the Flury hierarchy, implemented in Roff
et al.’s R script collection [67]. This method tests the de-
gree of shape similarity sequentially by comparing the
size and orientation of the eigenvectors (principal com-
ponents, PCs) of the G-matrices. Two G-matrices can
have common principal components (CPC) if their PCs
have the same orientation but not the same size (i.e.,
have different eigenvalues), be proportional if their PCs
only differ proportionally, or be equal. The three levels
of similarity are tested relative to the hypothesis of unre-
lated matrices. The test statistics are provided in Roff
et al. [67]. We determined the significance of the RS and
Flury tests using the previous 500 randomized estimates
of Gcontrol, Gtall, and Gshort.
All statistics were conducted with R version 3.3.3 [68]..
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