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Abstract: Timely microscopy screening of peripheral blood smears is essential for the diagnosis of
acute promyelocytic leukemia (APL) due to the occurrence of early death (ED) before or during the
initial therapy. Screening manually is time-consuming and tedious, and may lead to missed diagnosis
or misdiagnosis because of subjective bias. To address these problems, we develop a three-step
pipeline to help in the early diagnosis of APL from peripheral blood smears. The entire pipeline con-
sists of leukocytes focusing, cell classification and diagnostic opinions. As the key component of the
pipeline, a compact classification model based on attention embedded convolutional neural network
blocks is proposed to distinguish promyelocytes from normal leukocytes. The compact classification
model is validated on both the combination of two public datasets, APL-Cytomorphology_LMU
and APL-Cytomorphology_JHH, as well as the clinical dataset, to yield a precision of 96.53% and
99.20%, respectively. The results indicate that our model outperforms the other evaluated popular
classification models owing to its better accuracy and smaller size. Furthermore, the entire pipeline
is validated on realistic patient data. The proposed method promises to act as an assistant tool for
APL diagnosis.

Keywords: acute promyelocytic leukemia; convolutional neural networks; early diagnosis; pipeline;
real cases validation

1. Introduction

Acute promyelocytic leukemia (APL) is one of the sub types of acute myeloid leukemia
(AML), namely M3, according to the French–American–British (FAB) classification guide-
lines of acute leukemia. The incidence of APL is around 0.23 per 100,000 people in China
and around 600–800 cases each year in the United States [1]. It accounts for 10% to 15%
of the present AML cases [2]. The susceptible population of APL are adults, with more
than 30% of patients being over 60 years old, but recently the number of reported pediatric
patients is rising [3,4].

Early diagnosis plays a dramatically important role in APL treatment selection and is
closely bound to its prognosis, since APL benefits most from timely treatment compared
with the other subtypes of AML. APL used to be fatal before the specific target therapy
with all-trans retinoic acid (ATRA) was adopted. Currently the five-year disease free
survival rate has risen from 25% to 95%, and APL has been thought to be almost a curable
disease. Despite this, it is still difficult to avoid early death (ED) before or during the
initial therapy due to mortal hemorrhagic complications such as disseminated intravascular
coagulation (DIC) [5]. Meanwhile, the occurrence of ED increases with age [6]. Theoretically
speaking, the diagnosis of APL should consist of microscopy examination of peripheral
blood and bone marrow cells, flow cytometry analysis and advanced genetic or molecular
level confirmation. However, in order to avoid the fatal hemorrhagic complications,
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morphologically suspected APL patients should be hospitalized and treated with proper
therapy as soon as possible regardless of whether the molecular confirmation is obtained
or not [7]. Thus, the initial treatment plan is usually generated only based on screening
through the microscopy examination of peripheral blood smears. It is actually a critical
step in the entire diagnosis–treatment flow and is expected to be sensitive and fast.

According to the morphology screening guidelines for APL proposed by FAB, the mi-
croscopic examination should be implemented manually by well-trained hematopathol-
ogists, which are scarce in most primary hospitals [8]. Besides, objective bias is difficult
to avoid in manual work, which may lead to missed diagnosis and misdiagnosis. It may
affect treatment plans, resulting in a completely different clinical outcome. According to
the recommendations of the International Council for Standardization in Haematology
(ICSH), enough nucleated cells should be analyzed for each peripheral blood sample to
obtain a meaningful clinical deterministic conclusion [9]. The target cell needs to be sought
first through a low power microscopic lens, then their appearance should be analyzed
at high magnification. Furthermore, APL often causes very low white blood cell counts
in the early stage of the disease; it requires staff to spend a lot of time identifying rare
promyelocytes from the whole smear through the microscope. Therefore, the manual check
is a tedious and cumbersome job and the bottleneck of the entire diagnosis–treatment
workflow. Current guidelines encourage people to pay attention to fast and convenient
morphological methods for the early diagnosis of APL [10]. It would be of great clinical
significance if there was a sensitive and automatic system to help analyze peripheral blood
smears for APL. However, as far as we know, there is currently little research focusing on
the automatic identification and diagnosis of APL. That is what inspired us to solve this
problem via artificial intelligence.

