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Abstract

Microorganisms adjust metabolic activity to cope with diverse
environments. While many studies have provided insights into
how individual pathways are regulated, the mechanisms that give
rise to coordinated metabolic responses are poorly understood.
Here, we identify the regulatory mechanisms that coordinate cata-
bolism and anabolism in Escherichia coli. Integrating protein,
metabolite, and flux changes in genetically implemented catabolic
or anabolic limitations, we show that combined global and local
mechanisms coordinate the response to metabolic limitations. To
allocate proteomic resources between catabolism and anabolism,
E. coli uses a simple global gene regulatory program. Surprisingly,
this program is largely implemented by a single transcription
factor, Crp, which directly activates the expression of catabolic
enzymes and indirectly reduces the expression of anabolic
enzymes by passively sequestering cellular resources needed for
their synthesis. However, metabolic fluxes are not controlled by
this regulatory program alone; instead, fluxes are adjusted mostly
through passive changes in the local metabolite concentrations.
These mechanisms constitute a simple but effective global regula-
tory program that coarsely partitions resources between different
parts of metabolism while ensuring robust coordination of individ-
ual metabolic reactions.
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Introduction

In nature, microbes often encounter unpredictable changes in nutri-

ent availability. To sustain growth when facing such environmental

variations, microbes need to coordinate their metabolic supply of

biomass precursors, energy, and redox factors (Chubukov et al,

2014) and coordinate the allocation of their proteome for metabo-

lism and macromolecular synthesis (Scott et al, 2010; Erickson et al,

2017). In principle, microbes can mobilize a vast arsenal of regula-

tory mechanisms including transcriptional control (Kochanowski

et al, 2013a), covalent posttranslational modifications (Oliveira &

Sauer, 2012; Pisithkul et al, 2015; Su et al, 2016), and non-covalent

binding by small molecules to proteins (Li et al, 2013; Kochanowski

et al, 2015), and many recent case studies have elucidated the role

of these mechanisms in regulating individual metabolic pathways

(Kao et al, 2004; Semsey et al, 2007; Yuan et al, 2009; Li et al, 2010;

Kotte et al, 2010; Madar et al, 2011; Gr€uning et al, 2011; Cho et al,

2012; Oliveira & Sauer, 2012; Reaves et al, 2013; van Heerden et al,

2014; Gerosa et al, 2015; Kim et al, 2018; Sander et al, 2019; Okano

et al, 2020). Mounting an appropriate response, however, requires

not only regulation of a single pathway but coordinated regulation

of a larger network (Wayman & Varner, 2013; Chubukov et al,

2014). Examples of such coordination are the bacterial stringent

response to nutrient starvation that triggers the general activation of

stress genes (Chatterji & Kumar Ojha, 2001; Potrykus & Cashel,

2008), the Crp-dependent activation of catabolic genes in carbon

limitation (You et al, 2013), and the coordination of carbon and

nitrogen assimilation by 2-oxoglutarate (Doucette et al, 2011; Kim

et al, 2012). However, while these and other (Cho et al, 2012;

Federowicz et al, 2014; Goel et al, 2015; Olin-Sandoval et al, 2019)

examples unravel some of the more global coordination mecha-

nisms, it remains unclear how a coordinated metabolic response

emerges mechanistically from the interplay of the cell’s various

regulatory circuits (Chubukov et al, 2014).

Here we aim to identify the regulatory mechanisms that enable

Escherichia coli to coordinate metabolic activity in response to dif-

ferent modes of nutrient limitation. Specifically, we focus on two
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orthogonal challenges, namely limitation of carbon influx (“cata-

bolic limitation”) and limitation in the ability to synthesize all

amino acids while carbon is in excess (“anabolic limitation”). Previ-

ously, we constructed strains with titratable control of glucose

uptake to implement catabolic limitation and strains with titratable

control of glutamate synthesis (and hence limiting the transamina-

tion flux needed for the synthesis of all amino acids, Appendix Fig

S1) to implement anabolic limitation. Importantly, these limitations

can be conveniently imposed to mimic carbon- or ammonium-

limited continuous cultures (Goel et al, 2015; Hackett et al, 2016)

while maintaining identical batch-like experimental conditions,

using medium with saturating amounts of glucose and ammonium

(You et al, 2013; Hui et al, 2015). It was found that E. coli’s regula-

tory response to these limitations leads to a striking global

proteome re-allocation (Hui et al, 2015): Catabolic and anabolic

limitations are accompanied by a general increase and decrease in

abundance of catabolic proteins, respectively, a pattern that is

reversed for anabolic proteins.

