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ABSTRACT

CRISPR/Cas9 is a promising tool in prokaryotic
genome engineering, but its success is limited
by the widely varying on-target activity of single
guide RNAs (sgRNAs). Based on the association of
CRISPR/Cas9-induced DNA cleavage with cellular
lethality, we systematically profiled sgRNA activity by
co-expressing a genome-scale library (∼70 000 sgR-
NAs) with Cas9 or its specificity-improved mutant in
Escherichia coli. Based on this large-scale dataset,
we constructed a comprehensive and high-density
sgRNA activity map, which enables selecting highly
active sgRNAs for any locus across the genome in
this model organism. We also identified ‘resistant’
genomic loci with respect to CRISPR/Cas9 activity,
notwithstanding the highly accessible DNA in bacte-
rial cells. Moreover, we found that previous sgRNA
activity prediction models that were trained on mam-
malian cell datasets were inadequate when coping
with our results, highlighting the key limitations and
biases of previous models. We hence developed an
integrated algorithm to accurately predict highly ef-
fective sgRNAs, aiming to facilitate CRISPR/Cas9-
based genome engineering, screenings and antimi-
crobials design in bacteria. We also isolated the im-
portant sgRNA features that contribute to DNA cleav-
age and characterized their key differences among
wild type Cas9 and its mutant, shedding light on the
biophysical mechanisms of the CRISPR/Cas9 sys-
tem.

INTRODUCTION

Efficient and reliable genome editing tools play crucial roles
in genome engineering of prokaryotic hosts (1–8). The re-
cently reported CRISPR/Cas9 system exhibits several ad-
vantages as a novel genome editing tool (9,10). The sys-
tem consists of a nuclease activity––carrying Cas9 protein
and specificity-programming single guide RNA (sgRNA),
the latter of which targets the complex to a genomic region
flanked by a 3′NGG protospacer adjacent motif (PAM) via
Watson–Crick base pairing (11). It works by introducing a
double-strand break (DSB) in the chromosome, which is
lethal to many prokaryotic hosts. The DSB then serves as
a selection pressure to enrich for mutations introduced via
homologous recombination with the artificial donor DNA.
This method is broadly applicable to many prokaryotic or-
ganisms (10,12–15), especially archaea (16). It also enables
multiplex genome editing in a marker-free manner (17,18),
saving substantial time and labor during genome engineer-
ing. Lastly, only ∼20 nucleotides in sgRNA encode the tar-
get of CRISPR/Cas system, compatible with massively par-
allel microarray oligonucleotide synthesis and next gener-
ation sequencing (NGS), both of which simplify the pro-
cedure for performing large-scale engineering or functional
genomics studies (8,19,20).

The success of the CRISPR/Cas9 system for genome en-
gineering of prokaryotic hosts is largely based on the activ-
ity of the selected sgRNA, or namely the cellular lethality
caused by CRISPR/Cas9 as guided via a particular sgRNA
to target the locus of interest. Poor sgRNA activities re-
sult in a high rate of false positives during genome edit-
ing, which results in the survival of many wild-type cells
within the population. Conventional belief holds that DNA
in prokaryotic cells is less protected than that in eukary-
otic cells because of the lack of complex chromatin struc-
tures (21), and thus genome editing systems should typ-
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ically work well in prokaryotic organisms. Studies, how-
ever, have suggested otherwise the existence of inactive sgR-
NAs during genome editing in bacterial cells (8,13,22,23).
This problem is especially prevalent when CRISPR/Cas9
genome editing is used in a multiplex manner, a major
proposed advantage of this system, as the percentage of
successfully modified cells decreases exponentially when
sgRNA activity is not optimized (17). Potential problem de-
rived from poorly active sgRNAs is also of concern when
CRISPR/Cas9 recombination based pooled screening is
used within microbial functional genomics studies. The
variablity of sgRNA activities may lead to different recom-
bination efficiencies across the targeted loci and thus intro-
duce noise in the downstream genotype–phenotype associa-
tion to identify the mutations responsible for the phenotype
under investigation (8). Better understanding of sgRNA
on-target activity will facilitate better sgRNA library de-
sign in such studies to improve the performance of pooled
screenings, as recently shown in similar works performed
in mammalian cell lines (24,25). Lastly, comprehensive un-
derstanding of sgRNA activity to determine the ability of
CRISPR/Cas9 to kill bacterial cells can facilitate better
design of new antimicrobials using CRISPR technology
(26,27).

Despite our lack of knowledge about the mechanisms re-
sponsible for sgRNAs with poor activity and their impact
on the successful application of CRISPR/Cas9 genome
editing in prokaryotic hosts, to the best of our knowl-
edge, no investigation has yet been performed to system-
atically address this issue. By contrast, several recent pio-
neering studies have described the sgRNA sequence-activity
relationship and resulted in corresponding prediction al-
gorithms based on experimentally produced large datasets
from mammalian cell lines (24,28–32). It is, however, worth
noting that key differences exist between eukaryotic and
prokaryotic hosts for CRISPR/Cas9-based genome edit-
ing. Crucially, mammalian cells have a highly active non-
homologous end-joining (NHEJ) pathway (33), which plays
fundamental roles in CRISPR/Cas9-induced DSB repair
via an error-prone manner (20), rendering the reported
dataset of eukaryotic sgRNA activity (24,29,30) a hybrid
output that combines the inherent features of the sgRNAs
with the known NHEJ preference for different DSB sub-
strates (34). In addition, the complex chromatin structure
that is unique to eukaryotic chromosomes, specifically, the
blocking effect of nucleosome is paramount to reshape the
sgRNA activity landscape (25,29). It is thus reasonable to
be skeptical of the general applicability of the established
conclusions from studies in eukaryotic cells to prokary-
otic organisms, in which the NHEJ molecular machinery
is only moderately active or is entirely absent (15,16,23,35)
and chromosomal DNA is much more accessible (21,36).
Meanwhile, in bacterial cells, sgRNA activity can be di-
rectly related to cellular survival via the lethality that re-
sults from CRISPR/Cas9-induced DSBs with minimal per-
turbation from chromatin structure or DNA repair. This
advantage makes it possible to prepare a large-scale, unbi-
ased sgRNA activity dataset by designing a sgRNA library
targeting every gene in the genome in bacteria, without the
need to select a batch of genes with common functions, by
which the bias or noise may be introduced, as has been

done in mammalian cell line screening (24,28–32). We be-
lieve that such advantages will not only facilitate decipher-
ing of the genome-scale sgRNA activity landscape in bacte-
ria, but also provide more general insights into the sgRNA
sequence-activity relationship based on larger and better
(i.e. unbiased and with an improved signal-to-noise ratio)
datasets.

In this paper, we describe a genome-wide sgRNA li-
brary consisting of roughly 70,000 members, covering both
gene-coding and intergenic regions, which is comparable to
∼10% of all possible sgRNA candidates (N20NGG) in the
E. coli genome. With this library, we used a pooled screen-
ing strategy to characterize genome-wide sgRNA activity in
E. coli by associating CRISPR/Cas9-induced DNA cleav-
age with cellular lethality. We observed significant sgRNA
activity diversity within individual genes and across dif-
ferent genomic loci and thus constructed a comprehen-
sive sgRNA activity map as a guideline for better usage of
CRISPR/Cas9 genome editing tool in E. coli. Moreover,
we found a very low correlation between our dataset and
the current sgRNA activity prediction models trained from
eukaryotic datasets. We therefore developed improved algo-
rithms for sgRNA activity prediction, allowing the predic-
tion of highly active sgRNAs in E. coli or, potentially, in
other prokaryotic organisms. Importantly, this new model
identified determinants in the sgRNA sequence for activity
prediction and highlighted several key differences between
wild type Cas9 and its off-target-reducing mutant.

MATERIALS AND METHODS

Cell growth conditions and strain construction

In all experiments, bacteria were grown in LB medium or on
LB agar plates. Cells were grown at 37◦C. Antibiotic con-
centrations for kanamycin and ampicillin were 50 and 100
mg/L, respectively. Molecular cloning was performed with
E. coli DH10B as the host. Escherichia coli K12 MG1655
was obtained from the ATCC (700926). The host strains
used in the screening experiments were MCm and MCm
�recA. MCm (37) was constructed by integrating a chlo-
ramphenicol expression cassette cloned from pKM154 (Ad-
dgene plasmid #13036) into the smf locus of wild-type E.
coli K12 MG1655. MCm �recA was constructed by delet-
ing the coding region of recA in MCm via CRISPR/Cas9
based recombineering method (17).

