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Abstract

Background

Methods used to categorize functional status to predict health outcomes across post-acute

care settings vary significantly.

Objectives

We compared three methods that categorize functional status to predict 30-day and 90-day

hospital readmission across inpatient rehabilitation facilities (IRF), skilled nursing facilities

(SNF) and home health agencies (HHA).

Research design

Retrospective analysis of 2013–2014 Medicare claims data (N = 740,530). Data were ran-

domly split into two subsets using a 1:1 ratio. We used half of the cohort (development sub-

set) to develop functional status categories for three methods, and then used the rest

(testing subset) to compare outcome prediction. Three methods to generate functional cate-

gories were labeled as: Method I, percentile based on proportional distribution; Method II,

percentile based on change score distribution; and Method III, functional staging categories

based on Rasch person strata. We used six differentiation and classification statistics to

determine the optimal method of generating functional categories.

Setting

IRF, SNF and HHA.
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Subjects

We included 130,670 (17.7%) Medicare beneficiaries with stroke, 498,576 (67.3%) with

lower extremity joint replacement and 111,284 (15.0%) with hip and femur fracture.

Measures

Unplanned 30-day and 90-day hospital readmission.

Results

For all impairment conditions, Method III best predicted 30-day and 90-day hospital read-

mission. However, we observed overlapping confidence intervals among some compari-

sons of three methods. The bootstrapping of 30-day and 90-day hospital readmission

predictive models showed the area under curve for Method III was statistically significantly

higher than both Method I and Method II (all paired-comparisons, p<.001), using the testing

sample.

Conclusions

Overall, functional staging was the optimal method to generate functional status categories

to predict 30-day and 90-day hospital readmission. To facilitate clinical and scientific use,

we suggest the most appropriate method to categorize functional status should be based on

the strengths and weaknesses of each method.

Introduction

In many disciplines of medicine, clinical staging refers to hierarchical categories along the

continuum of the measured construct. [1–3] The concept of “clinical staging” is also applied

in acute and post-acute prospective payment systems, for example, the skilled nursing facilities

(SNFs) resource utilization groups, known as case-mix group [4,5]. Individuals in the same

SNFs resource utilization group are expected to share common abilities, respond similarly to

assessment items, and likely have analogous needs for resources or equivalent costs of care

[4,5]. When applied to functional status, known as “functional staging”, such categorizations

allow clinicians to accurately plan care, track prognosis, and enable researchers to define and

refine case-mix adjustment groups. Functional staging can also be used to examine interven-

tion effectiveness [6–10], enables meaningful categorical comparisons within and across

groups of person(s) and setting(s).

While continuous scores may provide detailed clinically information for clinicians [11,12],

categorizing scores facilitates policy discussion and decision-making. Additionally, using con-

tinuous score produces a summed score. The same summed score could, in fact, represents dif-

ferent levels of performances [13]. The site-neutral unified payment model, proposed by the

Medicare Payment Advisory Commission [14], recommends eliminating payment difference

across settings for patients with similar case-mix demographics and severity of impairments.

Generating categories based on functional status provides clinical evidence for unified pay-

ment models and other health reform measures. Investigators have demonstrated that adding

functional status categories in risk-adjustment models (e.g., hospital readmission) reduces dif-

ferences in population-level case-mix [15,16]. Adding functional status categories in predictive
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models can therefore improve the equality of resources allocation, care quality, and generate

more accurate estimated care costs [17].

Practitioners and researchers have used functional status categories to present hierarchical

levels of patients’ function for decades [6–10]. However, methods used to categorize functional

status to predict health outcomes often are arbitrary and vary significantly. To identify the

optimal method to categorize functional status, we compared three approaches in developing

functional status categories to predict hospital readmission. Method I is a conventional per-

centile approach: tertile, quartile or quintile based on summed-scores distribution. Method II

is a combination of change score with percentile method: tertile, quartile or quintile of change

score between admission and discharge. Method III is a functional staging method using per-

son strata categories based on latent trait theory. This paper aims to examine the relatively

optimal approach to categorize functional status with outcome prediction in hospital readmis-

sion for Medicare beneficiaries. Hospital readmission was chosen as the main outcome in this

study because it is an important national quality measure of patient care [4,18].

Materials and methods

Data source

The study included 100% Medicare claims data from 2013–2014. We used the following data

files: Inpatient Rehabilitation Facility (IRF) and Inpatient Rehab Facility- Patient Assessment

Instrument (IRF-PAI) [19]; Skilled Nursing Facility (SNF) and Minimum Data Set (MDS 3.0)

[20]; Home Health Agency (HHA) and Outcome and Assessment Information Set (OASIS-C)

[21]; the Medicare Provider Analysis and Review and the Master Beneficiary Summary files.