How is this coordinated gene regulatory response established

mechanistically? It is clear that transcriptional regulation of cata-

bolic proteins in E. coli is largely driven by the transcriptional acti-

vator Crp (You et al, 2013; Gerosa et al, 2015). When carbon limits

growth, the accumulation of cyclic AMP, the small-molecule activa-

tor of Crp, causes the general increase in the expression of catabolic

proteins. Conversely, in anabolic limitation—when the availability

of external carbon exceeds the cell’s ability to synthesize biomass

precursors such as amino acids—the accumulation of alpha-keto

acids, such as 2-oxoglutarate (Doucette et al, 2011; You et al, 2013),

inhibits the production of cyclic AMP (cAMP), thereby reducing the

expression of catabolic proteins (Fig 1A). While this Crp-driven

regulatory circuit provides a plausible explanation for the transcrip-

tional response of catabolic proteins, it is unclear how anabolic gene

expression is regulated (Fig 1A). Given the reversed behavior of

catabolic and anabolic proteins (Hui et al, 2015), a parsimonious

mechanism would have Crp (which activates catabolic proteins)

also serving as a repressor of anabolic proteins. However, there are

only few reported instances of anabolic proteins being under Crp

control (Shimada et al, 2011; Santos-Zavaleta et al, 2019).

How else, then, could the proteome response of catabolism and

anabolism be coordinated? As we will show, this coordination is

achieved by a passive mode of regulation which originates from the

inherent competition for limiting cellular resources (Scott et al, 2010)

and which depends on Crp directly activating catabolism and indi-

rectly repressing anabolism. Moreover, by integrating this gene regu-

latory program with the large-scale quantification of metabolic fluxes

and metabolite concentrations, we demonstrate that passive local

adjustments in enzyme saturation play a pivotal role in implementing

a coordinatedmetabolic response for individual metabolic reactions.

Results

A single transcription factor coordinates the global
transcriptional response to nutrient limitation

To understand how the coordinated proteome response of catabo-

lism and anabolism to nutrient limitation could be established

mechanistically, we started from the observation that genes compete
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Figure 1. Transcriptional coordination of catabolism and anabolism.

A Schematic of metabolism—separated into catabolism (blue), central
metabolic precursors (e.g., alpha-keto acids, black), and anabolism (red)—
and the cyclic AMP (cAMP)-dependent Crp regulatory circuit in Escherichia
coli. By titrating the expression of carbon uptake proteins, catabolic
limitation can be imposed externally. Conversely, by titrating the expression
of the enzyme glutamate synthase (GOGAT), a limitation of anabolic
capacity can be imposed externally. N: nitrogen. GS: glutamine synthase.
See Appendix Fig S1 and Appendix Text 1 for detailed description of
titration strains.

B Steady-state expression of Crp-activated (left panel) or constitutive (right
panel) fluorescent transcriptional reporters at varying external cyclic AMP
concentrations (white and black colors denote lowest and highest external
cyclic AMP concentration, respectively) in a strain that cannot produce or
degrade endogenous cAMP (NQ1399, ΔcyaAΔcpdA). Small gray circles:
individual biological replicates (n = 2–4). Large circles: mean across
replicates.

C Catabolic and anabolic fraction of E. coli’s proteome in catabolic (blue) and
anabolic (red) limitation (data from Ref. Hui et al, 2015 with few excluded
proteins, see Appendix Text 3), as well as at varying external cAMP
concentrations in strain NQ1399.
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with each other for the limited capacity of the cellular protein

expression machineries (Maaløe, 1979; Vind et al, 1993; Bremer &

Dennis, 1996; Scott et al, 2010; Gerosa et al, 2013; Kafri et al, 2016;

Borkowski et al, 2016). For example, expression of unneeded

proteins was found to reduce the translation of other proteins,

presumably due to competition for ribosomes (Vind et al, 1993;

Scott et al, 2010). Based on these studies, we hypothesized that acti-

vation of hundreds of genes in the Crp regulon (Santos-Zavaleta

et al, 2019), which constitutes up to ~30% of the cellular proteome

(Hui et al, 2015; Schmidt et al, 2016), would sequester a large frac-

tion of the cell’s expression machinery capacity, thereby indirectly

reducing the expression of non-Crp targets during catabolic limita-

tion. Conversely, in anabolic limitation, where Crp is inactivated,

other genes or transcripts would have access to a greater share of

the expression machinery. This hypothesis is consistent with the

negative and positive correlation of the intracellular cAMP concen-

trations with the growth rate for the catabolic- and anabolic-limited

cultures, respectively (Appendix Fig S2).