Plasmid construction

The knockout of recA blocks DSB repair and hence boosts
the lethality of the CRISPR/Cas9 system. Therefore, we
chose J23113 (an Anderson promoter with weak activity)
for Cas9 expression (pCas9-J23113) in host cells with the
�recA genetic background (Table 1). For other cases, the
medium-strength promoter J23109 was used to drive the ex-
pression of Cas9 or its derivative. To construct these plas-
mids, pdCas9-J23109 and pdCas9-J23113, previously de-
scribed by our group (37), were used as PCR templates to
prepare a series of vector backbone with different promot-
ers. The plasmid pCas (17) was used as PCR template to
amplify the coding region of Cas9. These fragments were
subsequently assembled via Gibson assembly to construct
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Table 1. Host strain and Cas9/dCas9 expression construct for each screen-
ing experiment

Screening
experimenta Host

Cas9/dCas9
expression vector

Cas9 (selective) WTb pCas9-J23109c

Cas9 (�recA) (selective) �recA pCas9-J23109
dCas9 (control) WT pdCas9-J23109
eSpCas9 (selective) WT peSpCas9-J23113c

eSpdCas9 (control) WT peSpdCas9-J23113

aScreening experiment dCas9 is the negative control for Cas9 and Cas9
(�recA); eSpdCas9 is the negative control for eSpCas9.
bWT: E. coli strain MCm (E. coli K12 MG1655 smf::cat, see online Meth-
ods).
cJ23109 is a moderate-strength promoter, and J23113 is of weak strength.

the intact plasmid. All sgRNA expression plasmids indi-
vidually used in this work were constructed by amplifying
pTargetF lac (37) by PCR to alter the N20 sequence, fol-
lowed by self-ligation via Gibson assembly. All the strains
and plasmids used in this work are summarized in Supple-
mentary Table S1 and oligonucleotides are given in Supple-
mentary Table S2. The maps for p(d)Cas9-J23109, pCas9-
J23113, peSp(d)Cas9-J23109 and representative sgRNA ex-
pression plasmids are accessible with the following hyper-
links. We are working to deposit these plasmids at Addgene.

pCas9-J23109: https://benchling.com/s/seq-
ZaTCr0hFE3U857KlIBsu

pdCas9-J23109: https://benchling.com/s/seq-
Pk7e92yTr0 × 1mE9yXDeK

pCas9-J23113: https://benchling.com/s/seq-
23eYuaRcup6g6Ml9Dcq6

peSpCas9-J23109: https://benchling.com/s/seq-
NT6ly7Ilw3TQ2fpStQjY

peSpdCas9-J23109: https://benchling.com/s/seq-
sXSqOWW8RTY5lH0yRDek

pTargetF lac: https://benchling.com/s/seq-
JamZWMMBAqBXhkOhuc06

Transformation assay

Cells expressing Cas9 or dCas9 were cultured overnight in
LB (with kanamycin) as a seed culture followed by prepara-
tion of competent cells. Briefly, the cells were collected after
growth to exponential phase (OD600 ≈ 0.6) by centrifuga-
tion at 8000 × g for 5 min at 4◦C, washed five times in ice-
cold sterile water with the same condition and resuspended
in 15% (v/v) glycerol (at one-sixteenth the volume of the
original culture). All these operations were performed on
ice. Plasmids carrying the sgRNA expression cassette (pTar-
getF lac) were transformed by electroporation into the pre-
pared competent cells expressing Cas9 or dCas9 (50 ng
plasmid/100 �l competent cells). The electroporation was
performed via a BTX Harvard apparatus ECM 630 High
Throughput Electroporation System using an optimized
parameter setting (2.1 kV, 1 k�, 25 �F). The transformed
cells were incubated in LB medium (four times the volume
of the competent cells) for 1 h at 37◦C for recovery. We
streaked the resulting culture onto the LB agar plates (with
kanamycin and ampicillin) automated by EasySpiral Pro
(Interscience). The colonies were counted after overnight

cultivation. The survival ratio for each sgRNA was cal-
culated by comparing the colony-forming units (CFU) of
Cas9-expressing cells with the CFU of dCas9-expressing
cells. This ratio was further normalized by determining the
colony number after transformation with a negative con-
trol sgRNA plasmid to minimize the impact of differences
in electroporation efficiency that were due to competent cell
preparation (Eq. 1).

Survival ratio

= (CFUCas9/CFUCas9 NC) / (CFUdCas9/CFUdCas9 NC)

(1)

CRISPR/Cas9 assisted recombination to delete genes

For CRISPR-Cas9 based homologous recombineering,
pCas9 (17) was transformed into E. coli K12 MG1655 for
expressing Cas9 and �-Red proteins. Six sgRNAs targeting
three genes (ansP-293/1277, artP-306/506 and sdaA-41/51)
were chosen for gene knockout and constructed into plas-
mid backbone pTargetF lac. Taking genomic DNA of the
host strain as template, ∼500 base pair fragments flank-
ing the knockout locus were amplified and followed by
overlap PCR to prepare recombination donor. The sgRNA
expressing plasmid along with recombination donor were
transformed into E. coli K12 MG1655/pCas competent
cells as described by (17) via electroporation. The trans-
formed cells were incubated in LB medium (four times
the volume of the competent cells) for 1 h at 30◦C for
recovery. The resulted culture was spread onto LB agar
plates (with kanamycin and ampicillin) and incubated at
30◦C overnight. Ten colonies of each transformation were
picked. Primers flanking the knockout locus were used for
PCR amplification and the PCR product was analyzed by
gel electrophoresis to evaluate the efficiency of recombina-
tion. In our experience, due to (i) the killing efficiency of
CRISPR/Cas9 is not 100% as shown in this work with dif-
ferent sgRNAs and (ii) a very thin layer of untransformed
cells generally present all over the plate beneath the ob-
tained colonies (due to the degradation of ampicillin by
transformed cells), each individual colony is a mixture of
wild type and mutant with desired editing. This is reflected
by two relevant bands of colony PCR products. We hence
used gel-scanning software to quantify the ratio of mutant
cells in each individual colony.

Design and preparation of the sgRNA libraries

The sgRNA library used in this work (Data S1) can be
divided into two parts. The first part is an sgRNA li-
brary covering all protein- and ncRNA-coding genes in
E. coli genome (Data S1, CRISPRi entry, 55 671 mem-
bers), which is recently designed by our group, working to-
gether with dCas9 for gene repression, to perform genome-
wide functional genomics analysis in a pooled format (37).
Another part is firstly reported in this work covering all
promoter and RBS regions of the E. coli genome. For
the promoter sgRNA library, we downloaded the collec-
tion of E. coli promoters (8594) from the RegulonDB
database (http://regulondb.ccg.unam.mx/menu/download/

https://benchling.com/s/seq-ZaTCr0hFE3U857KlIBsu
https://benchling.com/s/seq-Pk7e92yTr0
https://benchling.com/s/seq-23eYuaRcup6g6Ml9Dcq6
https://benchling.com/s/seq-NT6ly7Ilw3TQ2fpStQjY
https://benchling.com/s/seq-sXSqOWW8RTY5lH0yRDek
https://benchling.com/s/seq-JamZWMMBAqBXhkOhuc06
http://regulondb.ccg.unam.mx/menu/download/datasets/files/PromoterSet.txt
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datasets/files/PromoterSet.txt). Because this dataset con-
tains many promoters with big overlap driving the expres-
sion of common gene(s), entries with overlapping regions
(overlap > 1 bp) and that shared the same orientations were
combined, giving rise to 3,294 promoters. We then used
BLASTN (100% identity and coverage) to remove those
that cannot be perfectly mapped to the E. coli genome used
here (K12 MG1655, NC000913.3), resulting in 3249 pro-
moters. Finally, we checked the downstream gene (the same
orientation) and eliminated those promoters that we can-
not identify any coding region beyond the downstream 300
bp, leading to the 3146 promoters (Data S2) reported in
this work to design sgRNA library. Every potential sgRNA
(N20NGG) targeting the two strands of each promoter was
checked accordingly until two sgRNAs were extracted or
the 3′ end of the promoter sequence was reached. To de-
sign the sgRNA library for RBSs throughout the E. coli
genome, 4140 RBS sequences (Data S2) for every protein-
coding gene (N30 + start codon + N17, N50 in total) were
extracted, and a similar procedure was applied as described
above to design sgRNA for these regions. The sequences of
promoter and RBS sgRNAs are summarized in Data S1,
whereas library metrics and entry sequences for these two
libraries are shown in Data S2.

During computational library design, we applied the
same quality control threshold as previous work (37) to de-
sign the sgRNA library targeting the promoter and RBS re-
gions to minimize off-target effect. Briefly, the protospacer
region of potential off-target sites detected by the SeqMap
software (38) is divided into three different parts based on
the distance to the PAM site (8, 5 and 7 nt, from the 5′
end to the 3′ end as Region III, II and I, respectively). The
penalty score for mismatch residing in these three regions
(I, II and III) are set to be 8, 4.5, 2.5 for NGG PAM and
10, 7, 3 for NAG PAM, because mismatches are generally
poorly tolerated at the PAM-proximal seed region (39). The
off-target site was considered significant when �(penalty ×
mismatch) < 21, where relevant sgRNAs were eliminated
from further processing. We also designed 2,000 negative
control sgRNAs with no significant hit site across the E. coli
genome according to the same criteria. After library design,
the oligomers containing the protospacer region of sgRNA
were synthesized on microarray, PCR amplified and con-
structed as a plasmid library as described in our previous
paper (37).

