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Abstract

Background

Evidence suggests that the single-disease paradigm does not accurately reflect the individ-

ual experience, with increasing prevalence of chronic disease multimorbidity, and subtle yet

important differences in types of co-occurring diseases. Knowledge of multimorbidity pat-

terns can aid clarification of individual-level burden and needs, to inform prevention and

treatment strategies. This study aimed to estimate the prevalence of multimorbidity in

Jamaica, identify population subgroups with similar and distinct disease profiles, and exam-

ine consistency in patterns identified across statistical techniques.

Methods

Latent class analysis (LCA) was used to examine multimorbidity patterns in a sample of

2,551 respondents aged 15–74 years, based on data from the nationally representative

Jamaica Health and Lifestyle Survey 2007/2008 and self-reported presence/absence of 11

chronic conditions. Secondary analyses compared results with patterns identified using

exploratory factor analysis (EFA).

Results

Nearly one-quarter of the sample (24.1%) were multimorbid (i.e. had�2 diseases), with sig-

nificantly higher burden in females compared to males (31.6% vs. 16.1%; p<0.001). LCA

revealed four distinct classes, including a predominant Relatively Healthy class, comprising

52.7% of the sample, with little to no morbidity. The remaining three classes were character-

ized by varying degrees and patterns of multimorbidity and labelled Metabolic (30.9%), Vas-

cular-Inflammatory (12.2%), and Respiratory (4.2%). Four diseases determined using

physical assessments (obesity, hypertension, diabetes, hypercholesterolemia) were
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primary contributors to multimorbidity patterns overall. EFA identified three patterns

described as “Vascular” (hypertension, obesity, hypercholesterolemia, diabetes, stroke);

“Respiratory” (asthma, COPD); and “Cardio-Mental-Articular” (cardiovascular disease,

arthritis, mental disorders).

Conclusion

This first study of multimorbidity in the Caribbean has revealed a high burden of co-existing

conditions in the Jamaican population, that is predominantly borne by females. Consistency

across methods supports the validity of patterns identified. Future research into the causes

and consequences of multimorbidity patterns can guide development of clinical and public

health strategies that allow for targeted prevention and intervention.

Introduction

Non-communicable diseases (NCDs) have been established as the primary cause of morbidity,

with a considerable attendant premature mortality burden that disproportionately impacts

poor, vulnerable and socio-economically disadvantaged populations within low- and middle-

income countries (LMICs) [1–3]. Adding to the social, financial and physical burdens associ-

ated with management of NCDs is the predominant single-morbidity approach of clinical care

guidelines, despite evidence that these diseases seldom occur in isolation, with an increasing

proportion of persons experiencing multiple coexisting chronic diseases or multimorbidity

(i.e. the co-occurrence of two or more diseases) [4–8].

Although a growing body of literature is available on the patterns and clusters of diseases,

multimorbidity remains a complex phenomenon, with a vast variety of potential disease com-

binations that make it difficult to analyze [9]. Moreover, in the absence of an established “gold

standard” measurement, considerable variation exists in the application of statistical methods

to studies of this phenomenon [4,9–11]. Previous studies have typically relied on simple dis-

ease counts to specify whether a person has two or more conditions from a pre-defined list

[4,10,12]. Exploratory factor analysis (EFA) and traditional cluster analysis techniques have

also emerged as commonly used methods [7], with latent class analysis (LCA) being increas-

ingly applied to studies of multimorbidity patterns [9,11,13–17]. Yet, despite recognized—and

increasing—methodological diversity, few studies have endeavored to increase the reliability

of findings through comparison of statistical techniques.

To date, only two studies have compared multimorbidity patterns identified using different

analytic approaches. One study of 408,994 patients aged 45–64 years in Catalonia, Spain

extracted diagnoses from electronic health records, using 263 disease blocks of the Interna-

tional Classification of Diseases version 10 (ICD-10), to compare patterns identified via hierar-

chical cluster analysis and EFA methods [18]. Authors concluded that while disease groupings

from the two analytic methods did not always match exactly, there was some consistency in

multimorbidity patterns [18]. The other study used self-reported data on 10 NCDs from a

cross-sectional sample of 4,574 Australian adults, 50 years and older, finding consistency in

results across four methods (i.e. commonly occurring pairs and triplets of comorbid diseases;

cluster analysis of diseases; principal component analysis; LCA) that was suggestive of the co-

occurrence of diseases beyond chance [11]. Notably, despite evidence of variation in the bur-

den of individual NCDs across population subgroups [1], neither study examined sex
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differences in multimorbidity patterns. However, both studies did emphasize the need to

strengthen the evidence base on multimorbidity prevalence and patterns, to better inform dis-

ease management and healthcare delivery [11,18]. International organizations, such as the

World Health Organization (WHO), the European Forum for Primary Care and the National

Institute for Health and Clinical Excellence (NICE), similarly echo this sentiment noting that

knowledge of multimorbidity patterns in a given population is an important first step towards

generating an evidence base for actual clinical practice, with significant implications for

patient-oriented prevention, diagnosis, treatment, and prognosis [7,19,20].

