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Objective: Diabetic cardiomyopathy (DCM), characterized by cardiomyopathy with the

absence of coronary artery disease, hypertension, and valvular heart disease in patients

with diabetes, significantly increases the risk of heart failure. Galectin-3 (Gal-3) has been

shown to regulate cardiac inflammation and fibrosis, but its role in DCM remains unclear.

This study aimed to determine whether Gal-3 inhibition attenuates DCM and NF-κB

p65 activation.

Methods: Diabetic cardiomyopathy (DCM) was established by intraperitoneal (IP)

injection of streptozotocin for 5 consecutive days in mice. Myocardial injury markers,

such as creatine kinase isoenzyme (CK-BM) and lactate dehydrogenase, were detected

using ELISA. We used non-invasive transthoracic echocardiography to examine cardiac

structure and function. Histological staining was used to explore myocardial morphology

and fibrosis. Profibrotic markers and inflammatory cytokines were detected by ELISA

and real-time PCR in vivo. The terminal deoxyribonucleotide transferasemediated

dUTP nick end-labeling (TUNEL) and immunofluorescence assays were conducted to

examine myocardial apoptosis and oxidative stress. Inflammatory cytokines induced

by high glucose (HG) were also found in RAW264.7 macrophages. The underlying

molecular mechanisms were determined using immunofluorescence and Western

blotting analyses.

Results: The Gal-3 knockdown was observed to ameliorate myocardial apoptosis,

oxidative stress, inflammatory cytokines release, macrophage infiltration, and fibrosis,

thus, decreasing cardiac dysfunction in DCM mice. In addition, the silence of Gal-3

could suppress macrophage infiltration and inflammatory cytokine release induced by

HG. Finally, a Gal-3/NF-κB p65 regulatory network was clarified in the pathogenesis

of DCM.

Conclusion: The Gal-3 may promote myocardial apoptosis, oxidative stress,

inflammation, and fibrosis in vivo and in vitro by the mechanism of reduction of NF-κB

p65 activation.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a global epidemic and
is expected to affect over 693 million people worldwide by
2045 (1). Diabetic cardiomyopathy (DCM) was defined as
a pathophysiological condition, in which heart failure (HF)
occurred in the absence of coronary artery disease, hypertension,
and valvular heart disease (2). Multiple pathophysiological
factors in diabetes promote the development of cardiomyopathy
from the early stages of diastolic cardiac fibrosis and
stiffness/relaxation dysfunction to a later stage of systolic HF (3).
The HF results in worsened clinical outcomes in patients with
diabetes mellitus (4). Many commonly used antihyperglycemic
therapies have successfully reduced hyperglycemia in diabetes,
but these drugs have not reduced the high occurrence of HF (5).
In addition, the protective effects of novel hypoglycemic drugs,
such as sodium-glucose cotransporter 2 inhibitors (6, 7) and
glucagon-like peptide-1 analogs (8), on HF are independent of
the hypoglycemic effect. Furthermore, dapagliflozin has been
shown to reduce the risk of HF worsening, regardless of diabetes
status (9). As a result, factors other than glycemia may contribute
to the risk of HF in patients with diabetes.

Many pathophysiological mechanisms, such as inflammation,
oxidative stress, endoplasmic reticulum stress, aberrant insulin
signaling, autophagy, myocardial metabolism, mitochondrial
bioenergetics, and lipotoxicity, might be amenable to
pharmacological therapy to decrease the risk of cardiac
dysfunction in DCM. The role of maladaptive inflammation
cytokines in the pathogenesis of DCM and HF has been
established. Inflammatory cell infiltration, such as macrophages,
may play a role in myocardial fibroblast collagen expression (10).
Infiltrating macrophages and associated inflammatory cytokines
can be implicated in diabetes-induced cardiac fibrosis and
dysfunction (1). The activation of nuclear factor k-light-chain-
enhancer of activated B cells (NF-kB) plays an important role in
triggering cytokine expression and proinflammatory response
(11). Furthermore, pro-inflammatory factors, such as NLRP3
inflammasome and the Toll-like receptor-4, promote DCM by
the modulation of NF-kB (12, 13). Increased circulating levels
of proinflammatory cytokines, such as tumor necrosis factor-α
(TNF-α), interleukins (IL) 1 and 6, transforming growth factor-β
(TGF-β), and monocyte chemotactic protein 1, also drive cardiac
remodeling and fibrosis, and final diastolic dysfunction (14, 15).
As a result, reducing inflammation macrophage infiltration is a
promising strategy for DCM treatment.