Besides, a tiling sgRNA library with smaller size previ-
ously reported partly by our group (37) (see Data S3 for full
list) was also used in this work. We will be sharing these two
sgRNA libraries through Addgene as soon as possible.

Screening experiments

For sgRNA activity screening experiments, the sin-
gle colony–derived overnight seed cultures of host
strains (MCm/pCas9-J23109, MCm/peSpCas9-J23109,
MCm �recA/pCas9-J23113, MCm/pdCas9-J23109 and
MCm/peSpdCas9-J23109) were used to prepare competent
cells as described above (transformation assay). We then
mixed the library plasmids with the prepared competent
cells (50 ng plasmid/100 �l competent cells) and divided
the mixture into 100-�l aliquots, which were loaded into

25-well electroporation plates. The electroporation was
carried out as described above using a BTX Harvard appa-
ratus ECM 630 High Throughput Electroporation System.
We typically obtained about 105 colonies per well with this
protocol. Two biological replicates were performed for each
host strain by independent transformations. To achieve a
proper coverage for the sgRNA library, we transformed
50 wells of cells for each replicate, yielding totally 10
working samples for the five host cell types two replicates
each (MCm/pCas9-J23109, MCm/peSpCas9-J23109,
MCm �recA/pCas9-J23113, MCm/pdCas9-J23109 and
MCm/peSpdCas9-J23109). For each host, a negative
control sgRNA plasmid library was also transformed
using three wells of cells, which were pooled into a single
independent sample, yielding five negative control libraries.

The transformed cells were incubated in LB broth (four
times the volume of the competent cells) for 1 h at 37◦C
for recovery. We then took a 50-�l aliquot from each cul-
ture solution, which was diluted and streaked onto LB agar
plates (with kanamycin and ampicillin). After overnight in-
cubation at 37◦C, we counted the colonies and calculated
the transformation efficiency. We confirmed that each bio-
logical replicate guaranteed at least 20-fold coverage (Sup-
plementary Table S3). It is noted that the relevant metrics
determined in dCas9 control group as well as negative con-
trol sgRNA library was used to evaluate the transformation
efficiency for Cas9 group transformed with gene-targeting
sgRNA library, because the DSB lethality caused by Cas9
made the direct calculation of transformation efficiency im-
possible. After recovery, we inoculated the rest of each sam-
ple (replicate) into 100 ml LB broth (with kanamycin and
ampicillin) in a 500-ml flask and cultivated these cells at
37◦C until an OD600 of ∼2.0. We then took 10 ml of each
resulting culture to extract plasmids using the plasmid mini
kit from Omega Bio-Tek for NGS library preparation.

NGS library preparation and sequencing

The purified plasmids were used as templates for PCR to
amplify the N20 region of the genome-wide library sgRNAs
(50 �l × 4 reactions per library; 50 ng template per reaction;
PF/R pTargetLacNGS PE150 primers; KAPA HiFi Hot-
Start polymerase (KAPA Biosystems); 95◦C 3 min, 20 cycles
[98◦C, 20 s; 67.5◦C, 15 s; 72◦C, 30 s], 72◦C for 1 min). PCR
conditions for tiling library is 50 �l × 4 reactions per library,
50 ng template per reaction, PF/R pTargetLacNGS SE50,
Q5 polymerase, (NEB), 98◦C 30 s, 17 cycles [98◦C 10 s, 53◦C
30 s, 72◦C 10 s], 72◦C 1 min. The sequencing library was pre-
pared following the manufacturer’s protocol (TruSeq DNA
Nano Library Prep Kit for Illumina). Sequencing for the
genome-wide sgRNA library was carried out using a 2 ×
150 paired-end configuration and ∼30 million reads were
collected for each library with targeting sgRNAs and 3 mil-
lion reads for negative control sgRNA libraries (Supple-
mentary Table S4). Illumina NextSeq 500 by the SE50 tech-
nique was applied for tiling sgRNA library sequencing.

NGS data processing

Raw NGS data from each library were first combined with
the relevant negative control library, resulting in 10 raw

http://regulondb.ccg.unam.mx/menu/download/datasets/files/PromoterSet.txt
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datasets (two replicates for each of the five conditions,
Cas9, eSpCas9, Cas9 (�recA), dCas9 and eSpdCas9). Af-
ter production of clean data by de-multiplexing and remov-
ing adaptor regions, pairs of paired-end data were merged
by FLASH script (40) and those reads without detected
pairs were removed. Python scripts generated in house were
then used to search for the ‘GCACN20GTTT’ 28-mer in
the sequencing reads (and the reverse complementary se-
quence), and those carrying mutations within the upstream
(GCAC) or downstream (GTTT) flanking regions (4 bp
each) were removed. We then mapped the extracted N20
sequences back to the in silico sgRNA library, via which
the read count of each sgRNA in each library was deter-
mined. The mapping ratio of sequencing reads back to the
in silico library (Supplementary Table S5) for the control
group was generally higher than those for selective groups,
indicating the existence of selection pressure (DSB induced
cell lethality) in selective groups to eliminate many sgRNAs
with strong activities. For example, Cas9 (�recA) group was
finally dominated by sgRNAs with synthetic errors (Sup-
plementary Table S5, ∼25% mapping ratio) hence block-
ing CRISPR/Cas9 activity in this subpopulation. We sus-
pected that this subpopulation is derived from the inherent
error rate (∼1%) in DNA oligomer synthesis, which is am-
plified by the selection conditions applied here. We subse-
quently adjusted the read counts using (Eq. 2) (n = number
of sequencing libraries) to normalize the different sequenc-
ing depths of each library. Finally, sgRNAs with <20 read
counts in the plasmid library were removed to increase sta-
tistical robustness. Subsequently, the read counts for each
sgRNA in the two biological replicates were averaged as the
geometric mean.

Normalization factori

= Read counti/
(∑n

i = 1
Read counti/n

)
(2)

For each condition (Cas9, eSpCas9 and Cas9 (�recA)),
the activity of each sgRNA was calculated via Eqs. (3)
(raw activity score) and (4) (normalized by negative con-
trol sgRNA). Those sgRNAs with <20 reads in the control
condition (dCas9 and eSpdCas9) were eliminated from the
following analysis.

Activity
′
sgRNA

= log2 ((Read count)selective/(Read count)control) (3)

ActivitysgRNA

= Activity
′
sgRNA − median

(
Activity

′
NC sgRNA

)
(4)

To calculate the Z score of each individual sgRNA, we fit
the activities of all negative control sgRNAs with a normal
distribution, giving rise to a value for the standard deviation
(�). The Z score for each sgRNA was then calculated with
(Eq. 5).

ZsgRNA = ActivitysgRNA/σnormal distribution of NC sgRNA (5)

Subsequently we measured the average activity for each
gene and the statistical significance in contrast to the neg-
ative control sgRNAs, to identify the genomic loci with re-

sistance to CRISPR/Cas9-induced DSBs. Based on the ac-
tivities of the sgRNAs belonging to an individual gene (in-
cluding sgRNAs targeting the relevant RBS), we calculated
the average based on the median of sgRNA activities and
the statistical significance (false positive rate, FPR) via a
quasi gene simulation approach (37). It should be noted
that that most of the genes across the genome exhibited no-
table DNA cleavage activities. Hence the classical Storey-
Tibshirani approach (41) for genome-wide research was not
suitable here to convert the FPR value into the false discov-
ery rate. We therefore directly used FPR values as signals to
identify those resistant regions.

Detection limit of this method

Generally, the read count for one sgRNA was from 100
(∼26.7) to 1000 (∼210) sequencing reads. This sequencing
depth determined the detection limit, the lowest activity
score (strongest activity) that can be defined in this assay.
For example, an sgRNA together with the Cas9 nuclease
(selective condition) causing no doubling of the cell led
to the absence (<1 read count) of this sgRNA in the se-
quencing data. Hence, We reasoned that the detection limit
of our method for sgRNA dropout screenings is approxi-
mately around from –7 to –10, depending on the abundance
of relevant sgRNA in the initial plasmid solution for elec-
troporation. This hypothesis was consistent with the data
presented (the best sgRNA gave rise to activity ∼–10). We
can improve this resolution by increasing the sequencing ca-
pacity applied to each NGS library (currently 30 million
reads per library). We proposed that the detection limit is-
sue stated here was basically responsible to the poor reso-
lution (high noise) of sgRNA activity data in Cas9 (�recA)
group, because the highest selection pressure in this experi-
ment (Supplementary Table S5) resulted in the most signif-
icant sgRNA dropout.