There have been state-of-the-art achievements in the classification or automatic detec-
tion of cell images of acute leukemia, especially for acute lymphoblastic leukemia (ALL)
and AML. These methods categorize all the cells and then predict the leukemia based on the
existence of abnormal blast cells, some of which segment the individual white blood cells
first. The main differences among them are the different classification algorithms employed.
Some of them chose the traditional solutions to classification problems, for example, work-
flow consisting of manually-designed image features and support vector machines as the
classifier [11–13] or using hybrid hierarchical classifiers [14] or the Adaboost algorithm with
random forest as a classifier [15]. Due to the important role of the extracted features in the
final classification, some studies [16–18] investigated different methods to select the most
appropriate features. Besides, the detection step combined with classification is proposed
which can directly work on the whole blood smears [19,20]. However, the performance of
these methods depends largely on the quality of the extracted features. The other meth-
ods utilized the advanced convolutional neural networks (CNN) with transfer learning
techniques or the generative adversarial optimization algorithm to learn image features
automatically and to classify the cells simultaneously in one pipeline [21–23]. A predictive
model with two cascaded CNNs was designed as an assistant tool to help the clinical
pathologists in the diagnosis of acute leukaemia during the process of blood smear re-
view [24]. These methods may need fine tuning from benchmark datasets due to the lack
of cell images.

In addition, there are some cell image processing, analysis and segmentation methods
based on deep learning proposed for problems other than acute leukemia. By comparing
the prediction of two classifiers and selecting the label with the higher confidence value,
the overall accuracy of embryo image classification has been further increased [25]. A deep
learning method based on Region Based CNN and a central coordinate tracking algorithm
were proposed for the detection of sperm head [26]. For the cell images taken directly from
cell culture flasks with a benchtop microscope, an unsupervised clustering method—Self-
Label Clustering—was introduced to identify different morphological phenotypes within a
cell type [27].
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In this study, we develop a clinically applicable pipeline to help with the early di-
agnosis of APL. According to the FAB guidelines, the most critical evidence of APL is
the discovery of abnormal promyelocytes in peripheral blood through a series of mor-
phological features including kidney-shaped or biloba nuclei, large and/or numerous
cytoplasmic granules, and Auer rods [28]. A compact network architecture based on the
attention embedded CNN blocks is designed to accurately distinguish promyelocytes from
normal cells and to generate an initial opinion for diagnosis. Our contributions are listed
as follows:

1. A new compact cell classification model based on the attention embedded convo-
lutional neural network is designed to distinguish promyelocytes from the normal
white blood cells. The whole model is tiny and it is easily trained on a small dataset
to avoid fine tuning. The experiment’s results demonstrate that it outperforms other
popular benchmark classification models.

2. To the best of our knowledge, this is the first work to investigate the early diagnosis
method of APL on a large dataset consisting of all public accessible datasets and
private data. The entire dataset is nearly twice as large as that used in current work
and includes multicenter data, which helps with generalization.

3. The end-to-end pipeline has been validated on realistic patient data.

The remainder of the paper is organized as follows: Section 2 explains the details
of the dataset, the proposed methodology of the pipeline, the architecture of our model
and the metrics. The results of the classification model, entire workflow, case report and
ablation study are presented in Section 3. Section 4 discusses the merits and limitations of
our method and Section 5 concludes the study.

2. Materials and Methods

The proposed artificial intelligence aided pipeline for APL diagnosis works on the
microscopy images of peripheral blood smear samples. It consists of three steps, namely
leukocyte focusing, cell classification and diagnostic opinions as shown in Figure 1. First,
the target cells are extracted from the microscopic images via a color feature based segmen-
tation method. Second, the individual cell images are fed into the proposed classification
model to identify cell types. Finally, the diagnostic opinions are given according to the
classification results obtained by step 2 and the clinical prior knowledge.

Figure 1. The flowchart of the proposed artificial intelligence aided workflow for APL diagnosis,
which includes leukocyte focusing, cell classification and diagnostic opinions steps.
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2.1. Leukocytes Focusing

The input of our system is the microscopy image, which contains numerous blood
cells. Since we mainly care about leukocytes in APL diagnosis, the first step is to focus
on our target cells. As shown in Figure 1, the appearance of leukocytes is quite different
from that of other cells, as they are large and conspicuous during the preparation of smears.
Hereby, the color feature based cell extraction method proposed in our prior work was
employed [29]. The microscopy images were first operated by color normalization to
align their means and standard deviations to the selected reference images, which aimed
to reduce the interference caused by staining. Then color deconvolution was utilized
to deconvolve the normalized image into the methylene blue stain space and the eosin
stain space. This follows the assumption that the compound staining image is the linear
combination of the monochrome stain. Finally, the deconvolved methylene blue stain
images were binarized to generate the bounding box of the leukocytes and localize the
cells. The details of the cell extraction method can be found in the reference [29].