Galectin-3 (Gal-3), which is a 30-kDa lectin secreted mainly
by macrophages, contains a carbohydrate-recognition binding
domain that binds to β-galactoside (16). Gal-3 plays an important
disease-exacerbating role in autoimmune/inflammatory and

Abbreviations: Gal-3, Galectin-3; DCM, Diabetic cardiomyopathy; i.p.,
intraperitoneal injection; STZ, Streptozotocin; AAV-9, Adeno-associated virus
9; HF, Heart failure; HE, hematoxylin and eosin; CK-MB, creatine kinase MB
isoenzyme; LDH, lactate dehydrogenase; COL1A2, Collagen, type I, alpha 1;
COL3A1, Collagen, type III, alpha 1; LVEDD, Left ventricular end-diastolic
diameter; LVEF, Left ventricular fractional ejection fraction, LVESD, Left
ventricular end-systolic diameter; LVFS, Left ventricular fractional shortening
fraction; TNF-α, tumor necrosis factor-α; TGF-β, transforming growth factor-β.

malignant diseases (17–19). Gal-3 suppression attenuates many
fibrotic diseases (20). In particular, Gal-3 plays a key role
in cardiac fibrosis and remodeling. Cardiovascular fibroblast
proliferation, collagen deposition, and ventricular dysfunction
are all caused by recombinant Gal-3 (21). In a long-term
transverse aortic constriction mouse model, inhibiting Gal-3
slows the progression of cardiac remodeling (22). Gal3 can
also link inflammation to decreased insulin sensitivity (23).
However, the role of Gal-3 in the progression of DCM and high
glucose (HG)-inducedmacrophage activation remains unknown.
In this study, we investigated whether Gal-3 contributes to the
development of DCM in vivo andmolecular mechanisms in vitro.

METHODS

Animal Preparations and Experiments
All the animal procedures were approved by the Wenzhou
Medical University Animal Policy and Welfare Committee and
conformed to the National Institutes of Health Guidelines. Male
C57BL/6 mice (18–22 g) were purchased from the Experimental
Animal Center of Zhejiang Province (Hangzhou, Zhejiang,
China). All animals were housed at a constant room temperature
with a 12:12-h light-dark cycle and had free access to diet
and water. The mice, aged 8 weeks old, received streptozotocin
(STZ, 50 mg/kg) or vehicle (citrate buffer) by i.p. injection for
5 consecutive days. One week later, their fasting blood glucose
levels were measured with a glucometer, and mice with glucose
levels greater than 16.7 mmol/l were considered diabetic. The
diabetic mice were randomly divided into four groups: a control
group and diabetic mice received 2.5 × 1010 viral genomes
of adeno-associated virus 9 (AAV-9) incorporating Gal-3-short
hairpin RNA (shRNA) (AAV9-Gal-3) or an equal amount of
AAV-9 incorporating scrambled-shRNA (AAV9-NC) via the tail
vein injection, respectively. All mice were fed for another 16
weeks, and their blood glucose levels were measured weekly.
Before detection, mouse hearts were isolated at 16 weeks and
stored at−80◦C or fixed in 4% paraformaldehyde.

ELISA Analyses
The blood of mice was collected by retrobulbar bleeding and
was centrifuged for 2,000 rpm for 20min. The mice serum
was stored at −80◦C for further analyses. The concentrations
of serum creatine kinase MB isoenzyme (CK-MB) and lactate
dehydrogenase (LDH) were measured using commercial
ELISA kits (Cloud-Clone, China). Heart issues or culture
supernatants of RAW 264.7 macrophage cells were collected.
The concentrations of IL-10, IL-1, IL-6, TNF-α, and TGF-β1
were also detected using commercial ELISA kits (Beyotime and
DAKEWE, China).