Comparison with established models

Using the sgRNA activity datasets obtained in this work,
we evaluated the performance of three previously reported
activity prediction models trained based on the data from
screening experiments in mammalian cell lines (Doench
et al. (24); Farasat et al. (31); Xu et al. (32)). The scripts
for the three sequence-activity models were downloaded
(Doench et al.) or kindly provided by the relevant authors
(Farasat et al. and Xu et al.), and the following commands
were used to calculate an activity score for each sgRNA.

bin/SSC -l 20 -m matrix/human mouse CRISPR KO 3
0bp.matrix -i N20NGGN7 -o output

python rs2 score calculator v1.2.py –seq N4N20NGG
N3

python Cas9 Calculator.py crRNAseq(N20)
PAM(GGN) target(N20NGGN) (quickmode = False,
cModelName = ‘All dataModel.mat’)

The predicted activity score for each sgRNA was com-
pared with the experimentally determined activity value,
and the Spearman correlation coefficients were calculated
for each model. The high-quality sgRNA activity datasets
(see below) were used here for model performance compar-
ison rather than the full list of sgRNAs described above.
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Machine learning

Dataset preparation. We first carried out a filtering step
to create high-quality datasets for the subsequent machine
learning. We removed sgRNAs with multiple targets in the
E. coli genome (∼200 sgRNAs). Only sgRNAs targeting
genes with significant cleavage activities were then kept
(FPR ≤ 0.01, number of sgRNAs ≥ 5). It is noted that
sgRNAs that targeted a RBS were grouped with their rel-
evant genes, and, based on these criteria, all sgRNAs tar-
geting promoters were removed. This filtering minimized
the impact of resistant genomic loci on the quality of the
dataset. The activity score for each sgRNA was calculated
with (Eq. 6), which enabled sgRNAs with better activities
to have higher scores and all scores to be above or equal to
zero. We thus prepared three high-quality datasets (Cas9,
eSpCas9 and Cas9 (�recA); Data S4, sequence plus score)
that were used in the following work.

ScoresgRNA = (∣∣ZsgRNA
∣∣ if

(
ZsgRNA < 0

))

or
(
0 if

(
ZsgRNA ≥ 0

))
(6)

Featurization. We followed a featurization protocol for
encoding the sgRNA sequences mainly as described by
Doench et al. (24). Briefly, we used binary variables (0 or 1)
to encode position-dependent base (pair) features. For ex-
ample, position 1 of the 20-mer can be four different bases
(A/C/T/G), each of which is encoded by four binary vari-
ables, one for each possible nucleotide. These are denoted as
‘order 1 Px’ (‘x’ denotes the position, 1–20) features, cor-
responding to the single base of each position. For ‘or-
der 2 Px’ (‘x’ denotes the position, in this case 1–19) fea-
tures, we looked at all adjacent dinucleotides as features,
such as AA/AT/AC/AG/etc. There are 4 × 4 = 16 such
base pairs, hence 16 binary variables can be used to encode
one such pair at one particular position in a 20-mer. We also
included position-independent features encoded by real
number variables. For instance, ‘order 1 IP’ features simply
mean how many A’s, etc, were in the sgRNA (20-mer), ig-
noring their position, as does ‘order 2 IP’. Therefore, for a
20-mer sgRNA, we obtained 80 ‘order 1 Px’, 304 (19 × 16)
‘order 2 Px’ position-specific features, 4 ‘order 1 IP’ and
16 ‘order 2 IP’ position-independent features. The two nu-
cleotides relative to the PAM (NGGN) were also encoded,
yielding 16 features, one for each NN possibility. The GC
content (0–1, encoded as a real number) was computed as
an additional feature. Thermodynamic features were deter-
mined via the melting temperatures of the DNA-RNA du-
plex using the Biopython (version 1.66) Tm staluc function
(DNA duplex version). In addition to the melting tempera-
ture of the entire 20-mer target site (‘T20’), we also included
three features corresponding to the melting temperatures of
three different parts of the sgRNA––the five nucleotides im-
mediately proximal to the PAM (‘T5’), the eight nucleotides
adjacent to 5′ of T5 (‘T8’), and then the seven nucleotides at
the 5′ end of the 20-mer (‘T7’). We hence extracted 425 fea-
tures to encode one sgRNA. These features and the sgRNA
score described above were used in the subsequent machine
learning.

Data processing for activity prediction. We first normal-
ized the score for each sgRNA by a within-gene ranking
(24) or based on the three strongest sgRNAs belonging to
the gene (25). However, simple linear regression suggested
there was no advantage to use these two normalized scores
in contrast to the original one (Supplementary Figure S1).
This confirmed that our sgRNA activity screening strat-
egy was relatively more unbiased, as compared with previ-
ous methods that associated sgRNA activities with loss-of-
function phenotypes (24,30), which makes the sgRNA ac-
tivities across genes not comparable without normalization
due to the differences in phenotypic effects of gene inactiva-
tion. To minimize the loss of information during data pro-
cessing, we used the raw activity scores described above (Eq.
6) in the following work.

We used five statistical models in our experiments:
(i) linear regression, (ii) L1-regularized linear regression
(Lasso), (iii) L2-regularized linear regression (Ridge), (iv)
gradient boosting regression tree and (v) multiple-layer
perceptron. We used the scikit-learn package (0.19.0) in
Python to implement each of these models. The train-
ing dataset (80% of all raw data) was used for a pa-
rameter search to optimize the performance of the mod-
els by five fold cross-validation. To optimize the regular-
ization parameter in (ii) and (iii), we searched 11 points
that were evenly spaced in log space, with a minimum
of 10−5 and a maximum of 105. For the gradient boost-
ing regression tree method, we optimized the parameters
following the given order (min samples split, max depth,
min samples leaf, max features, subsample, learning rate
and n estimators). For multiple-layer perceptron, the regu-
larization parameter (alpha) was first optimized by search-
ing nine points that were evenly spaced in log space, with a
minimum of 10−4 and a maximum of 104. Based on the opti-
mized regularization parameter (alpha), the layer topology
was further optimized by searching the following combina-
tions ([50], [100], [200], [50, 50], [100, 100], [200, 200], [50,
50, 50], [100, 100, 100], [200, 200, 200]). After model train-
ing by 5-fold cross-validation described above using 80% of
raw data, the remaining 20% held-out data was used to test
the generalization ability of the trained model.

Statistical information, software and figure generation

Genome plots were generated using the Circos software
package (42). All statistical analyses and machine learning
were carried out using the SciPy (0.19.1), NumPy (1.13.1)
and scikit-learn (0.19.0) Python packages. Plots were gen-
erated in Python 2.7 using the matplotlib (2.0.2) plotting
libraries.

RESULTS

Design of the E. coli genome-wide sgRNA library and screen-
ing experiment conditions

Recently, we reported a CRISPR interference (CRISPRi)
approach to perform pooled functional genomics screening
in E. coli using a genome-wide sgRNA library consisting of
55 671 members (37). This CRISPRi library covers 98.6% of
4140 protein-coding genes and 79.8% of 178 RNA-coding
genes of E. coli genome (at least one sgRNA is designed),
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and 85.6% of all genes are targeted by at least 10 sgRNAs.
In the current study, we repurposed this library for sgRNA
activity profiling using wild-type Cas9 with nuclease activ-
ity. In addition, because the previous library includes sgR-
NAs targeting only the coding genome, we also designed a
new sgRNA library targeting the promoter of each known
operon (3142 processed promoters) and ribosome-binding
site (RBS) of every protein-coding gene (4174 RBSs). These
two intergenic regions are important for gene expression
modulation and have attracted extensive engineering ef-
forts (1,43,44). As the lengths of these intergenic regions
are much shorter than the gene-coding regions, we typi-
cally designed two sgRNAs for each intergenic entry. More-
over, the sgRNAs were designed to target either of the two
DNA strands in this new library, in contrast to the sgRNAs
in our previous library, which bind only the nontemplate
strand during transcription to maximize the CRISPRi ac-
tivity. Following these guidelines, the new intergenic sgRNA
library contains 10 257 members (5559 in the promoter sub-
library and 4698 for RBSs) (Data S1 for in silico intergenic
sgRNA library and Data S2 for promoter and RBS en-
tries), covering 95.3% of all promoters (Supplementary Fig-
ure S2) and 71.9% of all RBSs (Supplementary Figure S3).
Together with our previous CRISPRi library, 65 928 sgR-
NAs were used in this work to profile their DNA cleavage
activities. This synthetic library represents a genome-wide
sgRNA collection extensively covering either the gene cod-
ing or the intergenic regions of the E. coli genome (∼10%
of all sgRNAs across ∼4.6 Mb E. coli genome assuming
one sgRNA every 8 bp because of the NGG PAM require-
ment). Moreover, 2000 sgRNAs without any predicted tar-
get across the E. coli genome were designed as an internal
control in the screening experiments (Data S5). The sgRNA
library was synthesized as oligonucleotides by a DNA mi-
croarray, amplified by PCR and cloned into the sgRNA ex-
pression plasmid backbone (pTargetF lac, (37)) via Golden
Gate assembly. This plasmid library was used in the follow-
ing pooled screening experiments to profile sgRNA activity
(Figure 1A). A log retention score (effectively the inverse
of guide activity) for each member of the library was cal-
culated by quantifying the representation of each sequence
with and without Cas9 expression by NGS. A more nega-
tive score indicates stronger activity (Figure 1A). As (Eq.
3) in Methods part shows, we define activity of sgRNA as
log2((Read count)selective/(Read count)control), which is ab-
breviated to log2AC (AC, abundance change) and used ac-
cordingly across the paper.