Ethical assurances

This study was approved by the University Institutional Review Board (IRB # 16–0014). Addi-

tionally, a Data Use Agreement was established with the Centers for Medicare and Medicaid

Services prior to all data analyses.

Cohort selection

We identified 2,953,006 eligible cases using a combination of Medical Severity Diagnosis

Related Group codes and ICD-9 procedure codes for three impairment conditions: stroke

(061–066), lower extremity joint replacement (469–470, 81.51 and 81.54) and hip/femur frac-

tures (480–482). Using a combination of claims and assessment data, we included only those

beneficiaries discharged from a hospital to one of the three post-acute care (PAC) settings:

IRF, SNF and HHA. After applying exclusion criteria (S1 Table), the final analytical sample

included 740,530 cases: 17.7% with stroke (n = 130,670), 67.3% with lower extremity joint

replacement (n = 498,576), and 15.0% (n = 111,284) with hip and femur fracture (Table 1).

To develop and validate the three proposed methods, we used 1:1 ratio to randomly split

the study cohort into a development subset (n = 370,265) and a testing subset (n = 370,265).

The development subset was used to develop functional status categories from three methods.

The testing subset was used to compare outcome prediction for three methods.

We also conducted sensitivity analysis to examine difference of demographics and person-

level characteristics before and after excluding 23% of potential patients (step 12 vs. step 15 in

S1 Table). The cohort in step 12 included patients who did not receive PAC. The cohort that

included 23% patients (generated by step 12) had less total SNF stay within 90 days at IRF

compared to the cohort used in this study (generated by step 15). However, we did not find

other variables significantly different between step-12 cohort and our study cohort (S6 Table).
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Table 1. Demographics and person-level characteristics (N = 740,530).

Discharge Locations All (N = 740,530) Stroke (n = 130,670) Lower Extremity Joint

Replacement (n = 498,576)

Hip and Femur Fracture

(n = 111,284)

IRF SNF HHA IRF SNF HHA IRF SNF HHA IRF SNF HHA

Sample Size 137,527 325,708 277,295 56,553 41,032 33,085 52,823 210,973 234,780 28,151 73,703 9,430

Age, Mean (SD) 79.0(7.5) 79.5(7.7) 74.3(6.2) 78.8(7.5) 82.4(7.6) 80.4(7.7) 78.3(7.3) 77.5(7.0) 73.4(5.4) 80.1(7.6) 83.3(7.6) 77.3

(7.8)

Gender

Male 49,626

(36.1)

89,454

(27.5)

114,307

(41.2)

25,974

(45.9)

15,228

(37.1)

13,237

(40.0)

16,056

(30.4)

57,327

(27.2)

98,258

(41.9)

7,596

(27.0)

16,899

(22.9)

2,812

(29.8)

Female 87,901

(63.9)

236,254

(72.5)

162,988

(58.8)

30, 579

(54.1)

25,804

(62.9)

19,848

(60.0)

36,767

(69.6)

153,646

(72.8)

136,522

(58.2)

20,555

(73.0)

56,804

(77.1)

6,618

(70.2)

Race

Non-Hispanic White 116,390

(84.6)

288,288

(88.5)

247,947

(89.4)

45,267

(80.0)

33,509

(81.7)

26,386

(79.8)

46,103

(87.3)

187,580

(88.9)

231,149

(90.8)

25,020

(88.9)

67,199

(91.2)

8,412

(89.2)

Black 10,241

(7.5)

18,288

(5.6)

13,679

(4.9)

6,466

(11.4)

4,414

(10.8)

3,717

(11.2)

2,919

(5.5)

11,769

(5.6)

9,656

(4.1)

856 (3.0) 2,105

(2.9)

306

(3.2)

Hispanic 6,747

(4.9)

10,724

(3.3)

8,909

(3.2)

2,781

(4.9)

1,693

(4.1)

1,759

(5.3)

2,507

(4.8)

6,580

(3.12)

6,726

(2.9)

1,459

(5.2)

2,451

(3.3)

424

(4.5)

Others 4,149(3.0) 8,408(2.6) 6,760(2.4) 2,039

(3.6)

1,416

(3.5)

1223

(3.7)

1,294

(2.5)

5,044(2.4) 5,249(2.2) 816(2.9) 1,948

(2.6)

288

(3.1)

Total IRF Stay within 90

Days

11.8(5.6) 0.0(0.3) 0.0(0.2) 12.9(6.8) 0.0(0.5) 0.0(0.4) 10.3(4.0) 0.0(0.2) 0.0(0.1) 12.4(4.7) 0.0(0.3) 0.0(0.3)

Total SNF Stay within 90

Days

0.3(3.4) 22.1(17.5) 0.0(0.8) 0.4(4.0) 25.0

(20.6)

0.1(1.6) 0.1(2.3) 18.2(13.2) 0.0(0.5) 0.3(3.6) 31.7

(22.0)