Echocardiography Analyses
The cardiac systolic and diastolic functions were determined
using non-invasive transthoracic echocardiography in
anesthetized mice (VEVO3100, Fujifilm VisualSonics). Left
ventricular end-systolic diameter and end-diastolic diameter
(LVESD, LVEDD), ejection fraction (EF), and fractional
shortening (FS) were measured.
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Histological and Fibrotic Analyses
The paraffin-embedded cardiac tissues of mice were continuously
sectioned at a thickness of 4µm. Hematoxylin and eosin
(HE) and Masson staining were performed according to the
manufacturer’s instructions. The morphology and fibrosis of
heart tissue were examined under a light microscope (Nikon) at
a magnification of 400×.

TUNEL Staining
TUNEL staining was performed to detect cell apoptosis
in the heart. After dewaxing and rehydrating, heart tissue
sections (4µm thick) were washed by phosphate-buffered
saline (PBS) and permeabilized with Proteinase K (0.02
µg/µl). These sections were incubated with a TUNEL staining
solution based on the manufacturer’s recommendation. The

Graphical Abstract | Gal-3 triggers myocardial apoptosis, oxidative stress, inflammatory cytokines release, macrophage infiltration, and fibrosis, leading to cardiac

dysfunction in DCM mice.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 April 2022 | Volume 9 | Article 868372

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhu et al. Galectin-3 Inhibition Ameliorates Diabetic Cardiomyopathy

FIGURE 1 | Gal-3 inhibition decreased diabetes-induced cardiac injury (A) blood glucose level was measured during 16 weeks after STZ injection. (B,C) ELISA

analysis of heart CK-MB and LDH expression at 16 weeks after STZ injection. (D) HE staining of heart tissue at 16 weeks after STZ injection. Magnification, 200×.

Data are shown as mean ± SD. n = 6, *P <0.05 vs. Control; # P <0.05 vs. DCM+ AAV9-NC.

FIGURE 2 | Gal-3 inhibition reversed diabetes-induced cardiac dysfunction (A–E) echocardiographic measurement of cardiac structure and function. Data are shown

as mean ± SD. n = 5, *P < 0.05 vs. Control; # P < 0.05 vs. DCM+ AAV9-NC.
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FIGURE 3 | Gal-3 inhibition attenuated diabetes-induced cardiac fibrosis (A) Masson staining of heart tissue at 16 weeks after STZ injection. Magnification, 200×. (B)

ELISA analysis of heart TGF-β expression. (C,D) Real-time PCR analysis of COL1A2 and COL3A1 mRAN level. Data are shown as mean ± SD. n = 5, *P < 0.05 vs.

Control; # P < 0.05 vs. DCM+ AAV9-NC.

percentage of TUNEL-positive cells was evaluated by a
fluorescence microscope.

Real-Time Quantitative PCR
Trizol was used to lyse heart tissues after they were harvested.
The Primescript RT reagent kit was used for both reverse
transcription and quantitative PCR (qPCR) (Takara, Japan). The
light cycler 480 SYBR Green I Master (Roche, Switzerland)
was used for qPCR analyses. The primer sequences of types
I and III collagen (COL1A2 and COL3A1) were generated by
our laboratory and are as follows: COL1A2, forward 5′-CAC
CCCAGCGAAGAACTCAT-3′, reverse 5′-TCTCCTCATCCA
GGTACGCA-3′; COL3A1A1, forward 5′-GAGGAATGGGTG
GCTATCCG-3′, reverse 5′-TCGTCCAGGTCTTCCTGACT-3′;
and GAPDH, forward 5′-ATGGGTGTGAACCACGAGAA-3′,
reverse 5′-ATGAGCCCTTCCACAATGCC-3′. The amount of
each gene was detected and normalized to the amount
of GAPDH.