In addition to building a comprehensive map of sgRNA
activity in E. coli (Figure 1B), another goal of this work
was to gain insight into the fundamental biophysics of the
CRISPR/Cas9 system (Figure 1C). The relatively more ac-
cessible DNA substrates within bacterial cells with respect
to the CRISPR/Cas9 machinery thus provide the oppor-
tunity to elucidate the inherent activity of sgRNAs based
exclusively on their sequence features as well as target con-
texts. To this end, we characterized sgRNA activities in
three different conditions (Table 1, three selective condi-
tions). Firstly, the most widely adopted Cas9 from Strep-
tococcus pyogenes was used in wild type E. coli strain to
profile sgRNA activities. Secondly, we blocked the native
DSB repair pathway of E. coli by deleting recA, which en-

codes a molecular sensor of DSBs and initiator of down-
stream homologous repair responses (18,23). This pathway
is known to play more important roles in DSB repair than
NHEJ in bacteria (35). Screenings of sgRNA activities in
this condition (Cas9 (�recA)) is thus expected to provide
a more stable and unified baseline to dissect the underly-
ing rules of sgRNA activities. A nuclease-dead Cas9 mutant
(dCas9), which binds DNA without cleaving it, was used in
wild type E. coli as the negative control for the abovemen-
tioned two conditions. Moreover, we also included a reengi-
neered Cas9 derivative with improved specificity (K810A,
K1003A and R1060A of Cas9) (denoted as eSpCas9) (45)
in our screening experiments. For this experiment, the eS-
pdCas9 (K810A, K1003A and R1060A of the catalytically
inactive dCas9) was used as the control condition. Table 1
summarizes the hosts and Cas9 (selective) or dCas9 (con-
trol) expression constructs for each screening experiment
performed in this work and their roles in subsequent data
processing to determine the sgRNA activities.

Quality evaluation of genome-wide sgRNA library activity
profiling

To characterize the resolution of our method for differenti-
ating among sgRNAs with diverse activities prior to screen-
ing experiments using the genome-wide library, we first ap-
plied a synthetic approach to mimic sgRNAs with a gradi-
ent of activities by introducing three mismatch point mu-
tations into the N20 region of an sgRNA targeting yneE.
According to a previous report (11), mismatches located at
the 5′ end of the protospacer region of the DNA target are
better tolerated than mismatches at the 3′ end proximal to
the PAM (seed region). We accordingly introduced three
mutations into different regions of the sgRNA to create a
series of sgRNAs with different activities toward the same
DNA substrate. In agreement with this previous knowledge,
a transformation assay indeed confirmed the loss of activ-
ity as more mutations accumulated in the sgRNA N20 re-
gion that base-paired with the seed region in DNA proto-
spacer sequence (Figure 2A). More importantly, even one
mismatch mutation at the 5′ end of the sgRNA N20 region
(yneE-m1) resulted in a 10-fold increase in survival rate with
respect to wild type, which can be easily quantified by NGS,
indicating that our method enables the discrimination of
sgRNAs with only moderate activity differences.

In the subsequent screening experiments, we transformed
the sgRNA plasmid library into E. coli cells with Cas9 (se-
lective) or dCas9 (control) expression (Table 1). The recov-
ered culture was inoculated into fresh Luria-Bertani (LB)
medium and cultivated to the stationary phase (OD600,
∼2.0). All experiments were executed with two biological
replicates. Plasmids were extracted for each culture and
NGS was applied to profile each library. The consistency
between replicates (Figure 2B, R2 > 0.78) and acceptable
mapping ratio to the in silico library (Supplementary Table
S5) suggested the reliability of these experiments. To fur-
ther show that the results of screenings can be reproduced
in other independent experiments, we turned to a smaller
tiling sgRNA library (3451 members targeting 86 genes,
Data S3). Using the same protocol as described above, we
subjected this tiling library to screening for sgRNA activ-
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Figure 1. General framework combining experimental and computational approaches to depict a genome-wide sgRNA activity map in this work. (A)
Schematic illustration of the workflow for the sgRNA activity screening experiments. The variable regions of a genome-wide sgRNA library are synthesized
as oligomers on a microarray. The oligomers are subsequently amplified and cloned into an sgRNA expression vector by Golden Gate assembly. The
constructed sgRNA library is transformed into E. coli host cells expressing Cas9 (selective condition) or dCas9 (control condition) protein. After cultivation
in LB medium, the extracted sgRNA plasmids are amplified by PCR, and the abundance of each sgRNA is determined by NGS. The sgRNA activity is
defined as the log2 change in abundance between the selective (Ai) and control (Ai,NC) conditions. (B) The obtained genome-wide sgRNA activity map
can be used directly in sgRNA selection for a genome-editing project in E. coli (the best sgRNA for every gene, promoter and RBS encoded by E. coli
genome). (C) A machine learning approach is used to shed light on the sequence–activity relationship (sgRNA activity = f (sgRNA sequence)) of sgRNAs to
provide more biophysical insight into CRISPR/Cas9-based genome editing as well as to extend the sgRNA activity prediction capacity to other prokaryotic
organisms.

ity with eSpCas9 in wild type E. coli as the selective condi-
tion. We extracted 901 sgRNAs in this tiling library, which
were also included in our genome-wide sgRNA library. The
comparison of activity scores for these sgRNAs between
the two experiments carried out independently using dif-
ferent libraries suggested that our method is highly repro-
ducible (Figure 2C, R2 = 0.771). To further validate results
from our screenings, we selected an allelic series of sgR-
NAs based on their activities from the screening experi-
ments and retested each sgRNA individually by transfor-
mation assay via colony number counting. The series con-
sisted of 15 sgRNAs, with three sgRNAs targeting each of
five genes (ansP-293/647/1277, dppC-43/637/794, mocA-
262/294/393, artP-306/506/627, araE-595/714/1205) and
with Cas9 as the selective condition in a wild-type E. coli
host. The results showed a very good positive correlation
between the screening and the validation experiments (Fig-
ure 2D, R2 = 0.840). Overall, these results suggested that
our pooled screening method to profile sgRNA activity was
very reliable and that the high-quality dataset produced ac-
cordingly could thus be used for subsequent analyses. The
dataset of sgRNA activity scores obtained in this work is
summarized in Data S6 (Cas9, eSpCas9 and Cas9 (�recA)).
It is worthy noted that we also included sgRNAs targeting
essential genes in these datasets and following analysis, be-
cause our analysis showed that the activities of these sgR-
NAs (regarding DNA cleavage) can be still reliably deter-
mined by our methods (Supplementary Note 1).

The variability of activities among sgRNAs

We first investigated the distribution of sgRNA activities
obtained in the screening experiments (Figure 3A). As ex-
pected, we observed remarkable variability of sgRNA ac-
tivity for each of the three categories of conditions studied
here, covering around three orders of magnitude (∼10 in the
log2 x axis of Figure 3A). This suggests that at least in the
condition tested here, Cas9 plus the best sgRNA can ren-
der E. coli cell grow around 1000-fold (210–103) slower than
the sgRNA with poorest activity. Moreover, compared with
the activity of their negative control sgRNA counterparts,
the majority of sgRNAs in our library showed statistically
significant activities (Supplementary Figure S4, Z-score of
sgRNA activity). This is consistent with our previous con-
clusion (37) that ∼90% of sgRNAs within the library are
active for CRISPRi based gene repression.

As described above, a big fraction of sgRNAs in the li-
brary exhibit only moderate activities. For example, 34.5%
of sgRNAs only repress bacterial growth by 10-fold or less
(Cas9). It is noted that such sgRNAs with moderate activi-
ties are also potent to result in big false positive ratio during
genome editing in bacteria using CRISPR/Cas9 as a neg-
ative selection method. We drafted a very simple model to
make this point more intuitive (Supplementary Figure S5).
Suppose that the upper limit of ssDNA recombination effi-
ciency in E. coli is ∼10% of all transformants (46). In this
context, among all transformants, if 10% avoid killing by
CRISPR/Cas9 due to suboptimal sgRNA activity (equal to
repress cell growth by 10-fold) and thus survive without de-
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Figure 2. Reliability validation of screening experiments. (A) Different sgRNA activities are related to the cellular survival rates. Mutations were introduced
at different positions in the yneE-WT sgRNA N20 region (yneE-m1, yneE-m2 and yneE-m3). These sgRNA expression plasmids were transformed into the
host strains expressing Cas9 and dCas9, and the survival ratios were determined by counting the colony number after overnight cultivation on agar plates.
Data represents the mean ± s.d. from n = 2 biological replicates from one experiment. (B) The genome-wide sgRNA activity screenings were consistent
between biological replicates. Read count of each sgRNA obtained from NGS was used to compare the agreement between biological replicates (n = 2).
(C) The results from sgRNA activity screenings were highly reproducible. One additional sgRNA library (tiling library, 3451 members) was subjected to
activity screening using the same protocol. The activity scores of 901 common members between this tiling library and the genome-wide sgRNA library
obtained from relevant screening experiments are plotted against each other (R2 = 0.771). (D) The pooled sgRNA activity screening result was confirmed
by cloning 15 sgRNAs individually and measuring their activities via transformation assay (colony number counting) (as in (A)). Data represents the mean
± s.d. of biological replicates (n = 2) from one experiment. The validation result was compared with the relative abundance changes of relevant sgRNAs
obtained in high-throughput profiling (R2 = 0.840).