0.1(1.7)

Total HH Stay within 90

Days

19.8(23.9) 14.4(18.7) 22.9(13.4) 17.3

(24.1)

13.5

(20.6)

28.6

(18.9)

19.3

(22.0)

14.0(17.7) 21.8(11.9) 25.7

(25.8)

16.1

(20.2)

29.8

(17.9)

Days without staying in

IRF, SNF, HHA or long-

term care

37.5(31.8) 36.1(30.6) 60.3(21.8) 32.8

(32.5)

18.1

(25.9)

41.6

(27.6)

46.4

(30.4)

46.4(28.8) 63.5(19.0) 30.0

(28.9)

16.8

(22.8)

45.8

(25.7)

Stay in a Hospital/SNF

(days)

4.2(2.5) 4.4(2.6) 2.9(1.5) 4.4(2.8) 5.7(4.1) 3.3(2.3) 3.8(2.1) 3.8(1.9) 2.7(1.2) 4.7(2.3) 5.2(2.7) 4.3(2.6)

Intensive Care (days) 0.9(2.1) 0.5(1.7) 0.2(0.9) 1.7(2.5) 1.8(3.1) 1.0(1.8) 0.3(1.4) 0.2(1.0) 0.1(0.5) 0.5(1.7) 0.5(1.8) 0.3(1.3)

Coronary Care (days) 0.3(1.2) 0.2(1.0) 0.1(0.5) 0.5(1.5) 0.6(1.8) 0.4(1.2) 0.1(0.8) 0.1(0.6) 0.0(0.3) 0.2(1.1) 0.2(1.1) 0.1(0.7)

Hierarchical Condition

Category Score

1.2(0.7) 1.0(0.7) 0.7(0.5) 1.4(0.7) 1.6(0.8) 1.3(0.7) 1.0(0.6) 0.9(0.6) 0.6(0.4) 1.2(0.7) 1.3(0.8) 1.0(0.8)

Comorbidity (based on

Elixhauser Comorbidity

Index)

3.4(1.9) 3.0(1.9) 2.2(1.6) 3.9(1.8) 4.2(1.9) 3.6(1.8) 2.9(1.7) 2.6(1.7) 2.0(1.4) 3.1(1.8) 3.3(1.9) 2.5(1.7)

0 4,513

(3.3)

17,826

(5.5)

30,294

(10.9)

423 (0.8) 288 (0.7) 381 (1.2) 2,833

(5.4)

14,671

(7.0)

28,950

(12.3)

1,257

(4.5)

2,867

(3.9)

963

(10.2)

1–3 75,148

(54.6)

197,692

(60.7)

196,382

(70.8)

24,839

(43.9)

16,286

(39.7)

17,156

(51.9)

33,597

(63.6)

140,339

(66.5)

173,030

(73.7)

16,712

(59.4)

41,067

(55.7)

6,196

(65.7)

4–6 49,333

(35.9)

95,028

(29.2)

46,575

(16.8)

26,007

(46.0)

19,553

(47.7)

13,293

(40.2)

14,529

(27.5)

50,357

(23.9)

31,257

(13.3)

8,797

(31.3)

25,118

(34.1)

2025

(21.5)

�7 8,533

(6.2)

15,162

(4.7)

4,044

(1.5)

5,284

(9.3)

4,905

(12.0)

2,255

(6.8)

1,864

(3.5)

5,606

(2.7)

1,543

(0.7)

1,385

(4.9)

4,651

(6.3)

246

(2.6)

Diagnosis

Stroke
Ischemic 50,549

(36.8)

36,168

(11.1)

30,168

(10.9)

50,549

(89.4)

36,168

(88.2)

30,168

(91.2)

Hemorrhagic 6,004

(4.4)

4,864

(1.5)

2,917

(1.1)

6,004

(10.6)

4,864

(11.9)

2,917

(8.8)

Lower Extremity Joint
Replacement

(Continued)
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Study outcome

The primary outcome was unplanned all-cause 30-day and 90-day hospital readmission (yes/

no) after index hospital discharge [22,18]. We chose 30-day window to reflect current reim-

bursement system. Additionally, we included a longer follow-up time-period (90-day) to be

consistent with the episode-based payment initiatives [23,24].

Primary variable

The primary variable was functional status categories for two domains (Self-Care and Mobil-

ity) generated from three methods (details below). Self-Care and Mobility domains were cho-

sen as these two domains being consistently measured across the PAC settings. Additionally,

these two domains are potentially modifiable factors relevant to hospital readmission.