2.2. Cell Classification

A compact CNN model with attention mechanism embedding was designed to per-
form the cell classification. It consists of a group of convolution layers—a channel attention
module and two fully-connected layers as shown in Figure 2.

Figure 2. The architecture of the proposed compact model, containing four convolution blocks, one
channel attention module and two fully-connected layers.

A convolution layer is composed of convolution, batch normalization, ReLU activation
function and max pooling operation as listed in Equation (1).

F(·) = PoolingMax(ReLU(BN(Conv(·)))), (1)

where F(·) denotes the feature maps generated by the convolution layer and Conv(·)
describes the convolution operation. BN(·), ReLU(·) and PoolingMax(·) are the batch
normalization, ReLU function and max pooling, respectively. The small convolution kernel
of 3 × 3 was applied to balance the performance and the computational cost. The dropout
layer with dropout rate set to 0.5 was added here after each fully-connected layer to prevent
the over-fitting problem.

Since the convolution group produced a large number of feature maps, the channel-
wise attention module was embedded to highlight the most discriminative feature channels
and help them to contribute more to the final prediction. It was implemented through the
squeeze-and-excitation (SE) module [30] as in Equation (2).{

Fsq(·) = Poolingchannel−wise(F(·));
Fex(·) = So f tMax(W2ReLU(W1Fsq)),

(2)

where Fsq(·)performs the channel-wise global average pooling on the feature map F(·)
generated by the convolution group. Fex(·) is the generated weights for each channel.
W1 and W2 are the matrices that first map the Fsq(·) into a low dimension space and
then recover it back. The compression ratio aims to balance the attention capacity and
computational cost of the SE block and was set to 16.



Diagnostics 2021, 11, 1237 5 of 15

Two cascaded fully-connected layers were employed to compress the feature maps
and to generate the final prediction for cell classification. The details of the architecture are
shown in Table 1.

Table 1. The detailed structure of our classification model.

Layer Operation Filter Stride Padding Output Size

Block0
Conv 3 × 3 × 64 1 1

112 × 112 × 64BN, ReLU - - -
Max pool 3 × 3 2 1

Block1
Conv 3 × 3 × 128 1 1

56 × 56 × 128BN, ReLU - - -
Max pool 3 × 3 2 1

Block2
Conv 3 × 3 × 256 2 1

14 × 14 × 256BN, ReLU - - -
Max pool 3 × 3 2 1

Block3
Conv 3 × 3 × 256 1 1

7 × 7 × 256BN, ReLU - - -
Max pool 3 × 3 2 1

SE - - - - 7 × 7 × 256

FC0 - - - - 512

FC1 - - - - 6

2.3. Diagnostic Opinions

Based on the latest National Comprehensive Cancer Network (NCCN) guidelines,
the induction therapy should be started as soon as possible in cases suspected of APL
by morphological examination [31]. Thus, we sought to produce a diagnosis opinion to
warn of a suspicious status if there was a positive result in our classification step. It can be
provided at the same time as the risk stratification since it is one of the prognosis factors and
a guidance for consolidation therapy. The risk was calculated with the Sanz/PETHEMA
and GIMEMA-risk score [28].

2.4. Dataset

Three datasets were employed to validate the performance of the proposed model.
The first was the public dataset AML-Cytomorphology_LMU, which contains more than
10,000 expert-labeled single-cell images taken from peripheral blood smears diagnosis
with acute myeloid leukemia at Munich University Hospital [32]. The second was the
public dataset from [33], which includes peripheral blood smear images of 106 patients at
The Johns Hopkins Hospital (JHH). Taking into consideration that both datasets contain
patients from several subtypes of AML, the typical APL corresponding to six kinds of cells
were chosen to construct the subset in our paper, named APL-Cytomorphology_LMU and
APL-Cytomorphology_JHH and including 14,910 and 7695 leukocytes, respectively. These
two datasets were mainly used to validate the cell classification model since they were
already single-cell images and did not need a focusing step. Additionally, 6798 leukocytes—
as the clinical dataset for validating the whole pipeline—were extracted according to
the method in [29] from 657 microscopy images. These images were collected from the
blood smears in the hematology lab of Zhongshan Hospital, Fudan University. Some were
diagnosed with APL and the others were from normal individuals because of the rare
appearance of the other five kinds of normal cells in the blood smears of APL patients. All
images were obtained from the peripheral blood smears by microscope and were manually
labeled by experienced hematologists following the standard clinical protocol. The entire
cell image distribution of the three datasets is listed in Table 2. We randomly divided
images in each dataset into five folds. Stratified split was carried out so that each fold
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contained approximately 20% of the cell images of each class and had no duplicate images
with the other folds. Each model was trained from scratch for five rounds individually.
In each round, three folds were the training set, one fold was the validation set and the
remaining one fold was taken as the testing set. Note that the testing set was different in
each of the five rounds. The result was acquired by averaging the testing results of the five
rounds. Random data augmentation included flip and rotation applied to the training set
to relieve the data imbalance problem. Finally, three case reports were provided to show
the end-to-end performance in terms of the early diagnosis of APL. The data used in the
case reports did not overlap with those in any aforementioned dataset.