sired mutations, then ∼50% false positive ratio (10% ÷ (10%
+ 10%)) is expected. Given this relationship, it is suggested
that ∼40% of the sgRNAs in the Cas9 dataset (activity >
−4) will lead to a false positive ratio of 50% or higher with
the optimistic assumption of 1% recombination efficiency.
Hence, we suggest that the proper selection of active sgR-
NAs is paramount to the success of genome editing, even

in bacteria such as E. coli with their much more accessible
chromosomal DNA than eukaryotic cells. This goal can be
achieved with the help of our sgRNA activity dataset for
people working in E. coli. We showed that at least one highly
active sgRNA can be extracted for nearly all E. coli genes
(Figure 3B, best sgRNA for each gene or intergenic entry
(if available), Data S7). Furthermore, described in the sub-
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Figure 3. Diversity of activity among sgRNAs. (A) The distribution of sgRNA activity in conjunction with Cas9, eSpCas9 and Cas9 in the �recA genetic
background (Cas9 (�recA)). The activity distributions of negative control sgRNAs under these three conditions are also presented as references. (B)
Distribution of the sgRNA with the strongest activity among all sgRNAs targeting each gene (under the three conditions as in (A)). Only genes with at
least three sgRNAs were included (4,020 genes). (C) Activity comparisons between sgRNAs targeting the template or nontemplate strand in the gene-
coding regions. A two-tailed MW U-test was used to test for significant differences. Cas9 dataset: 2,180 vs. 2,163 (template versus nontemplate sgRNAs,
respectively, here and below), P = 0.794; Cas9 (�recA) dataset: 2180 versus 2163, P = 0.316; eSpCas9 dataset: 2220 versus 2265, P = 10−11.2. (D) Activity
comparisons between sgRNAs targeting the leading or lagging strand during replication across the E. coli chromosome. A two-tailed MW U-test was used
to test for significant differences. Cas9 dataset: 27 356 versus 25 180 (leading strand versus lagging strand sgRNAs, respectively), P = 0.006; Cas9 (�recA)
dataset: 27 356 versus 25 180, P = 0.003; eSpCas9 dataset: 29 168 versus 26 213, P = 0.398.

sequent section of this paper, we trained a model to predict
sgRNA activities using the data produced here. This in silico
tool can facilitate people working in other bacteria to design
better sgRNAs in CRISPR/Cas9 assisted genome editing.

We also compared the sgRNA activity profiles of the
three datasets (Cas9, eSpCas9 and Cas9 (�recA)), from
which the activities of the relevant nucleases can be inferred
(Figure 3A). For example, the mutations in eSpCas9 are re-
ported to increase its specificity by decreasing its stabilizing
interactions with the non-target strand of the DNA sub-
strate via eliminating the positively charged residues located
within the groove between the HNH, RuvC and RNA-
guided endonuclease domains (45). Our results indicated
that the DNA cleavage activity of eSpCas9 is significantly
weaker than that of wild-type Cas9 (Figure 3A). Thus, the

positively charged groove of Cas9 contributed to its en-
donuclease activity, although in the original report (45) the
activity of eSpCas9 was not affected based on quantifica-
tion of the target DNA indel mutation rate after NHEJ
repair. Meanwhile, as expected, knockout of recA signifi-
cantly increased the lethality of DSBs in the bacterial chro-
mosome as induced by the CRISPR/Cas9 system (Figure
3A), consistent with the conclusions of previous reports
(18,23). Even though it has been suggested that genome
editing can benefit from the blocking of recA expression
(18,47), we argue that via the rational selection of sgRNAs
(Figure 3B, Data S7) the false positive ratio of genome edit-
ing can be reduced without the tradeoff of genome insta-
bility derived from blocking the inherent DNA repairing
pathways in bacteria. To test this, we chose three genes to
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delete by CRISPR/Cas9 assisted recombination. For each
gene, one active and another poorly active sgRNAs were
selected based on our screening results. Purified DNA tem-
plate was used as recombination donor for the knockout of
each gene. By gel analysis of PCR products from 10 ran-
domly picked colonies after transformation for each exper-
iment (sgRNA), we showed that all three experiments us-
ing active sgRNAs exhibited enhanced ratio of successful
recombinants (Supplementary Figure S6).

Most sgRNAs in our library (the CRISPRi sub-library)
bind the non-template strand in the gene-coding regions,
which may result in strand bias. To test whether the conclu-
sions derived from our sgRNA library can be extended to
the template strand, we used the RBS sgRNA library as a
proof-of-concept because of the absence of strand bias in
this library and of the location of the RBS (downstream
of the transcription start site). No significant difference
(Mann–Whitney (MW) U-test) was detected in the activi-
ties of sgRNAs that targeted different DNA strands for the
Cas9 (P = 0.794) and Cas9 (�recA) (P = 0.316) datasets,
although there was a significant difference for the eSpCas9
dataset (P = 10−11.2) (Figure 3C). One possible reason for
this is that the weaker interaction of the eSpCas9–sgRNA
complex with its DNA substrate (Figure 3A) may result in
sensitivity to interference from the bacterial transcription
machinery. Consistently, the stronger activity noted here
when the nontemplate strand was targeted (Figure 3C, eSp-
Cas9) is consistent with a previous report that the CRISPRi
system results in better gene repression when this strand
is targeted (48). In spite of the strand bias noted with eS-
pCas9, this result indicated that there was no strand bias
(transcription) in gene-coding regions for the more com-
monly used Cas9 in bacterial genome editing, rendering
our dataset suitable for computational methods such as ma-
chine learning to predict sgRNA activities anywhere across
the chromosome.

We further sought to investigate possible interactions be-
tween the CRISPR/Cas9 complex and the DNA replica-
tion machinery to identify any potential strand bias issue
in this case. We divided all sgRNAs in our library into two
groups based on their target DNA strand––leading strand
or lagging strand during DNA replication. No significant
(very weak if any) differences were found between the ac-
tivities of these two groups of sgRNAs for all three datasets
(Figure 3D). Besides, the impact of other genome context
parameters on guide efficacy, including relative position of
the sgRNA relative to open reading frame (Supplementary
Figure S7), position of the gene in the operon (Supplemen-
tary Figure S8), and gene expression levels (RNA-seq) (Sup-
plementary Figure S9) was also evaluated. The results in-
dicated no significant interaction between genome context
described by these parameters and sgRNA activities.

Genomic loci that are resistant to CRISPR/Cas9-induced
chromosomal breaks

There are chromosomal factors such as nucleosomes that
inhibit CRISPR/Cas9 genome editing in eukaryotic cells
(25,29,49). Although it is widely accepted that bacterial
DNA is much more accessible (21,36), this issue has not
yet been experimentally characterized in prokaryotic cells,

in spite of the inactive genomic loci consistently observed
in our datasets and the inability to modify particular genes
by CRISPR/Cas9 in our previous experience. To this end,
we used the median sgRNA activity among all sgRNAs
belonging to one gene as an indicator of the average ac-
tivity score of the relevant genomic region (Figure 4A, a
more positive score indicates stronger resistance of this loci
to CRISPR/Cas9 derived DNA cleavage). The variability
in this indicator was apparent. Of particular significance is
a positive skew (long right tail) in the distribution of the
Cas9 dataset (Figure 4A), suggesting the existence of ge-
nomic loci resistant to CRISPR/Cas9 genome editing. It
is worthy noted that even for those genes with resistance to
CRISPR/Cas9-induced DSBs, significant activity variabil-
ity can be still observed for their sgRNAs, in contrast to
the experimental noise quantified by the variability of neg-
ative control sgRNAs (Figure 4B). This result suggests that
the CRISPR/Cas9 complex can still access these regions
and carry out nuclease activity. The overall resistance of
these regions (median of sgRNA activity) to CRISPR/Cas9
genome editing can thus be probably deduced to chromoso-
mal factors that inhibit the function of the CRISPR/Cas9
complex.