Throughout WHO regions worldwide, the burden of NCDs is purportedly highest in the

Americas, with higher rates among people in the English-speaking Caribbean nations

[2,21,22]. Within the Caribbean community, Jamaica has been conducting numerous compre-

hensive national health surveys, including the Jamaica Health and Lifestyle Surveys 2000/2001

(JHLS-I) and 2007/2008 (JHLS-II) [23–26], providing a well-established evidence base of a

severe burden of individual NCDs, that is predominantly borne by females [23–27]. However,

no investigation of multimorbidity prevalence or patterns has yet been undertaken for

Jamaica, or the larger Caribbean region.

This study aims to address this research gap via secondary analysis of the JHLS-II dataset.

First, LCA was used to describe the prevalence of multimorbidity in the Jamaican population,

identify classes of individuals with distinct multimorbidity patterns and examine whether these

patterns were similar across sex. Then, to assess the validity and reliability of multimorbidity

profiles identified via LCA, EFA was used as a robustness check to compare consistency (or vari-

ation) in patterns identified across the two latent modelling techniques. Results from this study

will provide nuanced insight into the burden and distribution of co-occurring conditions in the

Jamaican population, to inform more targeted prevention and management strategies.

Methods

Sample

The JHLS-II is a nationally representative study that was coordinated at the Epidemiology

Research Unit (ERU) of the Tropical Medicine Research Institute (TMRI), the University of

the West Indies, Mona, recruiting a sample of 2,848 Jamaicans, 15–74 years of age over a four-

month period spanning from November 2007 and March 2008, via a multi-stage cluster sam-

pling design [26,27]. In brief, participant recruitment was based on a random selection of clus-

ters (or enumeration districts) proportionate to the size of the population within the 14

parishes of Jamaica [26]. Enumeration districts were determined by the Statistical Institute of

Jamaica. Within each cluster, a random starting point was chosen and every 10th household

systematically identified, with a single individual from each household being invited to partici-

pate [26]. An interviewer-administered questionnaire was used to obtain self-reported infor-

mation on demographic characteristics, medical history and health behaviors. Physical (i.e.

height, weight, waist circumference) and biological (i.e. blood pressure, blood glucose, total

cholesterol) measurements were made in accordance with standardized protocols [26,27]. Low

non-response rate (1.7%) and maintenance of high inter- and intra-observer reliabilities

throughout the survey were indicators of good data quality [26]. Further details of the survey

design, sampling procedures and data collection methods are provided in the technical

report [26].

Measures

Indicators of multimorbidity were limited to those NCDs with the greatest burden in the pop-

ulation (i.e. prevalence greater than or equal to 1% in each sex). Following guidance from the
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2011 systematic review on multimorbidity measurement by Diederichs and colleagues that

related diseases be combined [10], cardiovascular disease (i.e. heart disease, myocardial infarc-

tion, and circulation problems) and mental health disorders (i.e. depression, anxiety, psycho-

sis, and other mental health problems) were grouped together to enhance data quality. Self-

reported diagnosis of bronchitis/pneumonia was used as a proxy indicator of chronic obstruc-

tive pulmonary disease (COPD). The final list of 11 conditions included hypertension, obesity,

hypercholesterolemia, diabetes, asthma, arthritis, cardiovascular disease, mental health disor-

ders, COPD, stroke, and glaucoma.

Presence or absence of these final 11 conditions was largely based on self-report, with the

exception of four diseases (obesity; hypertension; diabetes; hypercholesterolemia) where physi-

cal assessments were available and used alone, or in combination with self-reports, to increase

measurement validity and reliability. Specifically, objective measurements of height and weight

were used to determine obesity status (body mass index, BMI,�30 kg/m2), in accordance with

WHO guidelines [1]. Diabetes was defined as having a fasting plasma glucose value�7.0

mmol/L (126 mg/dl) or being on medication for raised blood glucose [1]. Hypertension was

defined as systolic blood pressure�140 mmHg and/or diastolic blood pressure�90 mmHg or

using medication to lower blood pressure [1]. Hypercholesterolemia was defined as total cho-

lesterol levels of 5.2 mmol/l or higher or self-reported use of medications to control blood cho-

lesterol [1].

Multimorbidity was defined as having two or more of the final list of 11 NCDs. A 2012 sys-

tematic review by Fortin and colleagues advised inclusion of at least 2 operational definitions

of multimorbidity: (1) presence of two or more diseases; and (2) presence of three or more dis-

eases; noting that the latter definition may be more meaningful for clinicians given that a sim-

ple count of 2 or more diseases is less discriminating [4]. Accordingly, descriptive analyses also

use the latter definition, to allow for identification of individuals with higher needs and greater

disease burden [4].

Ethics

Ethical approval of the JHLS-II survey instruments and procedures was granted by the Minis-

try of Health, Jamaica and the University of the West Indies.

Statistical approach

Analyses were restricted to participants with non-missing information on the 11 NCD multi-

morbidity indicators. Of the 2,848 respondents who completed the survey, 311 (10.9%) were

missing information on one or more of these indicators. There were no statistically significant

differences between those with complete and those with missing information on the basis on

sex, age or region of residence (all p>0.05). The final analytic sample of 2,551 respondents

included 790 males and 1,761 females.