Immunofluorescence Analyses
Heart issues or RAW 264.7 macrophage cells were fixed in 4%
paraformaldehyde for 15min, permeabilized with 0.5% Triton
X-100 for 10min and incubated with blocking buffer for 30min
at room temperature. Specimens were then incubated overnight
at 4◦C with primary antibodies (CD68, Abcam, 1:200; Gal-3,

Abcam, 1:200; eNOS, Abcam, 1:200) and 1 h at room temperature
with secondary antibody. Cell nuclei were stained with DAPI
and the signals were measured using a confocal laser microscope
(Olympus, Japan).

Western Blotting
Heart issues or RAW 264.7 macrophage cells were lysed with a
Radioimmunoprecipitation assay (RIPA) buffer containing
protease and phosphatase inhibitors. For nuclear and
cytoplasmic protein analyses, the Nuclear and Cytoplasmic
Protein Extraction Kit (Beyotime, Jiangsu, China) was used.
Total protein concentrations were determined with the BCA
protein assay kit (Beyotime). Protein samples (50 µg) were
subjected to electrophoresis by 8–12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), transferred to
polyvinylidene fluoride (PVDF) membranes, and blocked in
Tris-buffered saline containing 0.05% tween and 5% non-fat dry
milk. Primary antibody (Gal-3, Abcam, 1:5,000; p-IκB, Santa
Cruz, 1:500; IκB, Proteintech, 1:1,000; p-NF-κB p65, AFFINITY,
1:500; p50, Proteintech, 1:200; b-actin Atagenix, 1:3,000;
GAPDH, Proteintech, 1:5,000) incubations were performed
at 4◦C overnight, and secondary antibodies were incubated
for 1 h at room temperature. The immunoreactive bands were
visualized using Enhanced Luminol Reagent and Oxidizing
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FIGURE 4 | Gal-3 inhibition reduced diabetes-induced apoptosis and oxidative stress (A,B) TUNEL and (C,D) immunofluorescence staining of eNOS in heart tissue at

16 weeks after STZ injection. Data are shown as mean ± SD. n = 3, *P <0.05 vs. Control; #P <0.05 vs. DCM+ AAV9-NC.

Reagent. Densitometric analyses were conducted using Quantity
One software (Bio-Rad, Hercules, CA, USA).

Statistical Analyses
The experimental data were expressed as the mean ± standard
deviation (SD). The differences between groups were analyzed
with Student’s t-test or one-way analysis of variance using
GraphPad Pro5.0 (GraphPad, San Diego, CA, USA). All p < 0.05
were considered statistically significant.

RESULTS

Gal-3 Inhibition Decreased
Diabetes-Induced Cardiac Injury
Streptozotocin (STZ) caused an increase in the blood glucose
level in the DCM group, and the blood glucose level
was maintained during the experiment interval (Figure 1A).
However, the blood glucose level was significantly decreased in
the DCM+AAV9-Gal-3 group. Furthermore, the ELISA assay
revealed that myocardial injury markers (CK-MB and LDH)

were upregulated in the DCM group, whereas Gal-3 inhibition
reduced the increase (Figures 1B,C). The myocardial structure
was examined by HE-staining. Diabetes induced histological
abnormalities, whereas treatment with AAV9-Gal-3 markedly
reversed these abnormalities (Figure 1D).

Gal-3 Inhibition Reversed
Diabetes-Induced Cardiac Dysfunction
Cardiac structure and function were examined by
echocardiographic measurement (Figure 2A). Diabetic mice
had cardiac systolic and diastolic dysfunction, as evidenced
by increased LVEDD and LVESD (Figures 2B,C), as well as
decreased EF% and FS% (Figures 2D,E). Improved cardiac
systolic and diastolic dysfunction was also observed by
Gal-3 inhibition.