To illustrate the positioning of resistance to
CRISPR/Cas9-induced DSBs across the chromosome, we
projected the median sgRNA activity belonging to each
gene encoded by the E. coli genome along the chromosome
(Figure 4C) and highlighted those genes with poor activi-
ties. The profiles of CRISPR/Cas9-induced DSB resistance
for the three datasets are consistent, especially for Cas9
and eSpCas9 (Figure 4C, three circles of white-to-black
heatmaps). In contrast, some resistant genomic regions in
these two datasets became vulnerable to Cas9 attack in the
genetic background of �recA, suggesting that endogenous
DSB repair activity sustainably mitigates the lethal effect
of DSBs in a locus-dependent manner. This observation
also indicates that the resistance to CRISPR/Cas9-induced
DSBs of such regions in the context of Cas9 and eSpCas9 is
not due to the unavailability of DNA targets via mutations
such as large deletions, because all the host strains used in
this work are derived from the same parental strain. This is
further evidenced by the existence of within-gene sgRNA
activity variability for these resistant regions (Figure 4B
and heatmap of Figure 4C). Together, our results consis-
tently suggest that unknown chromosomal factors have an
impact on the activity of CRISPR/Cas9 system, in spite
of the common belief that bacterial DNA is unprotected
with respect to an attack from cellular factors (21,36). We
are currently unable to associate these inactive regions
with any known chromosomal factor in E. coli. Potential
reasons for this blocking effect include DNA supercoiling
state, occupation of nucleoid-associated proteins, torsional
constraints of DNA, which are all suggested to impact
CRISPR/Cas9 activity (31,50) and also known to present
non uniform pattern across bacterial chromosome (51–53).
Given that the investigation of bacterial chromosome
structure is only beginning to emerge compared with
mammalian cells being extensively profiled such as in
ENCODE project (54), this still needs further study.
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Figure 4. E. coli genome-wide landscape of resistance to CRISPR/Cas9-induced lethal DNA DSBs. (A) Distribution of median sgRNA activity among all
sgRNAs within each gene (for each of the three conditions, Cas9, eSpCas9 and Cas9 (�recA)). The median sgRNA activity of negative control sgRNAs is
zero because of the normalization step in the data processing (see Materials and Methods). (B) Genes with significant resistance to CRISPR/Cas9-induced
DSBs were extracted ((median sgRNA activity ≥ 0 or (median sgRNA activity ≥ −1 and FPR ≥ 0.01)) and (≥5 sgRNAs)), giving rise to 192, 188 and 70
genes in the Cas9, eSpCas9 and Cas9 (�recA) datasets, respectively. Shown is a distribution of deviations in the activities of sgRNAs targeting individual
genes of these three sets. The experimental noise as quantified by negative control sgRNA deviations is shown as dotted lines. (C) Median activity among
all sgRNAs belonging to each gene is plotted as a bar plot (zoom in is shown on the upper left) within each circle (Cas9, red; eSpCas9, blue; Cas9 (�recA),
yellow). Genes with notable resistance to genome editing (the same threshold as in (B)) in each dataset (Cas9, eSpCas9 and Cas9 (�recA)) are highlighted
with gene names. Essential genes in rich medium are tagged with ‘(e)’. The heatmap (black to white) below the relevant bar plot of each circle indicates
the standard deviation of the within-gene sgRNA activity for each highlighted gene. The color bar is shown on the right. A high-resolution version of this
genome-wide map is accessible (https://figshare.com/s/127cecee6f9ea4e814e2) for downloading.

An integrated machine learning approach predicts highly ac-
tive sgRNAs

As the first large-scale dataset of sgRNA activity in
prokaryotes, our results make it possible to test the general-
ization ability of previous sgRNA activity prediction mod-
els trained by eukaryotic datasets. We adopted three widely
used models (24,31,32) to predict the activity scores of sgR-
NAs in our dataset and compared those scores with our ex-
perimentally determined ones (see Methods) (Table 2, Sup-
plementary Figure S10). Two of these are machine learning
models, whereas the third is based on the biophysical mech-
anism of CRISPR/Cas9. We found very weak correlation
between our dataset and the predictions from the two ma-
chine learning models (Doench et al. and Xu et al.). In con-

trast, a more notable but still weakly negative correlation
was observed given the predictions from the biophysical
model (Farasat et al.). This result suggests that the models
trained from the sgRNA activity data from mammalian cell
line screenings only partially capture the patterns of sgRNA
sequence-activity relationships, possibly due to the noise
in the training datasets introduced via the NHEJ repair
specificity (34) and the impact of dense chromatin struc-
tures (36,49) in eukaryotic cells. Indeed, even for eukaryotic
cells such as yeast, a recent study identified a different op-
timal window relative to the transcription start site for ac-
tive sgRNA positioning in a CRISPRi system as compared
with that reported for human cell lines (55). Similarly, Cui
and Bikard also noted the poor prediction abilities of these

https://figshare.com/s/127cecee6f9ea4e814e2
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models upon the activities of 13 sgRNAs in E. coli (23). In
these lines, we sought to train the machine learning mod-
els based on our sgRNA activity dataset, aiming to extend
the scope of this work to other prokaryotic organisms, as
well as to elucidate the basic biophysics of the interactions
between the CRISPR/Cas9 complex and DNA targets.

We first filtered our datasets by removing sgRNAs of low
quality and with multiple targets (see Materials and Meth-
ods) as well as those belonging to genes with resistance to
CRISPR/Cas9 genome editing (Figure 4C). We thus estab-
lished three high-quality datasets (Cas9: 44 163 sgRNAs;
eSpCas9: 45 070 sgRNAs; Cas9 (�recA): 48 112 sgRNAs;
summarized in Data S4) used in the subsequent work, which
are the largest sgRNA on-target activity sets reported so far
to the best of our knowledge (56). The absolute value of the
Z-score for each sgRNA was used as the activity score (see
Materials and Methods). To quantitatively model sgRNA
activity, we carried out a featurization process that consid-
ers the DNA target sequence of the protospacer, PAM and
flanking region to convert the N20NGGN sequence into
425 binary or real number features (Figure 5A). Genomic
context parameters are not applied in this process, because
the previous results showed that they have very little influ-
ence on sgRNA activities (Figure 3C, D; Supplementary
Figures S7–S9). To prevent over-fitting, we randomly sep-
arated the dataset into two subgroups with 80% of the data
used as the training dataset to train the models by 5-fold
cross-validation, and the remaining 20% held out used to
test the generalization capacity of the trained models (Fig-
ure 5A). Simple linear regression, regularized linear regres-
sion (L1LR and L2LR), ensemble method (gradient boost-
ing regression tree, GBR) and an artificial neural network
method (multiple layer perceptron, MLP) were used as ma-
chine learning models. We first evaluated the performance
of different models using five fold cross-validation on the
training set (Figure 5B). We found that the GBR model
was the most predictive, with Spearman correlation coef-
ficients of 0.542, 0.682 and 0.328 for Cas9, eSpCas9 and
Cas9 (�recA), respectively (Figure 5b). We reasoned that
the relatively poor performance of the Cas9 (�recA) model
was derived from the overwhelming selection pressure dur-
ing the screening experiments (Figure 3A; see discussion in
Materials and Methods), leading to the inability to discrim-
inate between sgRNAs with strong but different activities.
It is also worth noting that simple linear regression gener-
ally works quite well, with a weaker but similar correlation
(Spearman correlation coefficient = 0.508, 0.624 and 0.315
for Cas9, eSpCas9 and Cas9 (�recA), respectively) with re-
spect to that of the GBR model, suggesting that the naı̈ve
linear combinations of features used here were sufficient
for deciphering the sgRNA sequence-activity relationships.
Moreover, randomly shuffling before splitting the training
set into five subgroups for cross-validation leads to no sig-
nificant difference at the performance of trained models
(data not shown), suggesting no bias is introduced during
the training set split step. The trained model (fixed param-
eters in the final models learned from the data of training
set are given in Supplementary Table S6) also showed good
generalization ability when predicting the unseen data in the
test set, and the performance metrics were well maintained
(Figure 5C). Importantly, this high predictive value was

consistent across randomly selected training and test sets
(data not shown). In addition, we also used the trained eSp-
Cas9 model to carry out a prediction analysis with a dataset
obtained from an independent screening experiment using
the tiling sgRNA library (see Figure 2C and Materials and
Methods). We applied the same filter threshold to the results
of this experiment, giving rise to a high-quality set with 2640
sgRNAs. Although 65.9% of them were not contained in
the genome-wide sgRNA library, our prediction algorithm
still showed good performance with a Spearman correlation
coefficient value of 0.633 (Figure 5D). These results collec-
tively confirmed that our models captured the underlying
biological signals rather than fitting the data superficially.
In addition, the models trained in this study (Cas9 and
eSpCas9) outperformed the state-of-the-art ones in terms
of Spearman correlation coefficient (25,28,29), possibly be-
cause of the better signal-to-noise ratio and less bias in our
dataset obtained from screenings in bacteria as noted above.
We propose that the algorithms reported here represent a
better quantitative model about sgRNA on-target activity
compared with the previous ones, at least in bacteria where
it is developed.

We next analyzed which features contributed most to
sgRNA activity in the GBR model via Gini importance
(Figure 6A for Cas9 and 6b for eSpCas9). Overall, the pre-
dicted scores were most influenced by the melting temper-
atures as determined by Watson–Crick base pairing. Other
previously known factors that contributed to the sgRNA
activity determined by our model (for both Cas9 and eSp-
Cas9) included the extreme GC content (57) and the GG
dimers (58) (both are known to have inhibitory effect).
It is also interesting to note the differences in the profile
of important features between Cas9 and eSpCas9. More
well-known activity determinants of CRISPR/Cas9 activ-
ity were captured by the Cas9 model relative to the eSpCas9
model, such as the importance of a seed protospacer region
proximal to the PAM site (11,59), especially the composi-
tion of the last nucleotide (the 20th nucleotide in our case
(order1 P20 x)) (28); the critical role of the nucleotide im-
mediately downstream of the NGG PAM site (NGGN xx)
(31). In the case of eSpCas9, in contrast, the seed regions
were less important, and more general biophysical fac-
tors, such as the position-independent nucleotide compo-
sition (order1 IP x or order2 IP xx), and very intriguingly
the nucleotide dimer at the first position of sgRNA (or-
der2 P1 xx), were the predominant determinants of sgRNA
on-target activity.