Descriptive statistics were calculated for the overall sample and each sex group, to deter-

mine the prevalence of morbidity (from individual NCDs) and multimorbidity. Means with

95% confidence intervals (95% CIs) (for continuous variables), and proportions (for categorial

variables) were computed and compared using the Mann-Whitney U test and the Pearson’s

chi-squared (χ2) test, respectively, to examine differences across sex. All analyses were

weighted to account for sampling design and non-response as well as differences in the age-sex

distribution of the study sample compared to the Jamaican population. Base sampling weights

reflected the product of the inverse of the probability of selecting a household and the inverse

of the probability of selecting a primary sampling unit, adjusted for non-response. Post-strati-

fication weights were calculated as the number of persons in the Jamaican population between
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the ages of 15–74 years, represented by each individual in the sample within 5-year age-sex

categories.

Latent class analysis (LCA). Identification of the baseline model. LCA was used to identify

discrete, mutually exclusive classes of individuals with distinct multimorbidity patterns, based

on the presence or absence of the final list of 11 NCD indicators. In order to identify an opti-

mal baseline model, a sequence of LCA models was examined beginning with a single-class

model and adding classes in a stepwise fashion until model fit no longer significantly

improved. Models with 1 through 6 classes were fit to the data, with final model selection

based on a balance of parsimony, substantive consideration of each model and comparison of

a range of model fit indices. To ensure that the global maximum (rather than local maximum)

was identified, an iterative maximum likelihood estimate was used, with a minimum of 200

‘random’ sets of starting values [28,29]. The number of random sets was increased as needed

to achieve model identification (i.e. one frequently occurring, dominant solution where the

log-likelihood and parameter estimates are replicated) [28,29].

Several indices were used to guide model selection, including the likelihood-ratio G2 statis-

tic, the Akaike Information Criteria (AIC), the Bayesian Information Criteria (BIC) and the

adjusted BIC [29,30]. The likelihood-ratio G2 statistic (and parametric bootstrap likelihood

ratio test) were used to test the null hypothesis that the specified LCA model fit the data (i.e. a

significant p-value indicated that the null model was too restrictive) [28,29]. Lower values on

the information criteria were indicative of a more optimal balance between model fit and par-

simony [28,29]; greatest weight was given to the AIC following evidence from simulation stud-

ies of serious underfitting of the BIC, particularly with smaller samples and more unequal class

sizes [31,32]. Substantive interpretability was considered via inspection of probability plots to

ensure that resultant solutions were distinguishable, non-trivial in size, and meaningful [29].

The prevalence of each latent class was calculated as the average across participant-specific

class membership probabilities [29]. Once the baseline model had been selected, participants

were assigned to their best fit class based on their maximum posterior probability and the

mean posterior probability of each latent class calculated as an indicator of classification cer-

tainty [33]. Mean posterior probabilities above 70% indicated optimal fit [16].

Given the potential for obesity to have a double impact, as a risk factor for individual NCDs

and as a disease requiring intervention, sensitivity analyses explored patterns of multimorbid-

ity based on 10 of the 11 NCD indicators listed above (i.e. excluding obesity).

Testing measurement invariance across sex. Following guidelines by Lanza et al (2007)

which recommend that analyses begin by first fitting a baseline model with no grouping vari-

able [29], sex was added as a grouping variable after the baseline model had been selected, to

test the hypothesis that multimorbidity patterns vary across sex. To test measurement invari-

ance empirically, the model was run with all parameters freely estimated and again with item-

response probabilities constrained equal across groups. The difference in the G2 statistic

between the two models was compared to the chi-square distribution for the difference in the

models’ degrees of freedom, and a significant p-value indicated different patterns across

groups [28,29].

Exploratory factor analysis (EFA). EFA was used as a robustness check to examine simi-

larities and/or differences in multimorbidity patterns identified using this latent modelling

technique and the latent class approach. Consistent with the definition of multimorbidity as

the coexistence of two or more diseases, an identified factor needed consist of at least two dis-

eases to qualify as a multimorbidity pattern. Based on examples used in previous studies

[6,34], along with the recommendations from systematic reviews [4,10], the following criteria

were applied during EFA: only those NCDs with a prevalence�1% in each sex were included;

data on NCDs were coded in binary form and tetra-choric correlation matrices used, owing to
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the dichotomous nature of the NCD variables; and the principal components extraction

method applied. The principal components extraction method allowed for determination of

the number of factors to retain, in combination with eigenvalues >1 and scree plots to visually

guide selection. Finally, owing to correlations between NCDs, the oblique rotation method

was used to evaluate the factor solution and facilitate interpretation of factor loadings. Factor

loadings >0.3 were taken as the minimum acceptable value for a significant correlation in the

identification of diseases comprising each multimorbidity pattern. The Kaiser-Meyer-Olkin

(KMO) statistic was used as a measure of sample adequacy [35,36].