Table 1. (Continued)

Discharge Locations All (N = 740,530) Stroke (n = 130,670) Lower Extremity Joint

Replacement (n = 498,576)

Hip and Femur Fracture

(n = 111,284)

IRF SNF HHA IRF SNF HHA IRF SNF HHA IRF SNF HHA

Elective 11,273

(8.2)

52,301

(16.1)

73,190

(26.4)

11,273

(21.3)

52,301

(24.8)

73,190

(31.1)

Non-Elective 19,333

(14.1)

44,036

(13.5)

6,443

(2.3)

19,333

(36.6)

44,036

(20.1)

6,443

(2.7)

Knee 21,779

(15.8)

113,345

(34.8)

154,205

(55.6)

21,779

(41.2)

113,345

(53.7)

154,205

(65.7)

Others 438(0.3) 1,291(0.4) 942(0.3) 438(0.8) 1,291(0.6) 942(0.4)

Hip and Femur Fracture
Femur 2,522(1.8) 7320(2.3) 948(0.3) 2,522

(9.0)

7,320

(9.9)

948

(10.1)

Femur Neck 24,886

(18.1)

64,112

(19.7)

7,672

(2.8)

24,886

(88.4)

64,112

(87.0)

7,672

(81.4)

Complications 463(0.3) 1,543(0.5) 492(0.2) 463(1.6) 1,543

(2.1)

492

(5.2)

Others 280(0.2) 728(0.2) 318(0.1) 280(1.0) 728(1.0) 318

(3.4)

Disability at Original

Entitlement

Yes 13,608

(9.9)

28,709

(8.8)

22,231

(8.0)

5,895

(10.4)

4,052

(9.9)

3,629

(11.0)

5,216

(9.9)

18,685

(8.9)

17,654

(7.5)

2,497

(8.9)

5,942

(8.1)

948

(10.1)

No 123,919

(90.1)

296,999

(91.2)

255,064

(92.0)

50,658

(89.6)

36,980

(90.1)

29,456

(88.0)

47,607

(90.1)

192,288

(91.1)

217,126

(92.5)

25,654

(91.1)

67,731

(91.9)

8,482

(90.0)

Medicaid Eligibility

Yes 17,952

(13.1)

43,417

(13.3)

18,385

(6.6)

9,025

(15.9)

9,222

(22.5)

5,732

(17.3)

5,345

(10.1)

22,053

(10.5)

11,443

(4.9)

3,582

(12.7)

12,142

(16.5)

1,210

(12.8)

No 119,575

(86.9)

282,291

(86.7)

258,910

(93.4)

47,528

(84.0)

31,810

(77.5)

27,353

(82.7)

47,478

(89.9)

188,920

(89.6)

223,337

(95.1)

24,569

(87.3)

61,561

(83.5)

8,220

(87.2)

30-Day Readmission 14,995

(10.9)

30,815

(9.5)

9,803

(3.5)

7,833

(13.9)

6,931

(16.9)

2,413

(7.3)

4,338

(8.2)

14,605

(6.9)

6,984

(3.0)

2,824

(10.0)

9,279

(12.6)

406

(4.3)

90-Day Readmission 26,210

(19.1)

58,407

(17.9)

22,298

(8.0)

13,723

(24.7)

13,222

(33.2)

5,556

(16.8)

7,635

(14.5)

27,526

(13.1)

15,758

(6.7)

4,852

(17.2)

17,659

(24.0)

984

(10.4)

IRF = inpatient rehabilitation facility; SNF = skilled nursing facility; HHA = home health agency.

https://doi.org/10.1371/journal.pone.0232017.t001
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Functional status categories

Comparable items of the Self-Care and Mobility domains from each assessment were selected

based on their conceptual meanings (e.g., eating items were selected from IRF-PAI, MDS and

OASIS as the three items measure the same activity: eating). The number of selected items by

assessment was 11 in IRF-PAI (6 Self-Care and 5 Mobility items), 11 in MDS (5 Self-Care and

6 Mobility) and 8 in OASIS (5 Self-Care and 3 Mobility) (S2 Table). We used co-calibration

tables [25] to co-calibrate Self-Care and Mobility scores separately into a 0–100 scale, for the

following three methods.

Method I: Percentile based on proportional distribution. For each impairment condi-

tion, we created tertile, quartile and quintile categories based on the co-calibrated summed

score distribution for each assessment. Self-Care and Mobility had the same numbers of cate-

gories. We generated percentiles first for each assessment, following c-statistics to determine

whether to choose tertile, quartile or quintile for each impairment condition at each setting.

Based on the c-statistics, quartile was chosen for stroke and lower extremity joint replacement,

and quintile was chosen for hip and femur fracture. S1 Fig demonstrates an example of using

Method I to generate functional categories of IRF-PAI Self-Care in Stroke. The same proce-

dure was repeated for MDS and OASIS across impairment conditions. Detailed categories

were provided in S3 Table.