To test whether Crp could indirectly repress the expression of

non-Crp target proteins, and to mimic the divergent response of Crp

in the two limitations, we constructed a strain (NQ1399) lacking

endogenous cAMP production, such that Crp activity can be

controlled externally through supplementation of cAMP (Kuhlman

et al, 2007; Towbin et al, 2017) (Appendix Text S2). Using this

“cAMP titration” strain, we quantified the activity of two synthetic

constitutive promoters without any known transcription factor

binding site (Gerosa et al, 2013; Kochanowski et al, 2017) and two

exclusively Crp-activated promoters at varying external cAMP

concentrations using fluorescent reporter plasmids (Gerosa et al,

2013; Kochanowski et al, 2017). As reported previously (Towbin

et al, 2017), titration of cAMP to cultures of this strain caused a

monotonic increase in the activity of Crp-activated promoters

(Appendix Fig S3) and also reduced the growth rate for low as well

as high cAMP concentrations (Appendix Fig S4). In agreement with

our hypothesis, this pattern was reversed in strains with constitutive

promoters, whose activity was lowest at the highest cAMP concen-

tration (Appendix Fig S3). When plotting the activity of these

promoters against the growth rate, we observed reversed growth-

dependent patterns for catabolic and constitutive promoters (Fig 1

B). These reversed expression patterns were also found in (Crp-acti-

vated) catabolic tricarboxylic acid (TCA) cycle compared to amino

acid biosynthesis and constitutive-like glycolytic promoters

(Appendix Figs S5 and S6). Thus, these fluorescent reporter data

showed that activation of Crp can reduce the expression of non-Crp

targets. Moreover, the similarity of non-Crp target expression to that

of synthetic constitutive promoters suggests that the effect of Crp on

non-Crp targets is indeed indirect.

To test whether such changes in Crp activity would also be suf-

ficient to modulate the anabolic proteome fraction, we quantified

the proteome response of the cAMP titration strain using shotgun

proteomics. First, we tested whether deletion of adenylate cyclase

(encoded by cyaA) and phosphodiesterase (encoded by cpdA)

employed in the cAMP titration strain (see Appendix Table S1)

affected the proteome independently of their effect on cAMP

production. For this purpose, we grew the cAMP titration strain in

glucose medium at an external cAMP concentration that matches

the wild-type growth rate (Appendix Fig S4). The vast majority

(88%) of proteins were within twofold of the wild-type

concentrations, confirming that deletion of cyaA and cpdA has a

limited impact on the proteome independently of cAMP (see

Appendix Text 3 and Appendix Fig S7A and B). The few excep-

tions included proteins belonging to flagella and chemotaxis,

which notably are under the control of promoters that frequently

acquire mutations during strain development (Parker et al, 2019),

and proteins whose operons are located close to the deletion loci

(i.e., IlvB and RbsB), which could be attributed to genetic dif-

ferences in the donor strain used to generate the gene deletions

(Lyons et al, 2011) (see Appendix Text 2). Second, we titrated the

cAMP concentration below and above the level required to yield

wild-type-like growth rate. This titration affected the abundance of

hundreds of proteins (Appendix Fig S7C) and led to a reversed

global response of catabolic and anabolic proteins (gray points in

Fig 1C, Appendix Fig S7D). Gratuitous Crp activity at high cAMP

concentrations (above wild-type level) caused an overall increase

in the abundance of catabolic proteins with a concomitant reduc-

tion of anabolic protein abundance, a pattern which was reversed

with diminished Crp activity at low cAMP concentrations (below

wild-type level).

Quite strikingly, the proteome response of the cAMP titration

data showed good agreement with that of catabolic/anabolic limita-

tion at the same growth rate, respectively; compare gray symbols

with blue/red symbols in Fig 1C. In particular, catabolic proteins

(Fig 1C, left) responded similarly when comparing the limitations

and cAMP titration. This overlap was less pronounced for anabolic

proteins (Fig 1C, right), in particular when comparing carbon limi-

tation and gratuitous cAMP titration (blue circles and dark gray

circles, see also Appendix Fig S8 for examples of individual

proteins), suggesting that additional pathway-specific transcrip-

tional regulators may further modulate the indirect regulatory effect

by Crp. Notably, not all proteins were affected by the titration of

Crp activity: Ribosomal proteins maintained their strict relationship

with the growth rate (Appendix Figs S9 and S10), presumably due

to additional compensatory regulation by ppGpp and DksA (Paul

et al, 2004; Lemke et al, 2011; Bosdriesz et al, 2015). In addition,

the sulfate assimilation proteins CysI and CysJ, and the methionine

forming enzyme homocysteine transmethylase (MetE), showed a

positive correlation with growth rate across all tested conditions

(Appendix Fig S10). Since MetE, with its very low catalytic activity

and high abundance, makes methionine biosynthesis a highly

resource-demanding process (Li et al, 2014), a plausible explana-

tion is that additional dedicated regulation, mediated presumably

by the methionine biosynthesis regulators MetR and MetJ, further

adjusts MetE expression to match the growth-dependent demand

for methionine.

Our findings thus suggest a passive mode of regulating protein

expression. We propose that Crp, the main transcriptional regulator

of catabolic proteins, indirectly regulates the expression of anabolic

proteins and thereby coordinates the expression of catabolism and

anabolism. While the data presented here do not prove unequivo-

cally that Crp regulation is the direct cause of the reversed patterns

of catabolic and anabolic proteins in response to nutrient limitation,

the good agreement of the proteome response to nutrient limitation

and Crp activity titration, together with the response pattern of the

constitutively expressed proteins, suggests that this model of regula-

tion provides the most parsimonious mechanism consistent with all

available data.
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Global transcriptional program alone cannot explain the
observed metabolic flux