All statistical analyses were carried out via Stata v.15 software, using the LCA Stata Plugin

[37] and LCA Bootstrap Stata macro [38] as needed, with statistical significance indicated by a

p-value<0.05.

Results

Sample description

Of the 11 NCD indicators included in the LCA, two diseases had an overall prevalence of

about 25.0%, four had a prevalence between 5.0%–12.0%, while the remaining five had lower

prevalence, typically under 5.0% (Fig 1). Among this sample of the Jamaican population,

hypertension was the most prevalent NCD (25.3%), followed by obesity (25.2%), hypercholes-

terolemia (11.5%), diabetes (7.9%) and asthma (6.9%). About one third (30.6%) of the sample

reported only one NCD while nearly one-quarter (24.1%) reported multimorbidity (i.e. two or

more diseases). When the more discriminating definition of multimorbidity was applied,

approximately 1 in every 10 participants (10.2%) reported at least 3 NCDs.

The multimorbidity burden was significantly greater in females (p<0.001), regardless of the

definition used. In addition, there were statistically significant sex differences in the prevalence

Fig 1. Prevalence of non-communicable diseases (NCDs), by sex (JHLS-II data, 2007/2008; N = 2,551).

https://doi.org/10.1371/journal.pone.0236034.g001
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of obesity (females:37.8% vs. males:12.0%; p<0.001), hypercholesterolemia (females:15.3% vs.

males:7.5%; p<0.001), diabetes (females:9.2% vs. males:6.5%; p<0.05), arthritis (females:8.2%

vs. males:2.1%; p<0.001), and cardiovascular disease (females:6.7% vs. males:2.4%; p<0.001),

with the burden in females often 2 to 3 times as high as that in males. On average, females

reported 1.2 NCDs (95% CI: 1.1–1.3) while males reported 0.7 diseases (95% CI: 0.6–0.7)

(p<0.001).

LCA baseline model

The LCA model fit results are summarized in Table 1.

The G2 statistic, AIC and adjusted BIC consistently decreased up until the four-class model

while the BIC reached a minimum in the two-class model. Neither models with five nor six

classes were well identified—meaning that even after increasing the random starts so that the

estimation procedure went through a maximum set of 400 iterations, neither model converged

on the same solution the majority of the time. Notably, while the adjusted BIC indicated that

the 4-class model was the best fit model, it suggested relatively little difference between this

and the three-class model (adjusted BIC4class = 686.4 vs. adjusted BIC3class = 688.0; differ-

ence = 1.6). Nonetheless, the four-class model was better identified than the three-class model,

with the maximum likelihood estimate converging on the same solution 97.5% of the time

(compared to 55.0% of the time for the three-class solution). The four-class solution’s entropy

score (0.6) indicated greater precision in class prediction (compared to the three-class solu-

tion) and, upon examination, allowed for meaningful interpretation of latent classes. Results of

the parametric bootstrap likelihood ratio tests (Table 2) further supported this decision, find-

ing statistically significant differences for all except the four-class null model and the alterna-

tive five-class model (p = 0.33), indicating that the four-class model was the optimum baseline

model.

Latent class prevalences and item-response probabilities (i.e. the estimated probability of

reporting a particular NCD, given membership in a particular latent class) for the four-class

model are graphed in Fig 2.

Table 1. Summary of information for selecting number of multimorbidity latent classes (JHLS-II data, 2007/2008; N = 2,551).

Number of Latent Classes G2 df AIC BIC Adjusted BIC log-likelihood Entropy

1 1318.4 2036 1340.4 1404.7 1369.8 -8186.5 1.0

2 597.8 2024 643.8 778.2 705.1 -7826.1 0.7

3 524.6 2012 594.6 799.2 688.0 -7789.6 0.5

4 467.0 2000 561.0 835.7 686.4 -7760.8 0.6

5 Not well identified

6 Not well identified

df = degrees of freedom; AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion.

https://doi.org/10.1371/journal.pone.0236034.t001

Table 2. Model comparison for selecting the number of multimorbidity latent classes (JHLS-II data, 2007/2008;

N = 2,551).

Null model vs. Alternative model p-value

1-class 2-class 0.01

2-class 3-class 0.01

3-class 4-class 0.01

4-class 5-class 0.33

https://doi.org/10.1371/journal.pone.0236034.t002
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Class 1 was labelled Relatively Healthy as it was characterized by individuals with low proba-

bilities of all 11 NCDs. The majority of sample respondents (52.7%) were classified into this

relatively healthy class. The mean number of NCDs was 0.4. Class 2 was characterized by indi-

viduals with a high probability of hypertension and obesity, and somewhat moderate probabil-

ity of hypercholesterolemia. This class was labelledMetabolic and comprised 30.9% of the

sample. The mean number of NCDs in thisMetabolic class was 1.6. Approximately one in five

(19.8%) participants in this class had at least three NCDs. Class 3 was characterized by individ-

uals with a very high probability of hypertension, obesity, hypercholesteremia and diabetes.