The Gini importance of features in GBR model only re-
flects the absolute value of feature contribution, causing the
information loss of the direction of the effect. Because the
linear model has only moderate performance decrease com-
pared with the GBR model (Figure 5B, C), the coefficients
of features in simple linear model, such as L1LR can ad-
dress this issue. It is noted that even in L1LR model, melting
temperatures of DNA duplex are still the most important
features contributing to sgRNA activity (data not shown),
akin to GBR model described above. Comparison of impor-
tance of features shows that position-dependent dimers (or-
der2 Px xx) play much more important roles than position-
dependent single nucleotide (Supplementary Figure S11).
We hence plotted the coefficients of all position-dependent
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Table 2. Correlation between sgRNA activity scores from predictions based on previous mammalian-cell-line-based models and our screening experiment

Spearman correlation coefficient

Prokaryotic datasets in this work Doench et al. (24) Xu et al. (32) Farasat et al. (31)

Cas9 dataset 0.058 0.092 −0.119
eSpCas9 dataset 0.017 0.052 −0.170
Cas9 �recA dataset 0.012 0.047 −0.068

Figure 5. Machine learning model reliably predict sgRNA activities. (A) Schematic of machine learning dataset and algorithm. Three machine learning
models (Cas9, eSpCas9 and Cas9 (�recA)) were constructed, respectively. 80% sgRNAs of the relevant dataset was used as the training set by five fold cross-
validation to train the model. We reserved 20% of the sgRNAs in each set (Cas9, eSpCas9 and Cas9 (�recA)) as the test set to measure the generalization
ability of each model to predict unseen data. We extracted 425 features for each sgRNA. Five varieties of machine models are trained for each dataset
(Cas9, eSpCas9 and Cas9 (�recA)) and gradient boosting regression tree is found generally to perform best. (B) Comparison of the different models. Using
fivefold cross-validation, the models were trained with the training set by 5-fold cross-validation. The bar plot shows the mean ± s.d. for the Spearman
correlation coefficient between predicted and measured sgRNA activity scores (n = 5). (C) Comparison of the generalization ability of different varieties
of models. Models were trained on the intact training set with fixed parameters optimized during cross-validation. The Spearman correlation coefficient
is shown for the predicted and measured sgRNA activity scores in the test set. (D) The generalization ability of the trained model was further validated
by predicting activities from a dataset obtained from an independent sgRNA library and experiment. One additional sgRNA activity dataset (the same as
that in Figure 2C) was constructed by screening the tiling library (2640 sgRNAs passed quality control, including 901 members that were also present in
the genome-wide library) using the same protocol. Predictions of sgRNA activity from this dataset based on the eSpCas9 model trained on all the available
data (training plus test set in (A)) are plotted against experimentally obtained scores. Each point on the plots represents a unique sgRNA and color denotes
the scatter density. Spearman correlation coefficient: 0.6329, P = 10−294.8.

dimers (order2 Px xx) from L1LR model for Cas9 (Fig-
ure 6C) and eSpCas9 (Figure 6D), respectively. The result
is generally consistent with profiles learned from the GBR
model (Figure 6A, B), evidenced by the agreement of im-
portant features obtained from both models. It is noted to
highlight the inhibitory role of GG, CC dimers and the ben-
eficial effect of TA, CT, CG, GC dimers in the seed region,
while only GG dimers is known to exhibit negative effect
(58). As described for GBR model, although seed regions
play important roles in activity determination for both Cas9
and eSpCas9, it is more paramount for Cas9. While in eS-

pCas9 group, we observed a pattern where the relative con-
tributions of nucleotides far from PAM increase. This is
especially striking in the case of the first two nucleotides.
AA, TT and CC dimers are strong factors negatively affect-
ing sgRNA activity, while their roles in Cas9 case are only
moderate. While these effects can be deduced to the sgRNA
expression level or stability, the general pattern of less im-
portant seed region in eSpCas9 may suggest that the mu-
tations partially reprogram the recognition or subsequent
interaction and cleavage function of the eSpCas9–sgRNA
complex with respect to its DNA substrate, possibly be-
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Figure 6. Relationship between sgRNA sequence features and activity. (A, B) Relative importances of features (Gini importance) that contribute to the
prediction power of the gradient boosting regression tree for the (A) Cas9 and (B) eSpCas9 model. The features of each model are sorted and the most
important 20 features are shown. (C, D) Coefficients of features that contribute to the prediction power of the L1 regularized linear regression for the (C)
Cas9 and (D) eSpCas9 model. The features for adjacent dimers (order2 Px xx) are plotted as heatmap according to their relative position (‘Px’) in sgRNA.
Positive coefficients suggest positive contributions to sgRNA activity and vice versa. For all plots shown here, results are shown from models trained on
all the available data (training plus test set in Figure 5A).

cause of the destabilized interaction between eSpCas9 and
the non-target DNA strand resulting from the neutraliza-
tion mutations to eliminate the positive charges within the
inter-domain groove (45).

Software package

To facilitate experimental biologists to use the sgRNA ac-
tivity prediction models that resulted from this work, we
developed an integrated Python package to convert an
sgRNA sequence fasta file directly into activity scores. This
package thus likely represents an improved alternative over
existing methods optimized on datasets from mammalian
cell line screenings for microbiologists and bioengineers
working on bacteria. We also envision that this algorithm
is useful for computational biologists to further dissect the

underlying rules controlling sgRNA activities. The software
can be accessed via our GitHub site (https://github.com/
zhangchonglab/sgRNA-cleavage-activity-prediction.git).

DISCUSSION

CRISPR/Cas genome editing was elegantly demonstrated
in bacteria for the first time in 2013 (10). Subsequently,
a number of other groups proved the applicability of
this method for a broad spectrum of prokaryotic species
(12–15), including archaea (16), in which the develop-
ment of tools for genetic manipulation is known to be
very hard. This approach is hence regarded as a promis-
ing methodological innovation for the analysis of basic
prokaryotic genetics (60) and engineering research (61,62),
such as microbial cell factory optimization or the devel-

https://github.com/zhangchonglab/sgRNA-cleavage-activity-prediction.git
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opment of a synthetic immunity arsenal to defend against
pathogens. In contrast to its early optimistic expectations,
the real application of CRISPR/Cas technology to micro-
biological or bioengineering research has lagged far behind
(22,61,63), especially in high-throughput scenarios such as
multiplex gene editing and functional genomic screening,
which was previously suggested as a major advantage of
CRISPR/Cas. We propose here that the sgRNA on-target
activity, which has been analyzed in eukaryotic genome
editing by CRISPR/Cas9 but never systematically studied
in prokaryotic organisms, is a major contributor that can
limit the application of CRISPR/Cas9 in bacterial gene
editing. Using a comprehensive sgRNA library and pooled
screening strategy, we demonstrated that sgRNA activities
vary widely in E. coli (Figure 3A) based on sequence fea-
tures (Figure 6) and unknown chromosomal factors (Figure
4C), the latter of which was unexpected given the vulnera-
ble nature of bacterial DNA. Our sgRNA activity dataset
makes it possible to select optimized sgRNAs for nearly ev-
ery gene and functionally important intergenic region (pro-
moter and RBS) encoded by the E. coli genome (Figure 3B)
and moreover to develop advanced models (Table 2 and
Figure 5) to predict highly active sgRNAs not only in E.
coli but also, potentially, in other bacteria. We believe these
results should contribute to accelerating the broader and
better application of promising CRISPR/Cas technology
in the study of the basic biology and in the engineering of
prokaryotic organisms.

In addition to these advancements in the field of bacte-
rial genome engineering, this work also elucidates the po-
tential bias of previous sgRNA activity prediction models
(24,31,32) trained from mammalian cell line screening data.
We think such bias may be derived from firstly, the output
of data used to train these models is a hybrid of sgRNA
activity and DNA repairing preference (NHEJ) (34); sec-
ondly the functional consequences of CRISPR/Cas9 de-
rived mutations used to determine the sgRNA activity de-
pends on the target context (targeting site in genes, mu-
tation types, etc) (24); and thirdly the confounding effect
of lentiviral transduction and sgRNA expression in the
training data (30). This work raises the limitations of these
sgRNA activity prediction model to be applied in other
CRISPR/Cas9 utilization scenario (e.g. recombination to
introduce defined mutations) or to be extended to unex-
plored host cells, such as bacteria in this case. Hence, we
suggest that more unbiased methods for high throughput
sgRNA activity profiling need to be developed; or specific
models should be developed for specific utilization scenario.
Akin to the dataset and model reported here, such efforts
should be of great value to dissect the molecular determi-
nants of CRISPR/Cas9 genome editing activity and further
advance this transformative technology to realize its poten-
tial in many different application fields.
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