Gal-3 Inhibition Attenuated
Diabetes-Induced Cardiac Fibrosis
Masson staining showed Gal-3 inhibition ameliorated
myocardial fibrosis in diabetic mice (Figure 3A). The
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FIGURE 5 | Gal-3 inhibition modulated diabetes-induced cytokines expression (A–D) ELISA analysis of IL-1, IL-6, TNF-α and IL-10. Data are shown as mean ± SD.

n = 5, *P < 0.05 vs. Control; #P < 0.05 vs. DCM+ AAV9-NC.

ELISA and real-time PCR analyses revealed a significant
increase in profibrotic makers, including TGF-β (Figure 3B)
and COL1A2 and COL3A1 (Figures 3C,D) expressions in
diabetic hearts.

Gal-3 Inhibition Decreased
Diabetes-Induced Apoptosis and Oxidative
Stress in the Heart
The TUNEL staining showed diabetes-induced cardiac apoptosis,
while Gal-3 inhibition reduced apoptosis (Figures 4A,B).

Diabetes-induced downregulations of antioxidant marker-
endothelial nitric oxide synthase (eNOS) were reversed by Gal-3
inhibition (Figures 4C,D).

Gal-3 Inhibition Modulated
Diabetes-Induced Cytokine Expression
The increase of proinflammatory cytokines, including IL-1,
IL-6, and TNF-α (Figures 5A–C), and the decrease of anti-
inflammatory cytokines (IL-10) (Figure 5D) were observed in the
DCM group. However, the decrease of IL-1, IL-6, and TNF-α and
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FIGURE 6 | Gal-3 inhibition reduced diabetes-induced macrophage infiltration and NF-κB p65 activation. (A–C) Immunofluorescence staining of CD68 and Gal-3 in

heart tissue at 16 weeks after STZ injection. (D–H) Western bloting analysis of Gal-3, p-IκB, IκB and p- NF-κB p65. Data are shown as mean ± SD. n = 3, *P < 0.05

vs. Control; # P < 0.05 vs. DCM+ AAV9-NC.

the increase of IL-10 were observed in the DCM+AAV9-Gal-
3 group.

Gal-3 Inhibition Reduced Diabetes-Induced
Macrophage Infiltration and NF-κB p65
Activation
Immunofluorescence staining indicated that macrophage
marker (CD68) was significantly upregulated induced by
STZ, whereas Gal-3 inhibition reduced CD68 expression
(Figures 6A–C). Western blot analyses revealed that p-IκB
and p-NF-κB p65 were increased, and IκB was decreased
by diabetes, which was both reversed by Gal-3 inhibition
(Figures 6D–H).

Gal-3 Knockdown Regulated HG-Induced
Cytokine Expression in Macrophages
Proinflammatory cytokines, including IL-1, IL-6, and TNF-α
(Figures 7A–C), were increased and anti-inflammatory cytokines
(IL-10) were decreased by HG (Figure 7D). However, Gal-3
knockdown reversed the increase of IL-1, IL-6, and TNF-α and
the decrease of IL-10.

Gal-3 Knockdown Induced HG-Induced
Macrophage Infiltration
Immunofluorescence staining showed that CD68 was
increased by HG, which was attenuated by Gal-3 knockdown
(Figures 8A–C).

Gal-3 Knockdown Reduced NF-κB p65
Activation
Western blot analyses showed that HG-induced p-IκB and p-
NF-κB p65 expression and decreased IκB (Figures 9A–E). The
Gal-3 knockdown reduced p-IκB and p-NF-κB p65, as well as
increased IκB. Furthermore, NF-κB p65 was decreased in the
cytoplasm but increased in the nucleus (Figures 9F–H). Gal-3
knockdown reduced NF-κB p65 in the nucleus and increased it
in the cytoplasm.