The above passive mode of gene regulation suggests a potential

mechanism for the global coordination of catabolism and anabo-

lism. Next, we investigate whether this regulatory program is suffi-

cient to account for E. coli’s metabolic flux requirement for growth

under the imposed nutrient limitations. Toward this end, we culti-

vated the aforementioned titratable strains (Appendix Fig S1) at dif-

ferent induction levels (8 induction levels per limitation) to impose

different degrees of catabolic or anabolic limitation while keeping

the media composition constant. To obtain a comprehensive picture

of the steady-state flux response at each induction level, we deter-

mined extracellular exchange rates of over 20 metabolites and ten

ratios of intracellular fluxes in central metabolism by 13C flux analy-

sis (Zamboni et al, 2009) (Appendix Figs S11 and S12). Using these

data and the growth requirements as constraints for flux balance

analysis (Schellenberger et al, 2011; Heirendt et al, 2019), we

obtained markedly different flux estimates between the catabolic

and anabolic limitations (Appendix Fig S13A). In particular, there

was a general shift in fermentation strategy between catabolic and

anabolic limitations (Fig 2A): Consistent with many previous stud-

ies such as in carbon-limited chemostats (Varma & Palsson, 1994;

Nanchen et al, 2006; Valgepea et al, 2010; Renilla et al, 2012; Basan

et al, 2015), increasing growth rates under catabolic limitation

caused a shift from full respiration to acetate overflow metabolism.

Under anabolic limitation, however, acetate secretion occurred even

at the lowest tested growth rate, as reported before in nitrogen-

limited chemostat cultures (Sauer et al, 1999), but unexpectedly we

also observed substantial 2-oxoglutarate secretion. To our knowl-

edge, 2-oxoglutarate secretion has never been reported in nitrogen-

limited chemostats. A possible contributor to this secretion may be

a difference in the promoter region of the 2-oxoglutarate transporter

KgtP in our strain compared to the common laboratory strain

MG1655 (Lyons et al, 2011), although recent studies have demon-

strated that many metabolites other than acetate can be secreted by

E. coli (Paczia et al, 2012; Reaves et al, 2013), notably including 2-

oxoglutarate (Paczia et al, 2012). Also, with up to 50% of the

consumed glucose secreted as acetate and 2-oxoglutarate secretion

under anabolic limitation (Appendix Fig S12), the resulting reduc-

tion in biomass yield we obtained was consistent with that observed

in nitrogen-limited chemostat cultures (Sauer et al, 1999). The secre-

tion of all other metabolites was at least an order of magnitude

lower. As a result, most fluxes (in particular biosynthetic fluxes

outside of central carbon metabolism) were found to scale with the

growth rate regardless of the imposed limitation (Appendix Fig S13B

and C). Moreover, most FBA-estimated fluxes were well constrained

by the measured physiology as determined by flux variability analy-

sis (Appendix Fig S13D).

With the quantified metabolic fluxes at hand, we asked whether

the observed flux changes could be explained by corresponding

protein concentration changes. For this purpose, we used the previ-

ously established theoretical framework of regulation analysis that

quantifies the contribution of individual regulatory layers to the

observed flux changes (Rossell et al, 2006; Chubukov et al, 2013;

Gerosa et al, 2015) (see Appendix Text 3 for detailed description).

For example, the contribution of gene expression can be quantified

as the log–log slope between flux and protein concentration changes

(Fig 2B), and is referred to as the protein regulation coefficient, ρP.

ρP = 1 signifies that the observed flux changes can be fully

explained by changes in protein concentration. Conversely, ρP < 0

signifies that flux and protein concentration change in opposite

directions. For the catabolic and anabolic limitations, we deter-

mined protein regulation coefficients for 202 unique reactions by

linear regression for all reactions that carry flux under the tested

conditions and where at least one of the associated proteins was

quantified. A shift toward negative protein regulation coefficients

was apparent for the anabolic limitation compared to catabolic limi-

tation, signifying that protein and flux change in opposite directions

(Fig 2C). This shift was particularly pronounced in biosynthetic

reactions, but occurred also in central reactions (Fig 2D, top row).

Only 18 and 7% of all reactions had protein regulation coefficients

around one under carbon and anabolic limitation, respectively.

While systematic errors in proteomic analysis for weakly expressed

proteins may play some role in these results, overall, the data show

that observed flux changes were rarely accompanied by matching

changes in protein concentrations. Among the few notable excep-

tions (Fig 2D, bottom row) was the aforementioned methionine

biosynthesis enzyme MetE, suggesting that E. coli adjusts the

expression of MetE to minimize the cost of methionine biosynthesis,

in particular under catabolic limitation (Li et al, 2014).

The poor agreement between flux and proteome response

observed here is in line with previous observations showing that gene

expression is typically a poor predictor of flux changes (Chubukov

et al, 2013; Valgepea et al, 2013; Kochanowski et al, 2013a; Gerosa

et al, 2015; Goel et al, 2015; O’Brien et al, 2016; Hackett et al, 2016),

and suggests that the gene regulatory program characterized above is

rarely sufficient to regulate catabolic and anabolic metabolic fluxes.