Table 2. The amount of six classes of leukocytes of the three datasets.

Dataset Basophil Eosinophil Lymphocyte Monocyte Promyelocyte Neutrophil

APL-Cytomorphology_LMU 79 424 3937 1789 88 8593
APL-Cytomorphology_JHH 53 108 3435 1319 688 2092
Clinical dataset 953 1063 976 912 628 2282

2.5. Metrics

In order to measure the performance of our method quantitatively, the most commonly
used statistics, denoted as the true positives TP, the false positives FP, the true negatives
TN and the false negatives FN, were employed. Based on them, we calculated the metrics
listed in Table 3. ROC analysis was performed through TPR and FPR.

Table 3. The quantitative metrics.

Metric Definition

Sensitivity TPR = TP
TP+FN

Specificity TNR = TN
TN+FP

False positive rate FPR = FP
TN+FP

False negative rate FNR = FN
TP+FN

Precision Precision = TP
TP+FP

Fβscore Fβscore= (1 + β2) Precision·TPR
(β2·Precision)+TPR

2.6. Experiment Setup

The entire system was implemented through Python and the cell classification frame-
work was based on Pytorch [34]. All experiments were conducted on a work station
equipped with one NVIDIA GTX 1080Ti GPU and an AMD Ryzen 5 1600 processor.

In the training phase of the cell classification model, the hyper parameters were as
follows. The SGD optimizer was applied with momentum = 0.9. The initial learning rate
was set as 5 × 10−3 and was divided by 5 every 10 epochs. The drop out method was
applied in our network to prevent the overfitting problem with a drop rate equal to 0.5.
Instead of fine tuning, all the models were trained from scratch.

3. Results
3.1. Performance of Cell Classification Model

In order to validate the performance of our proposed compact cell classification model,
we trained our model on the APL-Cytomorphology_LMU and the APL-Cytomorphology_JHH.
The results are listed in Tables 4 and 5. Our model was compared with ResNet [35], ResNeXt [36]
and VGG net [37], which are famous classification models that achieved superior performances
on blood cell classification tasks. For the sake of fairness, the architecture of all models followed
their original papers and were trained on the same data partitioning. Based on Tables 4 and 5,
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the area under the curve (AUC) of each model is very close except for VGG-19; our model
yields the leading performance in all remaining metrics while having a relatively small number
of parameters. It can be read from Table 6 that the size of our model is around one third of that
of ResNet-34 or ResNeXt-50, and less than one tenth of VGG-19. Consequently, it has lower
demands on the size of the training dataset and takes less time to train. The receiver operating
characteristic (ROC) curve for each model is plotted in Figure 3 and the confusion matrices are
given in Tables 7 and 8.

Table 4. The performance of the four models on the APL-Cytomorphology_LMU dataset by 5-fold cross-validation.

Method TPR TNR FPR FNR Precision Fβscore AUC

Our model 0.9746 ± 0.0048 0.9905 ± 0.0015 0.0095 ± 0.0015 0.0254 ± 0.0048 0.9765 ± 0.0035 0.9756 ± 0.0039 0.9977 ± 0.0003
ResNet-34 [35] 0.9680 ± 0.0043 0.9874 ± 0.0020 0.0126 ± 0.0020 0.0320 ± 0.0043 0.9679 ± 0.0056 0.9680 ± 0.0045 0.9970 ± 0.0005
ResNeXt-50 [36] 0.9719 ± 0.0034 0.9891 ± 0.0018 0.0109 ± 0.0018 0.0281 ± 0.0034 0.9690 ± 0.0032 0.9705 ± 0.0031 0.9975 ± 0.0006
VGG-19 [37] 0.9425 ± 0.0144 0.9292 ± 0.0078 0.0208 ± 0.0078 0.0575 ± 0.0144 0.9438 ± 0.0168 0.9431 ± 0.0154 0.9698 ± 0.0140

Table 5. The performance of the four models on the combination of the two public datasets by 5-fold cross-validation.