DISCUSSION

Our study results suggested that inhibition of Gal-3 alleviated
cardiac injury and myocardial apoptosis, oxidative stress, and
fibrosis in STZ-induced DCM. In addition, inhibiting Gal-3
knockdown resulted in the suppression of proinflammatory
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FIGURE 7 | Gal-3 knockdown regulated HG (high glucose)-induced cytokines expression in macrophages (A–D) ELISA analysis of IL-1, IL-6, TNF-α and IL-10. Data

are shown as mean ± SD. n = 3, *P < 0.05 vs. siRNA-NC; #P <0.05 vs. HG+ siRNA-NC.

cytokines and macrophage infiltration in vivo via the
mechanism of NF-κB p65 inactivation. In vitro, Gal-
3 knockdown also blunted HG-induced inflammatory
cytokines and macrophage infiltration, as well as NF-κB
p65 inactivation. Our data identified that Gal-3 regulates DCM
by the blockage of inflammation and NF-κB p65 activation.
Hence, targeting Gal-3 may be a promising strategy for
DCM treatment.

The DCM is caused by a complex set of pathophysiological
factors. Cardiac fibrosis, which is caused by these abnormalities,
is a major contributor to stiffness/diastolic dysfunction and, later,
systolic dysfunction (3). The Gal-3 level is related to markers
of the cardiac extracellular matrix and, therefore, emerges as

a biomarker associated with death or HF hospitalization (24).
The use of Gal-3 for prognosis in patients with moderate
to severe HF was recommended in the 2013 American
College of Cardiology Foundation/American Heart Association
guidelines for the management of HF (25). New research has
highlighted the use of Gal-3 as a drug target. We discovered
that DCM treated with Gal-3 knockdown at the start of the
experiment improved cardiac function and reduced cardiac
injury biomarkers. Clinical studies have also revealed that
plasma Gal-3 is an independent predictor of HF outcomes
and myocardial function in patients with preserved EF, but
not in patients with reduced EF (24, 26, 27). In this study,
in the stage of systolic dysfunction, Gal-3 remains markedly
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FIGURE 8 | Gal-3 knockdown induced HG-induced macrophage infiltration (A) Immunohistochemical staining of CD68 and Gal-3. Representative analysis of CD68

(B) and Gal-3 (C). Data are shown as mean ± SD. n = 3, *P <0.05 vs. siRNA-NC; # P <0.05 vs. HG+ siRNA-NC.
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FIGURE 9 | Gal-3 knockdown reduced NF-κB p65 activation Western bloting analysis of Gal-3, p-IκB, IκB and p- NF-κB p65 (A). Representative analysis of Gal-3

(B), p-IκB (C), IκB (D) and p-NF-kB p65 (E). (F–H) Western blotting analysis of NF-κB p65 in cytoplasm and nucleus. Representative analysis of NF-κB p65 in

cytoplasm and nucleus. Data are shown as mean ± SD. n = 3, *P <0.05 vs. siRNA-NC; # P < 0.05 vs. HG+ siRNA-NC.

high, indicating that further studies should be conducted to
identify the role of Gal-3 in the stage of systolic dysfunction.
Furthermore, Gal-3 inhibition was found to reduce fibrosis
and profibrotic markers in the DCM model, including TGF-β,
COL1A2, and COL3A1.

Emerging evidence indicates that Gal-3 regulates cardiac
fibrosis via inflammation. The pharmacological inhibition of
Gal-3 prevented cardiac dysfunction and fibrosis (28). Gal-3
blockade inhibited proinflammatory and profibrotic markers,
including chemokine ligand 2 (CCL2), TNF-α, and IL-1β in
human cardiac fibroblasts (29). In addition, Gal-3 blockage could
also inhibit isoproterenol-induced cardiac inflammation and
fibrosis (30). Gal-3 blockage decreased obesity-induced cardiac
dysfunction, inflammatory markers osteopontin, and CCL2, and
fibrosis markers’ collagen type I, TGF-β, and connective tissue
growth factor (31). Gal-3 stimulated a variety of profibrotic
factors, especially the phagocytosis of apoptotic cells and the
production of cellular debris from macrophages (32). Increased
Gal-3 expression in macrophages causes alternative macrophage
activation and promotes cardiac remodeling after myocardial
infarction (33). Gal-3 in CD206+ macrophages has also been
reported to result in reparative fibrosis in myocardial infarction
(34). A previous study demonstrated that CD11b-F4/80++

macrophage infiltration at 4 weeks STZ-induced diabetes was
increased, but cardiac inflammation resolved at 12 weeks (35).
CD68 has been used more frequently as a macrophage marker
in the heart (36, 37) and CD11b+ as a macrophage marker
in the liver and skin (38). More importantly, in the previous
study, CD68 was not detected. We discovered that another
macrophage maker, CD68, was still increased after 16 weeks.