Method II: Change score with percentile distribution. We first calculated the change

score between admission and discharge for each assessment (Self-Care and Mobility were cal-

culated separately). Secondly, we calculated percentile (tertile, quartile and quintile) based on

the change score distribution. Lastly, to increase clinical meaningfulness when interpreting

negative, zero and positive change scores, we combined the percentile change score distribu-

tion with the following operational definitions: tertiles (small, medium and large change),

quartiles (negative and zero change, small positive change, medium positive change and large

positive change) and quintiles (negative change, zero change, small positive change, medium

positive change and large positive change).

Same as Method I, Self-Care and Mobility of each assessment had the same number of cate-

gories due to the nature of percentile method. Using c-statistics, quartile was selected for stroke

and lower extremity joint replacement; quintile was selected for hip and femur fracture. The

quintile proportion was found inapplicable for stroke and lower extremity joint replacement

as the same functional score was used in more than one category. S2 Fig demonstrates an

example of using Method II to generate functional categories of IRF-PAI Self-Care in Stroke.

The same procedure was repeated for MDS and OASIS across impairment conditions.

Detailed categories were provided in S4 Table.

Method III: Functional staging. Fig 1 provides the detailed procedures demonstrating

how we generated functional staging categories for IRF-PAI Self-Care in Stroke. We generated

a person separation index (Gp) and calculated person strata, to statistically distinguish differ-

ent ability levels using Rasch person strata formula (4�Gp+1)/3 [26–31]. We followed this

existing formula to calculate the number of person strata for each assessment by impairment

condition [26–36]. Person strata are the concept based on a norm reference method using the

distribution of person measure and centering on the mean of the person distribution. Each

strata needs to be separated by at least three measurement errors apart to be statistically dis-

tinct [26–31]. We then identified the corresponding cutoff raw score from the 0–100 scale co-

calibration table [25].

Using the development subset, for stroke, we generated four categories for Self-Care and

three categories for Mobility for all three instruments. For lower extremity joint replacement,

we generated three Self-Care and two Mobility categories for IRF-PAI and OASIS; and three
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Self-Care and three Mobility categories for MDS. For hip and femur fracture, we generated

three Self-Care and two Mobility categories for IRF-PAI; two Self-Care and three Mobility

categories for MDS; and four Self-Care and three Mobility categories for OASIS (S5 Table).

Model comparisons

Six indices were used to compare the outcome prediction of the three methods:

C-statistics/Area under the Curve (AUC). The c-statistics measure the discrimination

ability of the model. We compared the logistic model discrimination using c-statistics with

Fig 1. Method III: Use functional staging approach to generate functional score categories (Example of IRF-PAI Self-Care in Stroke).

https://doi.org/10.1371/journal.pone.0232017.g001
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asymptotic 95% confidence intervals. The c-statistic is also known as the AUC, the area under

the receiver operating characteristic curves. The AUC is the most commonly used method to

evaluate probability of model performance in the context of binary outcomes with higher val-

ues indicates better model fit [37–42].

Somer’s Delta (Somer’s D). Somer’s D is a nonparametric test to assess the strength and

direction of the association between an ordinal dependent variable and an ordinal indepen-

dent variable. Somer’s D is based on the assumption of a monotonic relationship between the

independent and the outcome variables. Higher Somer’s D indicates better model fit [43].

Akaike information criterion (AIC)/Bayesian information criterion (BIC). Both AIC

and BIC [44] evaluate goodness-of-fit (model fit) and penalize for the excessive number of

estimated parameters using log-likelihood functions. AIC/BIC provide a standard to balance

between model parsimony and the penalty for overfitting [45,46]. Lower AIC/BIC value indi-

cates better model fit [44,45].

Integrated Discrimination Improvement (IDI). The IDI indicates the difference in dis-

crimination slopes between two models. The IDI measures whether the new model improves

the average sensitivity without sacrificing its average specificity [47]. Higher (positive) values

of IDI indicate that the new model is better than the reference model.

Net Reclassification Improvement (NRI). The NRI is a reclassification measure using

reclassification tables constructed separately for respondents with and without events (i.e., out-

come occurs or not) between two models [48]. Higher (positive) values of NRI (percent) indi-

cate reclassification by the new model had higher sensitivity compared to the reference model.

Statistical analyses

We stratified all analyses by impairment conditions for both development and testing subsets.