Method TPR TNR FPR FNR Precision Fβscore AUC

Our model 0.9658 ± 0.0031 0.9881 ± 0.0011 0.0120 ± 0.0011 0.0342 ± 0.0031 0.9653 ± 0.0030 0.9655 ± 0.0031 0.9914 ± 0.0026
ResNet-34 [35] 0.9557 ± 0.0048 0.9837 ± 0.0020 0.0163 ± 0.0020 0.0443 ± 0.0048 0.9549 ± 0.0043 0.9553 ± 0.0045 0.9921 ± 0.0008
ResNeXt-50 [36] 0.9594 ± 0.0016 0.9854 ± 0.0025 0.0146 ± 0.0025 0.0406 ± 0.0016 0.9589 ± 0.0017 0.9591 ± 0.0016 0.9944 ± 0.0006
VGG-19 [37] 0.9363 ± 0.0068 0.9756 ± 0.0026 0.00304 ± 0.0145 0.0637 ± 0.0068 0.9347 ± 0.0070 0.9355 ± 0.0069 0.9674 ± 0.0060

Table 6. The number of parameters and floating point operations (FLOPs) of the four models.

Method Params(M) FLOPs(G)

Our model 7.397 1.380
ResNet-34 [35] 21.288 3.761
ResNeXt-50 [36] 22.992 4.257
VGG-19 [37] 139.595 19.634

Figure 3. ROC curves of six kinds of cell classification results of the four models on the APL-
Cytomorphology_LMU dataset; our model achieved an AUC of 0.9977 ± 0.0003, obtained by averag-
ing the testing results of five different models trained for cross-validation. Each testing set accounts
for approximately 20% of the dataset and does not have repetitive cell images.
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Table 7. The confusion matrix of the classification performance of the four models for the testing data of the APL-
Cytomorphology_LMU dataset acquired by rounding off the mean value of five results of 5-fold cross-validation to the
nearest whole number (e.g., 0.4 is 0, 0.6 is 1); each number represents the amounts of cells classified.

Our Model/ResNet-34/ Predicted Class

ResNeXt-50/VGG-19 Basophil Eosinophil Lymphocyte Monocyte Promyelocyte Neutrophil

True class

Basophil 9/5/ 0/1/ 1/1/ 1/1/ 0/0/ 4/7/
6/3 1/3 1/2 1/1 0/0 6/6

Eosinophil 1/1/ 79/77/ 1/0/ 0/1/ 0/0/ 3/5/
1/2 78/61 1/1 1/4 1/1 3/14

Lymphocyte 0/0/ 0/0/ 773/768/ 10/13/ 0/0/ 3/5/
1/1 0/1 772/758 10/16 1/1 3/9

Monocyte 0/0/ 0/0/ 9/8/ 340/338/ 1/3/ 6/7/
0/0 0/5 10/14 339/325 2/2 6/10

Promyelocyte 0/0/ 0/0/ 0/0/ 2/3/ 14/14/ 0/0/
0/0 0/1 0/1 2/5 15/10 0/0

Neutrophil 1/0/ 1/1/ 6/6/ 5/9/ 0/1/ 1705/1701/
1/2 1/8 8/10 8/8 1/1 1699/1689

Table 8. The confusion matrix of the classification performance of the four models for the testing data of the combination of
two public datasets acquired by rounding off the mean value of five results of 5-fold cross-validation to the nearest whole
number (e.g., 0.4 is 0, 0.6 is 1); each number represents the amounts of cells classified.

Our Model/ResNet-34/ Predicted Class

ResNeXt-50/VGG-19 Basophil Eosinophil Lymphocyte Monocyte Promyelocyte Neutrophil

True class

Basophil 11/8/ 3/2/ 3/3/ 0/1/ 3/4/ 6/8/
10/5 2/3 3/4 1/2 2/3 7/8

Eosinophil 1/1/ 85/81/ 2/2/ 2/2/ 4/4/ 11/15/
2/3 83/64 2/3 2/6 2/3 15/27

Lymphocyte 1/1/ 1/0/ 1446/1434/ 18/24/ 2/4/ 6/10/
1/4 2/1 1440/1417 20/30 4/2 7/20

Monocyte 0/1/ 1/0/ 17/19/ 580/569/ 15/18/ 9/14/
1/2 0/4 17/28 572/545 19/25 12/16

Promyelocyte 1/2/ 1/0/ 3/3/ 19/27/ 131/122/ 1/0/
2/2 1/1 2/4 22/29 127/118 1/1

Neutrophil 2/2/ 2/3/ 9/12/ 10/13/ 2/3/ 2111/2104/
3/5 3/13 12/20 13/15 2/2 2103/2082