Furthermore, the STZ challenge increased proinflammatory
cytokine profiles, while reducing anti-inflammatory cytokine
profiles. Systemic inflammation, including circulating cytokines,
chemokines, immune cells, and other inflammatory biomarkers,
is present in both types of patients with diabetes (39, 40).
The induction of proinflammatory cytokines (TNF-α, IL-
1β, and IL-6) has also been identified after the increase of
systemic inflammatory markers in the heart of diabetic models
(41–43). It has been reported that IL-10 is upregulated in
reparative and pressure overload-induced fibrosis and that it
is localized in T lymphocytes and macrophages infiltrating
the remodeling heart. The IL-10 may regulate the cardiac
fibrotic response in addition to its well-documented anti-
inflammatory properties (44, 45). Though the conflict between
its pro-and antifibrotic actions remains (46–48), IL-10 has been
shown to have anti-inflammatory and antifibrotic properties in
STZ-induced DCM (49, 50). Our data were consistent with
these studies.

The HG-induced IL-1β release in human macrophages (51).
In RAW264.7 macrophages, HG significantly increased the
mRNA level, as well as the release of IL-1 and TNF-α (52–
54). Though the role of Gal-3 in macrophage activation and
proinflammation has been studied, its involvement in HG-
induced inflammatory cytokine release has not been identified.
In RAW264.7 macrophages, we discovered that HG induced
the release of IL-1β, IL-6, and TNF-α, which was inhibited by
Gal-3 inhibition.

The NF-κB is a heterodimer made up of the p50 and RelA/p65
subunits that act as a proinflammatory transcription factor and
mediates the inflammatory response in macrophages (55). Under
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unstimulated conditions, NF-κB is localized in the cytoplasm
binding IκB (56). The IκB phosphorylation and downregulation
leave the NF-κB dimer free to translocate to the nucleus and
initiate the transcription of targeting genes, including IL-1β and
TNF-α (57). When cells are stimulated by environmental factors,
NF-κB is released, allowing it to translocate to the nucleus, where
it continues to mediate the transcription of target genes, such as
IL-1β and TNF-α.

In macrophages, NF-κB p65 phosphorylation and localization
in the nucleus also mediated inflammatory cytokines
(58–60), which was correlated to many diseases (61–63).
Furthermore, NF-κB p65 activates macrophage infiltration,
inflammation, and myocardial fibrosis in DCM (64, 65). The
HG induced NF-κB activation in RAW264.7 macrophages
(66). The Gal-3 inhibitor modified citrus pectin has been
proven to downregulate the expression of Gal-3 and NF-
κB-p65 activation (67). In this study, we first discovered
that Gal-3 inhibition blocked NF-κB-p65 activation in
vivo. We also identified that Gal-3 inhibition modulates
HG-induced NF-κB-p65 phosphorylation and nuclear
translocation. Therefore, the Gal-3/NF-κB-p65 regulatory
network provides novel insights into the pathogenesis and
treatment of DCM.

CONCLUSION

In conclusion, our findings point to a mechanism by which Gal-
3 may promote NF-κB-p65 activation, thereby alleviating DCM.
The AAV9 intervention may provide a new therapeutic strategy
for DCM and related heart diseases because of the potential role
and therapeutic value of Gal-3 in fibrotic heart diseases.

LIMITATION

There are some limitations to the present study. Firstly, we
failed to identify a novel mechanism of Gal-3 modulating DCM.
Secondly, it is insufficient to determine that Gal-3 inhibition
leads to ameliorating DCM by NF-κB-p65 activation. More
experiments should be performed in the future.
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