First, we constructed a baseline logistic regression model which included sociodemographic

variables (age, sex, race/ethnicity, disability entitlement and Medicare-Medicaid dual eligibil-

ity), health status (Hierarchical Condition Category composite score, Elixhauser comorbidity

categories, condition-specific severity, hospital length of stay, intensive care days and coronary

care days) and post-acute length of stay. Then, we added three types of functional status to the

baseline logistic regression model. We used baseline model to (a) ensure fair comparison con-

veyed by different functional status categories from three methods, and to (b) examine the

magnitude change of outcome prediction by adding functional status variables. The predictive

models with three methods of generating functional status categories were examined by AUC,

Somer’s D, AIC, BIC, IDI and NRI using the testing sample. To validate the stability of the esti-

mates, a bootstrap procedure with 1000 re-samples was used to statistically compare c-statistics

of the three methods using the testing sample. The c-statistics with bootstrapping is a standard-

ized way for model comparison. Each of the three methodologies were later compared using

paired t-tests if significant difference existed among methods. We used SAS version 9.4 (SAS

Institute, Inc., Cary, NC) to perform all analyses.

Results

Demographics

The majority were discharged to SNF (n = 325,708; 44.0%), followed by HHA (n = 277,295;

37.4%) and IRF (n = 137,527; 18.6%) (Table 1). The mean ages were 79.0 (7.6), 79.5 (7.7) and

74.3 (6.2) at IRF, SNF and HHA, respectively. The majority were female (63.9%, 72.5% and

58.8% at IRF, SNF and HHA, respectively) and non-Hispanic White (84.6%, 88.5% and 89.4%

at IRF, SNF and HHA, respectively). The most common impairment conditions across PAC

settings were ischemic stroke (n = 50,549; 36.8%) at IRF; knee replacement for both SNF
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(n = 113,345; 34.8%) and HHA (n = 154,205; 55.6%). Patients at IRF had slightly more comor-

bidities [3.4 (1.9)], compared to SNF 3.0 (1.9) and HHA 2.2 (1.6). Patients discharged to IRF

had the highest rate of 30-day (10.9%) and 90-day hospital readmission (19.1%), compared to

SNF (9.5%, 17.9%) and HHA (3.5%, 8.0%) (Table 1).

Model comparisons of three methods

Table 2 reports performance metric of different methods in predicting 30-days and 90-day

readmissions. For all three impairment conditions, c-statistics and Somer’s D were the highest

and AIC/BIC were the lowest for Method III in predicting 30-day and 90-day readmissions.

For example, among patients with stroke, Method III had the highest c statistics (0.8340) com-

pared to Methods I (0.8319) and II (0.8271) and the lowest AIC (Method III: 38442, Method

II: 28958, Method I: 28615) and BIC (Method III: 38642, Method II: 39167, Method I: 38824)

for 30-day hospital readmission. Three impairment conditions had the same result: Method

III better predicted both 30-day and 90-day hospital readmission compared to Methods I and

II (Table 2). Method III also had positive IDI and NRI values (better slope discrimination)

compared to Method I and Method II (Table 2). However, the confidence intervals of Method

III (both 30- and 90-day) were overlapping with those of Method I and Method II for stroke,

lower extremity joint replacement and hip/femur fracture.

Bootstrapping

In both 30-day and 90-day hospital readmission models, the results of the bootstrapping

using testing sample showed that the AUC for Method III was the highest compared with

both Method I and Method II for the three impairment conditions (all paired-comparisons,

p<.001).

Clinical application

We provided functional status categories generated from Methods I-III (S3–S5 Tables). We

also provide the estimated risk of 30-day and 90-day hospital readmission using the self-care

and mobility combinations based on Method III functional staging categories (Fig 2). For

example, among patients with stroke who had self-care score between 6–11, those with mobil-

ity score between 5–15 will have 22.8% probability of 30-day readmission and 33.4% probabil-

ity of 90-day readmission (Fig 2).

Discussion

Generating meaningful categories allow for functional status comparisons and optimal out-

come prediction across post-acute settings. This study compared three functional category

methods and found the functional staging approach (Method III) generated the relatively opti-

mal prediction for 30-day and 90-day hospital readmission. While the study findings imply that

using functional staging approach can be relatively optimal for outcome prediction, it is unclear

whether this improvement can also produce superior clinically meaningful levels. To facilitate

clinical and scientific use, we suggest the most appropriate method to categorize functional sta-

tus should be based on the strengths and weaknesses of each approach. For example, Method I

may have the advantage of convenience (quick to calculate), Method II may have the advantage

when reporting functional change and Method III may have the advantage in outcome predic-

tion (i.e. hospital readmission). The choice of the method requires a delicate judgement and

balance between available resource, time demand and study purpose. This study provides pre-

liminary data to guide future healthcare policy reforms (e.g., bundled payment) when
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Table 2. Comparisons of outcome predictions with three functional category methods (N = 370,265).