Specifically, members of Class 3 had a higher probability of these four NCDs than all other

classes. Class 3 was also marked by an increased likelihood of arthritis and cardiovascular dis-

ease. This class was labelled Vascular-Inflammatory and comprised 12.2% of the sample. The

mean number of NCDs was 3.4. The final class, Class 4, was characterized by individuals with

the highest probability of asthma and COPD and was accordingly labelled Respiratory. This

was the smallest of all classes, comprising 4.2% of the sample. The mean number of NCDs for

the Respiratory class was 2.9.

The mean posterior probabilities for all four classes exceeded 0.7 (0.8 for the Relatively
Healthy class; 0.8 for theMetabolic class; 0.9 for the Vascular-Inflammatory class; and 0.8 for

the Respiratory class) suggesting optimal classification.

Sensitivity analyses exploring multimorbidity patterns using only 10 NCDs (i.e. excluding

obesity), corroborated findings from the original baseline model with 11 NCD indicators. Spe-

cifically, LCA model fit statistics and results of the parametric bootstrap likelihood ratio test

(S1 Table) all pointed to the 4-class model as the optimal baseline solution. Further, results of

the four-class solution suggested that the latent classes were similarly characterized as Rela-
tively Healthy,Metabolic, Vascular-Inflammatory and Respiratory based on the item-response

Fig 2. Item-response probabilities for the four-class model (JHLS-II data, 2007/2008; N = 2,551).

https://doi.org/10.1371/journal.pone.0236034.g002
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probabilities; although a larger proportion of the sample was classified as being Relatively
Healthy (with an almost negligible probability of reporting any NCD) and a smaller proportion

was classified as having multimorbidity (see S1 Fig).

Measurement invariance

To test measurement invariance across sex, the four-class solution was estimated, first using a

model with all parameters free to vary across groups and, second, in a model with the item-

response probabilities constrained equal across groups (Table 3).

The G2 difference test was significant (G2(2)—G2(1) = 130.6, df = 44, p<0.01), suggesting

that measurement invariance across sex did not hold and that the two groups should be mod-

elled separately. Accordingly, a series of models were fit to individual male and female datasets

to further investigate the driver of differences with the identified four-class latent structure.

Table 4 shows the model fit statistics for the male and female subsamples, separately.

For both the male and female cohort, the AIC suggested a 4-class model while the BIC sug-

gested the 2-class model. However, for the male cohort, the adjusted BIC reached a minimum

with the 3-class model while, for the female cohort, it did so with the 2-class model. Based on

the AIC for each subsample, in addition to examination of the distribution of item-response

probabilities across all solutions, the 4-class model appeared to provide the best interpretability

in each case. Parametric bootstrap analyses further supported this conclusion indicating that,

Table 3. Fit statistics for test of measurement invariance across sex (JHLS-II data, 2007/2008; N = 2,551).

G2 df AIC BIC Adjusted BIC log-likelihood

Model 1: Item-response probabilities free to vary across genders 595.1 4001 783.1 1332.5 1033.8 -7580.7

Model 2: Item-response probabilities constrained equal across genders 725.7 4045 825.7 1118.0 959.1 -7646.0

G2(2)—G2(1) = 130.6, df = 44, p<0.01

df = degrees of freedom; AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion.

https://doi.org/10.1371/journal.pone.0236034.t003

Table 4. Summary of information for selecting the number of multimorbidity latent classes for male and female subsamples (JHLS-II data, 2007/2008; N = 2,551).

Males only (N = 790)

No. of Latent Classes G2� df AIC BIC Adjusted BIC log-likelihood Entropy

1 445.9 2036 467.9 519.3 484.4 -1952.8 1.0

2 279.3 2024 325.3 432.8 359.7 -1869.5 0.6

3 221.0 2012 291.0 454.5 343.3 -1840.3 0.8

4 187.6 2000 281.6 501.2 351.9 -1823.7 0.8

5 Not well identified

6 Not well identified

Females only (N = 1,761)

No. of Latent Classes G2� df AIC BIC Adjusted BIC log-likelihood Entropy

1 1028.5 2036 1050.5 1110.8 1075.8 -6081.9 1.0

2 490.5 2024 536.5 662.4 589.3 -5812.9 0.6

3 441.4 2012 511.4 702.9 591.8 -5788.4 0.6

4 407.4 2000 501.4 758.7 609.4 -5771.4 0.6

5 Not well identified

6 Not well identified

df = degrees of freedom; AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion

https://doi.org/10.1371/journal.pone.0236034.t004
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for each subsample, the alternative 5-class model performed no better than the 4-class one

(pmales = 0.38; pfemales = 0.35). The 4-class model was thus selected as the baseline model for

optimal balance of model fit, parsimony and ease of interpretation.

For both males (Fig 3) and females (Fig 4), multimorbidity patterns generally mimicked the

baseline model identified for the general population with differences, however, in both the

prevalence of classes as well as the NCDs likely to be reported within each class.