In particular, under anabolic limitation we observed that fluxes and

proteins tended to change in opposite directions for many biosyn-

thetic reactions (i.e., decrease in biosynthetic flux that is accompanied

by an increase in protein concentration).

Passive regulation of enzyme activity through altering
enzyme saturation

If the gene regulatory program alone is not sufficient to explain the

observed metabolic fluxes, which other mechanisms could? One

way how enzyme activity could be adjusted is by altering enzyme

saturation through changes in the corresponding substrate concen-

trations. This “passive” mechanism of flux regulation provides a

means to effectively buffer changes in enzyme concentration while

keeping the flux constant (Fendt et al, 2010). Analogous to gene

regulation, regulation analysis can quantify the effect of enzyme

saturation on flux as the saturation regulation coefficient ρS, based

on a power-law approximation of the non-linear relationship

between substrate concentration and reaction rate (Chubukov et al,

2013; Gerosa et al, 2015) (see Appendix Text 3).

To test whether altered enzyme saturation could account for the

observed flux responses, we quantified the relative intracellular

concentration of 430 unique metabolites by untargeted metabolo-

mics (Fuhrer et al, 2011) and obtained consistent results from

targeted quantification of 40 central metabolites (Appendix Fig S14).

Compared to the flux response, the metabolome showed more

complex patterns that differed between the two limitations, as

revealed by K-means clustering (Fig 3A). In some of these groups,
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only one limitation caused large changes in metabolite concentra-

tions, for example, the L-glutamine (cluster 7) and 2-oxoglutarate

(cluster 1) groups accumulated only in anabolic limitation. Other

metabolite groups, such as the one including fructose-1,6-bisphos-

phate (FBP, cluster 4), were affected by both limitations, albeit in

some cases in opposite directions (e.g., clusters 6, 9, and 10).
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Figure 2. Regulation analysis of flux–protein relationship in nutrient limitations.

A Specific uptake and secretion rates of glucose (left), acetate (middle), and 2-oxoglutarate (right) in catabolic (blue) and anabolic (red) limitation. Data shown are
the mean of three biological replicates, and error bars denote standard deviation.

B Schematic description of regulation analysis: The regulation coefficient ρ denotes the degree to which flux and protein concentration of a given reaction change
consistently across conditions (ρ = 1: full proportionality of flux and protein changes). See Appendix Text 3 for detailed description.

C, D Distribution of protein regulation coefficients (ρP) for catabolic (upper panel) and anabolic (lower panel) limitation. Protein regulation coefficients were determined
separately for each limitation by linear regression. For reactions that are associated to more than one protein, the final protein regulation coefficients were
calculated as the average regulation coefficients across all measured proteins (total number of considered reactions: 202). The fraction of reactions showing
consistent flux and protein changes (regulation coefficients between 0.5 and 1.5) is highlighted by gray areas with corresponding percentages. Individual examples
are shown in (D). Blue and red lines denote the estimated regulation coefficient ρP (calculated by linear regression) between measured flux and protein
concentrations for catabolic and anabolic limitation, respectively. Shaded areas denote the standard error of each estimate. Black lines denote full proportionality.
Top panel: central metabolic reactions. Middle panel: biosynthetic reactions showing a shift from positive to negative ρP for carbon and anabolic limitation,
respectively. Bottom panel: biosynthetic reactions which deviate from this behavior.
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Figure 3. Impact of enzyme saturation on flux regulation.

A Intracellular metabolome response (of 430 annotated ions) in mid-exponential growth as determined by FIA-TOF mass spectrometry. Upper panel: heatmap of log2
fold changes (relative to NCM3722 wild type) for both limitations. Annotated ions were sorted by K-means clustering of log2 fold changes, using squared Euclidian
distance as metric (Arthur & Vassilvitskii, 2007). Annotated ions showing little variation across conditions (coefficient of variance across all conditions < 30%) were
filtered out before clustering and assigned to cluster 12. Lower panel: exemplary ions for each cluster plotted (in linear scale) against the respective growth rate.
Numbers underneath metabolite names denote m/z. Error bars denote standard deviation of three biological replicates.

B, C Distribution of regulation coefficients quantifying the contribution of changes in protein concentration (left column) and enzyme saturation (middle column) to the
explanation of observed flux changes, as well as their combined effect (right column). Upper panel: catabolic limitation. Lower panel: anabolic limitation. Only
reactions for which at least one isoenzyme as well as all substrates had been quantified were considered in the analysis (total number of considered reactions:
108). The fraction of reactions with regulation coefficients between 0.5 and 1.5 is highlighted by gray areas. Individual exemplary reactions are shown in (C). Blue
and red lines denote the estimated regulation between measured flux, protein, and metabolite concentrations for catabolic and anabolic limitation, respectively.
Shaded areas denote the standard error of each corresponding estimate. Black lines denote full proportionality. ρ: corresponding regulation coefficients.
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Nevertheless, more than 50% of the quantified metabolites were not

significantly affected by either limitation, including most amino

acids (cluster 12). Notably, the observed metabolome response to

the genetically implemented limitations used here matches previous

reports utilizing analogous environmental limitations, such as the

consistent dramatic accumulation of 2-oxoglutarate amid largely

constant amino acid concentrations found in nitrogen-limited

cultures of the same E. coli background strain (Yuan et al, 2009).