Outcome (1): 30-Day Readmission

Stroke

Baseline Method I Method II Method III
AUC 0.8267 0.8319 0.8271 0.8340

95% CI for AUC 0.8229–0.8305 0.8282–0.8357 0.8233–0.8309 0.8303–0.8378

Somer’s D 0.6534 0.6639 0.653 0.6681

AIC 38978 38615 38958 38442

BIC 39132 38824 39167 38642

IDI Ref. -0.00756 0.06569

Ref. 0.05826

NRI Ref. -0.36571 0.15765

Ref. 0.10141

Lower Extremity Joint Replacement

Baseline Method I Method II Method III
AUC 0.8684 0.8691 0.8684 0.8695

95% CI for AUC 0.8656–0.8712 0.8666–0.8722 0.8656–0.871 0.8667–0.8723

Somer’s D 0.7368 0.7390 0.7368 0.7391

AIC 75475 75264 75483 75176

BIC 75673 75504 75744 75436

IDI Ref. -0.0036115 0.001221

Ref. 0.037935

NRI Ref. -0.17786 0.098408

Ref. 0.15809

Hip and Femur Fracture

Baseline Method I Method II Method III
AUC 0.8782 0.8789 0.8783 0.8792

95% CI for AUC 0.8751–0.8813 0.8758–0.8820 0.8752–0.8814 0.8761–0.8823

Somer’s D 0.7564 0.7577 0.7565 0.7585

AIC 26719 26687 26725 26653

BIC 26889 26910 26949 26867

IDI Ref. -0.082655 0.08079

Ref. 0.07865

NRI Ref. -0.32637 0.25179

Ref. 0.19182

Outcome (2): 90-Day Readmission

Stroke

Baseline Method I Method II Method III
AUC 0.6794 0.6842 0.6800 0.6886

95% CI for AUC 0.6748–0.6840 0.6796–0.6888 0.6754–0.6846 0.6840–0.6932

Somer’s D 0.3587 0.3683 0.3600 0.3772

AIC 68533 68287 68510 68041

BIC 68688 68496 68719 68241

IDI Ref. -0.03035 0.02071

Ref. 0.02330

NRI Ref. -0.20084 0.00187

Ref. 0.03031

Lower Extremity Joint Replacement

Baseline Method I Method II Method III

(Continued)

PLOS ONE Comparing the categorization of functional status in outcome prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0232017 May 7, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0232017


classifying patients’ self-care and mobility function. We also generated tables of functional cate-

gories based on the three methods and plots of function-based readmission risks using func-

tional staging for clinicians and researchers to use.

Policymakers are beginning to explore the impact of functional status on classification sys-

tems in post-acute risk-adjusted capitation payments [15,49,50]. Researchers and the Medicare

Payment Advisory Commission reported that adding functional status improved prediction of

resource use and cost of care [15–16,49–51]. Categorizing patients into clusters would be clini-

cally and administratively useful (e.g. patients in the same cluster may experience comparable

care cost or require similar resources). By its nature, functional staging is hierarchical and thus

may provide gradients of functional recovery (or loss) that can help case-mix adjustment in

services use and outcome comparisons, aiding in care provision, resource allocation decisions

and eventually quality of care evaluation.

We acknowledge that patients with varying clinical characteristics and disease severity may

benefit differently from various levels of care provided at different types of post-acute settings.

However, recent healthcare reform proposals emphasize the need for a unified prospective

Table 2. (Continued)

AUC 0.7153 0.7171 0.7153 0.7173

95% CI for AUC 0.7118–0.7189 0.7135–0.7206 0.7118–0.7189 0.7137–0.7208

Somer’s D 0.4307 0.4341 0.4307 0.4346

AIC 149292 148990 149289 148982

BIC 149490 149251 149549 149222

IDI Ref. -0.00157 0.00162

Ref. 0.01566

NRI Ref. -0.11736 0.04468

Ref. 0.13081

Hip and Femur Fracture

Baseline Method I Method II Method III
AUC 0.7426 0.7436 0.7427 0.7444

95% CI for AUC 0.7380–0.7473 0.7390–0.748 0.7380–0.7473 0.7397–0.7490

Somer’s D 0.4853 0.4872 0.4854 0.4887

AIC 50675 50634 50682 50582

BIC 50844 50857 50908 50797

IDI Ref. -0.04247 0.03827

Ref. 0.04000

NRI Ref. -0.13081 0.08185

Ref. 0.17813

Method I: Percentile summed-score distribution (quartile for stroke and lower extremity joint replacement; quintile for hip and femur fracture). Method II: Percentile

change score (discharge minus admission scores). Method III: Functional staging method.1

Abbreviations: AUC: Area under the Curve; AIC: Akaike information criteria; BIC: Bayesian information criterion; IDI: Integrated Discrimination Index; NRI: Net

Reclassification Improvement; IDI: Integrated Discrimination Index; NRI: Net Reclassification Improvement.
1 Table 2 presents results under the context of baseline model plus the three Methods. We constructed the baseline model with the following variables: (a)

sociodemographic (age, sex, race/ethnicity, disability as the original reason for entitlement {yes/no}, Medicare-Medicaid dual eligibility {yes/no}), health status