Specifically, for males, the Relatively Healthy class comprised the majority of the sample

(62.0%) and was characterized by individuals with an almost negligible probability of reporting

any of the 11 NCDs. On the other hand, the Relatively Healthy class comprised just under half

of the female sample (49.0%) and was characterized by individuals with a low probability of

reporting any NCDs except obesity. The mean number of NCDs reported in this Relatively
Healthy class was 0.3 and 0.6 for males and females, respectively. Almost equal proportions of

the male and female subsamples (males: 32.1%; females: 31.8%) were classified into the second

Metabolic class. Among males, however, hypertension was the only NCD of high probability

while, among females, there was an increased likelihood of reporting hypertension and obesity.

The mean number of NCDs reported in theMetabolic class was 1.4 and 1.9 for males and

females, respectively. Only 3.0% of the male subsample was classified into the third Vascular-
Inflammatory class, which was characterized by an increased probability of reporting hyper-

tension, diabetes, cardiovascular disease, obesity, arthritis and stroke. In contrast, 14.7% of the

female subsample was classified into the Vascular-Inflammatory class, which was characterized

by an increased probability of reporting hypertension, obesity, arthritis, cardiovascular disease,

hypercholesterolemia and diabetes. The mean number of NCDs reported in the Vascular-
Inflammatory class was 3.8 and 3.6 for males and females, respectively. The final Respiratory
class was characterized by individuals with a high probability of reporting obesity, asthma and

Fig 3. Item-response probabilities for the four-class model (JHLS-II data, 2007/2008; Males only: n = 790).

https://doi.org/10.1371/journal.pone.0236034.g003
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COPD, comprising 2.9% and 4.5% of the male and female subsamples, respectively. The mean

number of NCDs reported was 3.3 and 2.7 for males and females, respectively.

Exploratory factor analysis (EFA) results

Adequacy of the sample for factor analysis was confirmed by the KMO statistic of 0.7, which

exceeded the recommended value of 0.6 [35,36]. Results supported evidence of three factors

(i.e. multimorbidity patterns), with identification of three components with Eigenvalues

greater than one. The scree plot showed the first major inflection (i.e. elbow) at the third factor,

suggesting a similar retention of three factors for final analysis (Fig 5).

The three-factor solution collectively explained 60.3% of the variance of the total model,

with each component explaining 29.7%, 19.3% and 11.3% of the variance, respectively. Follow-

ing rotation, a simpler structure was identified with strong factor loadings on each of the three

components, all having absolute values above the acceptable threshold of 0.3 (Table 5). Two

NCDs (arthritis and cardiovascular disease) showed strong correlations with more than one

factor (i.e. multimorbidity patterns).

Three multimorbidity patterns were identified in the Jamaican population using EFA: “vas-

cular” (hypertension, obesity, hypercholesterolemia, diabetes, and stroke); “respiratory”

(asthma and COPD), and “cardio-mental-articular” (cardiovascular disease, arthritis, and

mental health disorders).

Discussion

The burden of multimorbidity in the Caribbean has not yet been well described and this study

is the first to use an LCA model to examine multimorbidity prevalence and patterns in the

Jamaican population or the wider Caribbean region. Based on data on the presence or absence

of 11 NCDs, four classes were identified, including a predominant Relatively Healthy class

Fig 4. Item-response probabilities for the four-class model (JHLS-II data, 2007/2008; Females only: n = 1,761).

https://doi.org/10.1371/journal.pone.0236034.g004
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comprising 52.1% of the sample population and characterized by minimal disease. The other

three classes were characterized by high burden of multimorbidity and, based on identified

patterns, were labelledMetabolic, Vascular-Inflammatory and Respiratory. The resultant clas-

ses suggested an almost quantitative dimension to multimorbidity patterns (i.e. the average

number of NCDs reported was higher with progressive classes), in addition to more distinct,

Fig 5. Scree plot of eigenvalues (JHLS-II data, 2007/2008; N = 2,551).

https://doi.org/10.1371/journal.pone.0236034.g005

Table 5. Factor scores and pattern matrix (JHLS-II data, 2007/2008; N = 2,551) for the 11 conditions of multimorbidity.

Factor 1: Vascular Factor 2: Respiratory Factor 3: Cardio-Mental-Articular

Hypertension 0.76

Obesity 0.50

Hypercholesterolemia 0.61

Diabetes 0.71

Asthma 0.34 -0.57

Arthritis 0.31 0.61

Cardiovascular disease 0.32 0.69

Mental health disorders 0.68

COPD 0.92

Stroke 0.79

Glaucoma 0.95

Extraction method: Principal component analysis. Rotation method: Oblique oblimin with Kaiser normalization.

https://doi.org/10.1371/journal.pone.0236034.t005
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qualitative differences in the types of diseases comprising the patterns (e.g.Metabolic vs. Respi-
ratory classes).