Surprisingly, L-glutamate itself, whose production rate is reduced

in the anabolic limitation used in this work (Appendix Fig S1),

proved to be quite resilient against either limitation, consistent with

previous findings in Salmonella typhimurium (Ikeda et al, 1996).

Particularly in the anabolic limitation, which caused an up to five-

fold growth rate reduction, its concentration was only twofold

reduced and never dropped below 10 mM (Appendix Fig S14E),

which is above the reported KM values for most glutamate-consum-

ing reactions (Schomburg et al, 2002).

Based on this metabolome response, we quantified the saturation

regulation coefficient ρS for over 100 reactions (separately for each

limitation), only considering those reactions for which all substrates

were quantified. In both limitations, the vast majority of ρS were

positive, meaning that flux and substrate concentrations changed in

the same direction (Fig 3B, middle column). Analysis of the

combined effect of gene expression and enzyme saturation showed

that the sum of ρP and ρS accounts for about half of all flux changes

in both limitations (i.e., ρPþρS≈1 for ~ 50% of the examined reac-

tions, see Fig 3B, right column), indicating that the multiplicative

effects of enzyme abundance and enzyme saturation (as in, e.g.,

Michaelis–Menten relation) account for these reactions. However,

the relative contribution of enzyme level changes and enzyme satu-

ration differed between the two limitations: In carbon limitation,

both mechanisms had a similar impact, whereas in the anabolic

limitation, the contribution of enzyme saturation was dominant.

This difference in regulatory strategy was typically maintained

within a metabolic pathway (see arginine biosynthesis pathway as

an example, Appendix Fig S15).

Taken together, these data show that passive regulation through

enzyme saturation is pivotal for coordinating enzyme activity across

conditions. This finding is consistent with previous computational

studies highlighting the importance of metabolic regulation (that is,

regulation of enzyme activity by, e.g., enzyme saturation and allos-

teric regulation) for the coordination of E. coli metabolism (Millard

et al, 2017).

Discussion

In this study, we aimed to identify the mechanisms underlying E.

coli’s coordinated response to different metabolic limitations. From

the large-scale quantification of metabolic fluxes, metabolites, and

proteins, in genetically implemented catabolic and anabolic limita-

tions, we identify two mechanisms that facilitate the global as well

as local coordination of metabolic activity (Fig 4). First, a global

gene regulatory program coordinates the expression of catabolism

and anabolism, largely through the activity of a single transcription

factor, Crp. This regulatory program however does not exactly

match protein levels to the required flux changes for many reac-

tions. Second, the mismatches between protein and flux changes are

adjusted locally through passive changes in enzyme saturation.

These findings provide insights on mechanistic implementations of

global resource allocation predicted previously by the phenomeno-

logical theory of bacterial growth control (Appendix Text 4 and

Appendix Figs S17–S19).
Our results suggest that Crp exerts its effect on catabolic and

anabolic proteins through both direct and indirect regulation: Cata-

bolic proteins are directly induced by Crp under catabolic limitation,

while anabolic protein expression is repressed indirectly. Conver-

sely, Crp induction of catabolic proteins is reduced under anabolic

limitation (due to increased 2-oxoglutarate (You et al, 2013)), while

anabolic protein expression is indirectly increased, exhibiting simi-

lar behaviors as the constitutive (i.e., unregulated) reporters. Impor-

tantly, the indirect mode of regulation reported here has broad

implications beyond the coordination of catabolism and anabolism

by Crp. A common approach to identify the targets of a transcrip-

tional regulator is to identify genes whose expression changes upon

its deletion (e.g., Wang et al, 2018). Our results suggest that deletion

of transcriptional regulators, in particular global regulators, may

also affect the expression of non-target genes, thus confounding the

regulatory networks resulting from such efforts. Nevertheless, this

indirect regulation of non-Crp targeted genes can be overridden by

additional designated regulation, as exemplified by the regulation of

the ribosomal proteome fraction, which maintains its strict depen-

dency on growth rate in both of the imposed limitations

(Appendix Fig S9). Future studies may use this work as a starting

point to identify the regulatory mechanisms responsible for

catabolism

carbon
uptake

precursors
(keto acids)

anabolism

GS +
GOGAT

N

cAMP

Crp
indirect

repression
direct

activation

S
S

S
S

Mechanism 1: global coordination
of gene expression by Crp

Mechanism 2: local flux adjustment
through enzyme saturation

Figure 4. Schematic summary of mechanisms implementing the global
coordination of metabolism identified in this study.