We performed the statistical analysis of the classification results using the non-
parametric Friedman test and obtained a p-value = 0.0018, which is smaller than 0.05,
to prove that the performance differences of the four models are statistically significant. We
then visualized the difference between the average ranks of the four models using the Crit-
ical Distance (CD) diagrams made from the results of the post-hoc Nemenyi test (α = 0.05)
as shown in Figure 4. The dot shows its average rank value, and the horizontal line with
the dot at the center shows the size of its Critical Distance. Our model is significantly better
than the ResNet-34 and VGG-19.
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Figure 4. The difference between the average ranks of four models using the Critical Distance
diagrams made from the results of the post-hoc Nemenyi test (α = 0.05). The dot shows its average
rank value, and the horizontal line with the dot at the center shows the size of its CD (1.915).

Based on the ROC curves, the VGG-19 performed poorly compared to the other three
models, and there was a little improvement of our model on the APL-Cytomorphology_LMU
dataset, achieving an AUC of 0.9977, compared with those of ResNet-34 and ResNeXt-50.
Clinically, some leukemia cells of variant APL are easily confused with monocytes due to
their sparse granules and distorted nuclei. Similar results could be found from the confu-
sion matrix in Tables 7 and 8, that some promyelocytes were misclassified as monocytes.

The learned features of the four networks were visualized to show the learning ability
of different networks on our task through the t-SNE method [38]. The high dimensional
features obtained by the last layer of each model were projected to the Cartesian coordinates
as plotted in Figure 5. The features extracted by ResNet-34 and ResNeXt-50 did not achieve
gratifying divisibility due to the overlaps. However, for VGG-19, several eosinophil and
basophil scatters located inside the neutrophil cluster that causes the misclassification. It
revealed the reason why the classification performance of VGG-19 is relatively poor.

3.2. Performance of the Entire Workflow

We validated the entire workflow designed for the early diagnosis of APL on the
clinical dataset, from the cell focusing step to the diagnosis step. Before performing the end-
to-end study, we first trained the cell classification model on the clinical dataset following
the same experiment settings listed in the results section. The classification performance is
listed in Table 9 and the confusion matrix is shown in Table 10.

Table 9. The performance of the proposed method on the clinical dataset.

Method TPR TNR FPR FNR Precision Fβscore

Our model 0.9919 0.9988 0.0012 0.0081 0.9920 0.9920

Table 10. The confusion matrix of the classification performance of the four models for the testing data of the combination
of two public datasets; each number represents the number of cells classified.

Predicted Class

Basophil Eosinophil Lymphocyte Monocyte Promyelocyte Neutrophil

True class

Basophil 190 0 0 0 0 0
Eosinophil 1 210 1 0 0 0
Lymphocyte 0 0 191 2 2 0
Monocyte 0 0 1 180 1 0
Promyelocyte 0 0 0 1 125 0
Neutrophil 0 0 0 2 0 454
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(c)

(a)

(d)

(b)

Figure 5. The learned feature of the four models visualized through t-SNE. For each image in the
testing set, we save the parameters of the last fully-connected layer during the inferencing process.
The dimensions of the last fully-connected layer of our network and ResNet-34 are 512; the ResNeXt-
50’s is 2048 and the VGG-19’s is 4096. The dimension of the embedded space was set to 2 for better
visualization and PCA was applied to initialize the embedding space. (a) Our model; (b) ResNet-34;
(c) ResNeXt-50. (d) VGG-19.

3.3. Case Report

Three patient cases were presented here to validate the performance of our early diagno-
sis system. The patients were divided into three categories based on their Sanz/PETHEMA
and GIMEMA-risk score. The definition of risk stratification is given in Table 11.

Table 11. The APL risk stratification.

Risk Metric Patient ID

Low WBC ≤ 10 × 109/L, platelet count > 40 × 109/L 1
Intermediate WBC ≤ 10 × 109/L, platelet count ≤ 40 × 109/L 2
High WBC > 10 × 109/L 3

The first patient was a 42-year-old female who was diagnosed as APL with low risk.
The peripheral blood smear was acquired on the same day of diagnosis. The WBC was equal
to 2.1 × 109/L and platelet count was around 63 × 109/L, calculated by the hematologist.
Based on our pipeline, 149 leukocytes were extracted automatically through 153 visual
fields of the smear. The second patient was a 54-year-old male who was diagnosed as APL
with intermediate risk. The peripheral blood smear was acquired the day before diagnosis.
The WBC was equal to 7.3× 109/L and the platelet count was around 27× 109/L, calculated
by the hematologist. Based on our pipeline, we automatically extracted 198 leukocytes
through 70 visual fields of the smear. The third patient was a 77-year-old female who
was diagnosed as APL with high risk. The peripheral blood smear was acquired the day
before diagnosis. The WBC was equal to 25.5 × 109/L and the platelet count was around
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16 × 109/L, calculated by the hematologist. Based on our pipeline, 98 leukocytes were
extracted automatically through 15 visual fields of smears. The cell distribution of the three
patients is listed in Table 12.