Of note, the four diseases whose presence was determined using physical assessments (obe-

sity, hypertension, diabetes, hypercholesterolemia) were primary contributors to multimorbid-

ity patterns, particularly theMetabolic and Vascular-Inflammatory patterns. This may reflect

greater certainty in objectively measured conditions. There was also a very high likelihood of

reporting obesity across all multimorbidity classes. Sensitivity analyses, demonstrating that

models with and without obesity were qualitatively similar, not only support the patterns iden-

tified but indicate the importance of obesity in increasing vulnerability to the accumulation of

multiple chronic conditions in this population. This may explain the added vulnerability of

women to the burden of multimorbidity, given that the prevalence of obesity among females is

over three times as high as that in males. From a programmatic perspective, this finding also

highlights the need to better target obesity, which has been identified as major public health

problem throughout Jamaica [39,40], and the wider Caribbean region [41–43]. Indeed, while

NCD prevention and control efforts should focus on addressing the complex needs of persons

with multimorbidity, by supporting them to manage their existing conditions and prevent the

accumulation of additional ones, activities need also focus on the Relatively Healthy subgroup

for whom the presence of obesity may predispose to a multiplicity of chronic disorders. Evi-

dence of high prevalence of obesity among Caribbean children and adolescents [41,44–46] fur-

ther underscores the need for urgent intervention.

With regard to identified sex differences in this study population, findings suggest a similar

structure in the overall patterning of multimorbidity among males and females, with some key

differences in both the absolute burden of multimorbidity as well as the types of diseases com-

prising multimorbidity profiles among each sex. For example, while nearly two-thirds (62.0%)

of the male sample was classified as Relatively Healthy with little probability of reporting any

NCDs, the same was true for only about half (49.0%) of the female population. Further, the

Vascular-Inflammatory class was considerably smaller among males (males = 3.0%;

females = 14.7%) and was additionally characterized by a high likelihood of reporting stroke—

suggesting that despite relatively low overall prevalence of this pattern, males with this disease

profile may be at increased risk for complications, physical impairment and functional

decline.

It is challenging to compare the results described here to findings from other studies, given

differences in the number and type of disease indicators used to define multimorbidity, the

types of populations sampled, and the statistical methods applied. Even among studies that

have applied LCA to exploration of multimorbidity patterns, comparisons remain difficult

since those studies were often limited to older population subgroups and included different

disease spectra. Yet, among studies using LCA, results from this analysis were very similar to

patterns identified in a population-based survey of Danish adults, aged 16 years and over,

which identified seven classes with different disease patterns, based on 15 NCD indicators [9].

Specifically, comparable proportions of the samples (Jamaica15-74 years: 53% vs. Denmark�16

years: 59%) were classified as Relatively Healthy with minimal probability of reporting any

NCD, while theMetabolic, Respiratory and Vascular-Inflammatory classes identified in this

study were qualitatively similar to the “Hypertension”, “Complex Respiratory Disorders”,

“Complex Cardio-metabolic Disorders” classes, respectively, from the Danish study [9].

Although the Danish study identified three additional multimorbidity patterns [9], these dis-

ease profiles were likely not observed in the Jamaican sample since the presence/absence of

diseases comprising these patterns (e.g. osteoporosis, slipped discs/other back injuries,

migraine/recurrent headache, tinnitus, allergy) was not assessed in the JHLS-II survey.
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In comparison to studies applying EFA to the exploration of multimorbidity, similarities in

patterns are also observed. For example, one global study of multimorbidity patterns—using

data on a cross-sectional sample of adults older than 50 years from the Collaborative Research

on Ageing in Europe (COURAGE) project (in Finland, Poland, and Spain) as well as the

WHO Study on Global Ageing and Adult Health (SAGE) survey (in China, Ghana, India,

Mexico, Russia, and South Africa)–similarly observed a “Metabolic” (diabetes, obesity and

hypertension) pattern of relevance to eight of the countries studied (i.e. China, Finland,

Ghana, India, Poland, Russia, South Africa, Spain) as well as a “Respiratory” (asthma and

COPD) pattern which was only relevant to two (i.e. Finland and Russia) [47]. Additional pat-

terns, included a “cardio-respiratory” (i.e. angina, asthma, COPD) pattern of relevance to 7 of

the countries studied (i.e. China, Ghana, India, Mexico, Poland, South Africa, Spain) and a

“mental-articular” (i.e. arthritis, depression) pattern observed in 3 countries (i.e. China,

Ghana, India) [47]. Evidence from high-income settings throughout Europe [6,9,34], North

America [13,15], and Australia [11,12], have similarly demonstrated important differences in

the type, prevalence and distribution of co-occurring conditions across populations. These

results suggest that while clustering of diseases does exist, identification of context-specific

multimorbidity patterns can enable better appreciation of disease burden and profiles, to

meaningfully inform strategies aimed at prevention and control.

Comparison of LCA vs. EFA

In this study, results from EFA were generally consistent with findings from LCA, with some

minor differences. Both techniques identified three distinctmultimorbidity patterns and sug-

gested a prominence of two specific patterns of diseases (i.e. a respiratory pattern and a vascu-

lar pattern). The main difference was that in LCA there was a Vascular-Inflammatory class

characterized by hypertension, obesity, hypercholesterolemia, diabetes, cardiovascular disease,

and arthritis while, in EFA, the “vascular” pattern also included stroke but did not include

arthritis. In fact, in EFA, a “cardio-mental-articular” factor emerged which included cardiovas-

cular disease, arthritis, and mental health disorders. This factor was similar to the “mental-

articular” (arthritis, depression) pattern described in above-mentioned global study [47], in

addition to evidence from systematic reviews of multimorbidity patterns identified via EFA

[7,48].