Coordination in the expression of catabolic and anabolic proteins is achieved
by a single transcription factor, Crp, which directly induces catabolic proteins
and indirectly represses anabolic proteins under catabolic limitation, through
the competition for scarce expression machinery capacity (mechanism 1, see
also Box 1). This approximate gene regulatory program is further adjusted
locally through changes in metabolite concentrations, which alter each
enzyme’s saturation. At a given enzyme concentration, high substrate
concentration (= high enzyme saturation, symbolized by large S) leads to a
high reaction rate (symbolized by a thick horizontal arrow). Conversely, low
substrate concentration (small S) reduces the reaction rate (thin horizontal
arrow).
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overriding the indirect regulation by Crp in other proteome frac-

tions, e.g., those which do not change expression across either cata-

bolic or anabolic limitations (Hui et al, 2015).

How this indirect mode of regulation is achieved mechanistically

is currently unclear. In principle, this mechanism could be the result

of competition for limited capacity of expression machinery at the

transcription or translation level (Box 1). The proposed models

yield the same result at the proteome level, and identifying whether

any of these—or alternative—models are responsible for this indi-

rect mode of regulation is left for future studies.

Although gene expression and enzyme saturation accounted for

about 50% of the observed flux changes in a simple multiplicative

model for both limitations, many flux changes could not be

explained simply by these two mechanisms alone. For example,

most glutamate-dependent transamination reactions—in which the

amination of a metabolite is coupled to the deamination of gluta-

mate to 2-oxoglutarate (see Appendix Fig S1C)—were poorly

accounted for by changes in protein and substrate concentrations

alone, resulting in regulation coefficients far from 1 (see IlvE as

example in Fig 3C, bottom row). A possible explanation is that

these reactions are affected by concerted changes in both substrate

and product concentrations (Hackett et al, 2016). Although the lack

of complete metabolite and proteome data for many reactions does

not allow us to assess the impact of reaction products across a

large number of reactions, our results already suggest that the

glutamate-dependent transamination reactions show a massive

shift in the ratio of 2-oxoglutarate (reaction product of most

transamination reactions) to glutamate (reaction substrate) under

anabolic limitation, causing a “thermodynamic choke-point”

(Appendix Fig S16). In contrast, transamination reactions which

use fumarate instead of 2-oxoglutarate as a product (and aspartate

instead of glutamate as a substrate) are explained well by gene

expression and enzyme saturation (see ArgG in Appendix Fig S15

as an example). Importantly, these findings also suggest a possible

Box 1. Two plausible mechanisms of indirect repression of non-Crp targets by the transcriptional activator Crp

Model 1 (panel A), termed “limiting transcriptional capacity”, is based on the premise that protein expression is limited by different promoters in the cell
competing for the same pool of free RNA polymerase molecules for transcription initiation. In this case, activation of Crp, which exerts its activating
effect by directly recruiting RNA polymerase to catabolic genes (Lawson et al, 2004), would lead to a reduction in free RNA polymerase to initiate the
transcription of other genes not activated by Crp, consequently causing a reduction in the expression of these genes. As a result, in this model indirect
repression of genes not activated by Crp is established mechanistically as a Crp-dependent re-arrangement of the cell’s transcriptome. Model 2 (panel
B), termed “limited translational capacity”, assumes that translation (i.e., number of free ribosomes) is the rate-limiting step in protein expression. In this
case, activation of Crp would lead to increase in the transcript abundance of Crp-activated genes without effecting the transcript abundance of genes
not activated by Crp. If Crp and non-Crp target transcripts compete for limiting ribosomes, an increase in number of Crp target transcripts would effec-
tively reduce the availability of free ribosomes to initiate the translation of non-Crp target transcripts. Thus, in this model Crp-activated transcripts effec-
tively act as competitive inhibitors of the translation of non-Crp-activated transcripts.

Crp target non-Crp target

pool of free RNAp
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Crp act.

low
Crp act.

Crp target non-Crp targetCrp target non-Crp target

pool of free RNAppool of free RNAp
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Crp target non-Crp target
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model 1: limiting
 transcriptional capacity
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 translational capacity
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physiological rationale for the increased protein concentration of

anabolic proteins despite a decrease in the net flux: Increasing the

concentration of the catalyzing enzyme is an effective way to

increase the net flux in a thermodynamically choked reaction

involving high exchange flux (Noor et al, 2014). Therefore, by

increasing the expression of transaminases in the anabolic limita-

tion, cells can counter the reduction in driving force resulting from

2-oxoglutarate accumulation. Future studies, with broader metabo-

lome coverage, may explore the importance of such changes in

thermodynamic driving force in more detail.

Overall, the findings reported in this study point to a common

theme, in which E. coli largely relies on simple heuristics, or “rules

of thumb” to cope with environmental and genetic changes (Tver-

sky & Kahneman, 1974; Towbin et al, 2017). Instead of specifically

adjusting its gene expression program to meet exactly the imposed

metabolic demands, the coordination of metabolic activity in E. coli

is achieved by an approximate global gene regulatory response,

which sets the system roughly in the desired direction. This

response is further adjusted locally through changes in enzyme satu-

ration. However, the downside of such a simple regulatory program

is that it effectively makes each reaction involved more expensive

(since enzymes are being expressed at higher levels than needed

strictly to maintain the desired metabolic flux), with a potential cost

to the steady-state growth rate (Scott et al, 2010; Hui et al, 2015;

O’Brien et al, 2016).