Table 12. The number of six types of leukocytes extracted from three patients.

Patient Basophil Eosinophil Lymphocyte Monocyte Promyelocyte Neutrophil

Patient 1 0 0 19 4 23 103
Patient 2 0 0 39 2 119 35
Patient 3 0 0 5 0 90 3

The end-to-end performance of the entire workflow is given in Table 13. Based on
the results of the classification model, the yielded sensitivity and specificity are clinically
acceptable at our institution. The diagnosis opinion is also given in the form of a potential
treatment plan according to the risk and diagnosis results obtained by our workflow.
The potential treatment for patient 1 and patient 2 is ATRA and arsenic; patient 3 needed
chemotherapy induction besides ATRA and arsenic, which is consistent with the real
clinical treatment. To be more specific, the promyelocytes account for a large proportion
of the data of patient 3, and there are only eight other leukocytes in total. For the class
of promyelocyte, the TNR is low while the proportion is high, therefore the final TNR
becomes very low when the weighted sum method is applied to calculate the metrics.

Table 13. The end-to-end diagnosis performance of three patients.

Patient TPR TNR FNR Precision Fβscore Potential Treatment

Patient 1 0.8792 0.9548 0.1208 0.8732 0.8762 ATRA + arsenic
Patient 2 0.8974 0.9332 0.1026 0.8798 0.8885 ATRA + arsenic
Patient 3 0.9184 0.1964 0.0816 0.8521 0.8840 ATRA + arsenic + chemotherapy induction

3.4. Ablation Study of the Classification Model

In this section, we investigate the effectiveness of dropout layer, SE layer and the
influence of the number of convolution blocks on the final classification performance of the
proposed model on the combination of two public datasets. The model-NoSE means the
proposed model without the SE layer; model-NoDropout is the proposed model without
the dropout layer; model-2ConvBlock and model-3ConvBlock are models with different
convolution blocks.

As shown in Table 14, we can observe that the SE layer and the dropout layer can
improve the performance for about 0.0063 and 0.0026 of Fβscore, respectively, and the
learning ability of the model is not strong enough if fewer convolution blocks are applied.

Table 14. The performance of the ablation study on the combination of the two public datasets by 5-fold cross-validation.

Method TPR TNR FPR FNR Precision Fβscore

Our model 0.9658 ± 0.0031 0.9881 ± 0.0011 0.0120 ± 0.0011 0.0342 ± 0.0031 0.9653 ± 0.0030 0.9655 ± 0.0031
model-NoSE 0.9607 ± 0.0042 0.9868 ± 0.0017 0.0132 ± 0.0017 0.0393 ± 0.0042 0.9577 ± 0.0058 0.9592 ± 0.0049
model-NoDropout 0.9633 ± 0.0032 0.9869 ± 0.0005 0.0131 ± 0.0005 0.0368 ± 0.0032 0.9627 ± 0.0033 0.9629 ± 0.0032
model-2ConvBlock 0.9539 ± 0.0049 0.9832 ± 0.0017 0.0168 ± 0.0017 0.0461 ± 0.0046 0.9490 ± 0.0051 0.9514 ± 0.0049
model-3ConvBlock 0.9606 ± 0.0040 0.9852 ± 0.0004 0.0148 ± 0.0004 0.0392 ± 0.0040 0.9600 ± 0.0040 0.9602 ± 0.0040

4. Discussion

In this paper, we demonstrated an end-to-end pipeline for the early diagnosis of APL
based on a compact CNN model. APL used to be considered one of the most dangerous
acute leukemias with shockingly high early mortality due to bleeding complications. Re-
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cently, with the development of the molecular biological pathogenesis of the disease and
the breakthrough of all-trans retinoic acid (ATRA) combined with arsenic trioxide, the cure
rate of APL has been greatly improved. Therefore, early screening, early diagnosis and
timely treatment are particularly important in clinical practice. In the 2019 NCCN clinical
guidelines, it recommends that the retinoic acid induction therapy should be applied as
soon as possible once APL is suspected based solely on the morphology characteristics,
since early clinical intervention is important for decreasing the early bleeding mortality and
improving the long-term cure rate. As an important means of initial diagnosis, the morpho-
logical analysis of biological smears through microscopy has high technical requirements
for hematologists, and faces problems such as long training cycle, poor repeatability, strong
subjectivity and high rate of missed detection, especially in primary hospitals. What is
worse is that most APL cases have a low white blood cell count, which makes the manual
check more difficult. We seek to provide a potential solution to address the mentioned
difficulties. There are three components, including the leukocyte, that focus on identifying
the white blood cells from the microscopic images: the cell classification to classify the
abnormal promyelocytes and the five types of normal leukocytes, as well as the final
diagnosis recommendation associated with the risk estimation.