Observed differences between the EFA and LCA techniques may be attributed to the vari-

able-centered approach of the former which is based on correlations between NCD indicators.

Scientists have noted that EFA may also be problematic for binary data, which may be grouped

owing to similar distributions rather than any common underlying features [18]. Conversely,

the probabilistic LCA model uses a person-centered approach that may be more useful for

strategic intervention planning by providing knowledge of the likelihood of individuals pre-

senting with similar disease profiles. Indeed, LCA allowed for a more nuanced appreciation of

two multimorbidity profiles—that is, aMetabolic class, with a strong likelihood of metabolic

disorders only (e.g. hypertension, obesity) and another Vascular-inflammatory class where the

probability of these two metabolic disorders was even higher and also coupled with increased

likelihood of diabetes, hypercholesterolemia, arthritis and cardiovascular disease. This finding

may suggest that theMetabolic subgroup is at risk of progression to a more severe Vascular-
Inflammatory disease pattern where the burden of multimorbidity is higher. Although, empiri-

cal analyses indicate that those in theMetabolic group were significantly younger than those in

the Vascular-Inflammatory group (mean age Metabolic = 46.1 vs. mean age Vascular-Inflammatory =

56.5; p<0.001), such a conclusion cannot be confirmed using the current study as longitudinal

data is needed to explore risk of transitioning from one class to another.
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Strengths and limitations

This is the first study to assess profiles of co-occurrence of morbidities in Jamaica, or the larger

Caribbean region. Via identification of distinct combinations, rather than simple counts of dis-

eases, this study offers a richer and more nuanced understanding of multimorbidity prevalence

and patterns in Jamaica, providing insight into the nature and severity of the NCD burden. It

also adds to the evidence base of the multimorbidity burden in LMICs, providing data that is

more comparable for other island nations which are similarly heavily affected by NCDs. Yet,

there are several limitations. First, females outnumbered males nearly 2:1 in the final analytic

sample and generalizability of results to the larger Jamaican population may be limited by the

smaller proportion of males. Sex-specific LCA analyses may have also been limited by the

small male subsample. Further, there is some degree of classification uncertainty in LCA [33]

while different software packages have been noted to result in structurally different cluster

solutions [49]. These limitations should be borne in mind in interpretation of results. Replica-

tion of our findings in future studies using larger samples would add further support for pat-

terns identified.

Secondly, although use of both subjective self-reports and objective assessment may have

increased reliability in measurement of four NCDs (hypertension, obesity, hypercholesterol-

emia, diabetes), accuracy in reporting of the other seven NCDs may have been affected by vari-

ous factors. For example, inaccurate self-reporting of prevalent mental health disorders is

noted in the literature [50] and may reflect diseases being undiagnosed or failure of partici-

pants to disclose their conditions to interviewers, while diseases such as asthma tend to be

more commonly diagnosed in children and youth [51]. Another limitation is that this study

was unable to assess either disease severity or the presence/absence of pain, both of which may

not only influence participant self-reports but also serve as important indicators of disease

control and individual capacity. The decision to include self-reported bronchitis/pneumonia

as a proxy for COPD may not be supported by other researchers who may query inclusion of

this disease type within the NCD umbrella. Further, given that the final list of 11 conditions

was based largely on convenience and limited to those NCDs identified in the JHLS-II survey

questionnaire, it is likely that different multimorbidity profiles may have emerged if other

NCD indicators had been used. Notably, however, in the absence of a gold standard measure

for multimorbidity, adherence to recommended standards, which advise inclusion of between

11–12 most prevalent chronic diseases in a given population [4,10], is a major strength of this

study. This study included all diseases specified in the recommended list, with the exception of

cancer—given its lower overall prevalence in the sample population.

Finally, while use of population-level data increased the representativeness of identified pat-

terns, the study design which excluded age-groups older than 74 years may have introduced a

selection and information bias. It is well-recognized that multimorbidity assumes greater

importance with advancing age [4,7,10] and failure to examine variations in patterns as people

age omits an important population demographic where multimorbidity may be more com-

mon, with greater implications for disease severity, management of conditions, functional sta-

tus and quality of life.

Conclusion

The findings indicate that a considerable proportion of the population is managing two or

more conditions, with a female preponderance in the burden and degree of multimorbidity.

Consistency of multimorbidity patterns identified here with results from other international

studies supports the non-random association of diseases and the need for intervention to bet-

ter control and support, if not prevent, the inevitable lifelong management of multiple diseases
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with which many populations must contend. Future work using longitudinal datasets would

enable exploration of disease trajectories and understanding of how individuals manage multi-

ple conditions and transition to different patterns over time. Investigation of multimorbidity

burden in other LMICs is also needed to better reflect individual burden of disease as well as

clinician’s daily workload and experience. As future research continues to examine this multi-

morbidity phenomenon, exploration into the causes and consequences of NCD patterns, with

attention to variation in disease profiles according to sex, age and socio-economic status, can

guide the development of strategies that allow for more targeted prevention and intervention.
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