(Hierarchical Condition Category composite score, Elixhauser comorbidity categories (0, 1–3, 4–6 and�7 comorbidities, condition-specific severity {for stroke:

hemorrhage/ischemic; for Lower Extremity Joint Replacement: non-elective hip, elective hip, knee joint replacement and others; for Hip and Femur Fracture: femur

fracture, femur neck fracture, complication fracture and other}, hospital length of stay {LOS; continuous}, intensive care days used by beneficiary for stay {continuous},

and coronary care days used by beneficiary for stay {continuous}, post-acute LOS in all PAC settings {IRF, SNF and HHA; continuous}. We added functional status

categories (Self-Care and Mobility) generated from each method (Methods I-III) to the baseline model.

https://doi.org/10.1371/journal.pone.0232017.t002
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Fig 2. Using Method III to estimated 30-day and 90-day hospital readmission rate.

https://doi.org/10.1371/journal.pone.0232017.g002
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payment system for post-acute settings [14]. Thus, comparisons of effectiveness and efficiency

of care for patients with similar case-mix demographics across post-acute settings are eminent

and inevitable. Identifying standardized and consistent approaches to measure functional sta-

tus across post-acute settings could inform future policy decisions and improve quality of

patient care after hospitalization. Based on the Improving Medicare Post-Acute Care Transfor-

mation Act of 2014, Centers for Medicare and Medicaid Services Section GG data elements

were implemented to collect unified functional data across PAC settings [52,53]. While Section

GG data elements potentially would resolve functional assessment issues related to uniformity

across PAC settings, using a standardized functional categorization method based on co-cali-

bration functional scores provides firsthand comparisons of functional status across PAC set-

tings. This study serves as a basis for Section GG data elements to develop hierarchical

functional categorizations across settings in the future.

The study findings also indicate that generating more categories is not associated with bet-

ter outcome prediction. Our results support the notion that the number of functional status

categories varies by impairment condition, and using distinct functional levels may be more

appropriate than the arbitrary percentile cutoff criteria, where a predefined fixed number of

distribution-based categories dictates the categorization. Functional staging consider hierar-

chical functional levels, thus this empirical approach can classify patients into distinct func-

tional levels.

Current evidence regarding the advantages and limitations of different functional category

methods remains unclear and largely unexplored. In the emerging environment of value-based

care and precision medicine, it is reasonable to ask: are percentile proportional distribution

and change score too insensitive to provide accurate functional categories necessary to assess

and predict quality outcomes? If the answer is yes, then what are the appropriate approaches?

Our study and findings address this question and provide a potential solution for improving

rigor in comparative effectiveness studies across post-acute settings.

Ongoing demonstration projects of uniform functional assessment, episode-based payment

models, and unified payment system across post-acute settings signify the growing need to

conduct rigorous post-acute health services and health policy research. This study is the first

we are aware of to examine the impact of quality measures based on different categorization

methods of functional status. Future study should examine whether different categorization

methods of functional status are associated with different provision of care services. It is also

important to explore other variables in addition to functional status to optimize outcome pre-

diction accuracy for individual patients. In addition, future study should validate whether our

finding can be applied to other quality outcomes, such as successful community discharge for

Medicare beneficiaries.

Study limitations

This study has limitations related to using Medicare files [54]. For example, our findings may

not be applicable to persons < 66 years old or those enrolled in insurance plans other than

Fee-For-Services. In addition, this study focused on the physical aspects of functional status

while cognitive function is an essential element of functional performance. We suggested

future studies of this kind include cognitive function items. We are aware of the importance

of stability of functional staging for both clinical application and policy decision-making, and

recognize that co-calibration methodologies may introduce conversion measurement errors.

We are also aware of that using categorization may introduce discontinuity at the boundaries

of cut-off scores, thus limit statistical power, precision, and obscure the ‘functionality’ of indi-

vidual differences. Future study also needs to identify whether the improvement of functional
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staging approach has clinical meanings compared to alternative methods. We also suggest

future study investigating whether different clinically meaningful change levels can and/or

should be included within each category, or if items should be weighted to enhance accuracy

for both clinical utility and policy decision-making.

Conclusions

Current measures and methods examining functional status across post-acute settings vary

significantly. To compare effectiveness and quality of care across post-acute settings, identify-

ing an optimal functional category method is imperative. While our study found functional

staging approach generated functional categories that explained the largest variances in both

30-day and 90-day hospital readmission prediction, we are uncertain whether functional stag-

ing approach can provide clinically meaningful improvement compared to alternative meth-

ods. We suggest clinicians, researchers and policy makers execute their best judgments to

balance the strengths and weaknesses of each method when categorizing functional status.

Additional research is needed to better understand the advantages and the limitations of using

functional staging categories to assess and predict other important national quality measures

across post-acute settings.
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