The popular classification networks require more computing resources during the
training process due to the large number of parameters of these networks. For our task, not
only are there the problems of slow training and inferencing, but also the risk of overfitting.
Instead of using these networks, a compact convolutional neural network model embedded
with the channel-wise attention mechanism was proposed. The model has fewer tunable
parameters so that it does not ask for fine-tuning based on the large public dataset and
has lower hardware requirements. However, the achieved performance is competitive as
shown in Section 3. For the sake of fairness, a comparison with the popular classification
models is performed on a subset of the public dataset AML-Cytomorphology_LMU and
the dataset APL-Cytomorphology_JHH, which include all the APL corresponding cells.
As shown in Tables 4 and 5, the proposed cell classification model achieves the leading
performance for most metrics. Additionally, the classification performance of abnormal
promyelocytes is validated in our clinical dataset. From the confusion matrix shown in
Table 10, we can see that there is only one misclassification from abnormal promyelocyte to
monocyte. The experiment’s results, validated on multicenter data, show that our model is
sensitive and robust enough for the most critical cells.

Since the two public datasets only provide microscopic images of single cells, we
chose to validate our entire workflow on the clinical data and to investigate its capability of
auxiliary early diagnosis. This time, we trained the cell classification model for use in the
workflow on the clinical dataset from scratch to avoid any domain bias. The classification
performance is listed in Table 9. From the confusion matrix, the model misclassifies 11
cells while still keeping high accuracy and high sensitivity for the abnormal promyelo-
cytes. Additionally, case reports are provided to show the end-to-end diagnosis suggestion.
The peripheral blood smear samples from three APL patients with different risks are
accessed. The data are not included in the clinical dataset used to train the model. The mi-
croscopic images of the mentioned smears are the input of our workflow. The leukocyte
focusing method crops each individual white blood cell to feed the classification model.
Based on the cell classification model, the sensitivity of the abnormal promyelocyte reached
99.21%, and the precision for the total of the other five types of normal cells also reached
more than 99%. The final diagnosis is given, associated with the risk. Due to the different
situations of the patients, we have to acquire a different number of visual fields to obtain
enough leukocytes for diagnosis. As the distribution of leukocytes changes, the visual
fields we need are adjusted. For example, for patient 1, there are only around one to
two leukocytes in a blood smear image due to the clinical symptoms of leukocyte decline
caused by APL, and more than 100 view fields have to be reviewed to yield a decision.
For patient 3, 15 visual fields are enough. Due to this, the processing time varies for each
patient because a different number of view field images have to be loaded. The time for
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cell classification is almost stable for each patient because the number of target leukocytes
required for diagnosis is similar.

The limitation of the proposed pipeline is that the overlap of cells occurs frequently in
the peripheral blood smears of high-white-blood patients, due to the dense distribution
of white blood cells, as shown in Figure 6. This leads to the possibility of dividing two or
more cells into one field of view and results in misclassification, which might be solved by
further investigating the cell segmentation method.

Figure 6. Three overlapping cell samples extracted from patient 3. The four cells in (a,b) are all
promyelocytes, the upper one in (c) is neutrophil, and the other is the promyelocyte.

5. Conclusions

In this study, we demonstrated an artificial intelligence aided APL diagnosis pipeline
consisting of cell focusing, classification and diagnostic opinions. The cell focusing step
helps to find the leukocytes from the microscopic images through automatic segmentation
methods. The presented compact convolutional neural network model embedded with an
attention mechanism can identify the abnormal promyelocytes directly from microscopy
images through cell classification. The model distinguishes the cells based on the automatic
learned features, instead of on the manually designed ones. The experiment’s results
demonstrate that our model achieves a better performance than the competitive models,
such as ResNet-34 and ResNeXt-50, on both public datasets—APL-Cytomorphology_LMU
and APL-Cytomorphology_JHH—as well as on the clinical dataset. Our method can be
employed in situations with very low white blood cell counts at the early stage of APL to
save time when making a diagnosis decision. As an entire workflow, the proposed method
shows great potential to act as a tool for the early diagnosis of APL.
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