While the approximate (or suboptimal) regulation of protein

expression is widespread in bacteria (Price et al, 2013; Towbin et al,

2017), it appears to be at odds with numerous laboratory-based

evolutionary studies (e.g., LaCroix et al, 2015), showing that even

small differences in fitness (i.e., growth rate) are selected against.

One previously proposed explanation (Price et al, 2013) is that cells

have not evolved to cope with the artificial laboratory environments

they are subjected to, which is particularly true for the genetically

implemented limitations used in this study. Nevertheless, a recent

study, which quantified the global proteome allocation of wild-type

E. coli strains growing on various carbon sources (resulting in dif-

ferent degrees of catabolic limitation), found an inverse relationship

between catabolic and anabolic proteome sectors that is consistent

with our findings (Schmidt et al, 2016). Future studies may examine

whether natural anabolic limitations similarly exert an effect on E.

coli’s proteome allocation that is consistent with our genetically

implement anabolic limitation.

A more parsimonious explanation of the difference between the

degree of optimization manifested by the laboratory-evolved and

natural strains is that the simple regulatory programs emerged from

an evolutionary trade-off: Given the multitude of environments that

cells could encounter, it is simply infeasible to have a dedicated opti-

mized program for each environment that is also consistent across

conditions (Shoval et al, 2012; Keren et al, 2013; Price et al, 2013).

Consequently, cells may rather rely on using the “rule of thumb” as a

heuristic guide to coarsely allocate the proteome according to a few

signals (Chubukov et al, 2014). A good illustration of this strategy is

the proteome response to anabolic limitation: If cells cannot identify

the exact reaction responsible for the reduction in anabolic capacity

(in this case, it is ultimately the reduced glutamate synthesis that

slows down transamination reactions), or if it cannot fix the problem

(the “optimal solution” would be to upregulate just the transami-

nases), the best alternative may be an across-the-board increase in

the expression of anabolic proteins (which include all the transami-

nases). Importantly, proteome allocation within this mode of

response can be easily coordinated and optimized (You et al, 2013;

Hui et al, 2015). Future research will reveal the prevalence and

nature of this type of simple regulatory strategies underlying micro-

bial responses to complex environmental challenges.

Materials and Methods

Reagents and strains

Unless stated otherwise, all reagents were obtained from Sigma-

Aldrich. All used strains were derived from NCM3722 (Soupene

et al, 2003), a full list of strains is provided in Appendix Table S1,

and a detailed description of the strains is provided in

Appendix Text 1 and Appendix Fig S1. Fluorescent transcriptional

reporter plasmids were obtained from Gerosa et al (2013, 2015) and

Zaslaver et al (2006) and transferred to NQ1399 by electroporation

as described previously (Kochanowski et al, 2013b).

Cultivation

All experiments were performed using M9 minimal medium (Kocha-

nowski et al, 2013b), supplemented with 2 g/l glucose. Cultivations

were performed as follows: M9 medium batch cultures in 96-deep-

well format plates (Kuehner AG, Birsfeld, Switzerland), containing

the same inducer concentration as for the subsequent main culture

(with the exception of slow-growing NQ393 with 10/20 μM IPTG in

the main culture, which were cultivated with 30 μM IPTG in the

preculture to avoid the emergence of mutations), were inoculated

1:50 from LB precultures and incubated overnight at 37°C under

shaking. Subsequently, 96-deep-well plate cultures were inoculated

with overnight cultures to a starting OD600 of 0.03–0.05 (total fill

volume per well: 1.2 ml) and incubated at 37°C under shaking.

Culture OD600s were monitored by OD600 sampling from parallel

wells on the same deep-well plate and subsequent OD600 measure-

ments using a plate reader (TECAN infinite M200, Tecan Group Ltd,

M€annedorf, Switzerland). Cultivation of strains bearing transcrip-

tional reporter plasmids and calculation of promoter activity as the

OD normalized GFP production rate were performed as described

previously (Gerosa et al, 2013; Kochanowski et al, 2013b). Main

cultures in M9 minimal medium with 2 g/l glucose with varying

external cyclic AMP concentrations (ranging from 0 to 10 mM) were

inoculated 1:100 with overnight cultures growing in M9 minimal

medium with 2 g/l glucose and 1 mM cyclic AMP, and steady-state

promoter activities were determined during the 1.5 h window

during which the cultures exhibited the maximal growth rate.

Steady-state GFP concentrations were calculated from promoter

activities by division by the corresponding steady-state growth rate

as described previously (Gerosa et al, 2013).

Proteome analysis of NQ1399

Cultures of NQ1399 were grown in M9 medium with 2 g/l glucose at

various cyclic AMP concentrations between 0 and 3 mM as described

above. 15N reference cultures of NQ1399 were grown in modified M9

media (42.2 mM Na2HPO4, 22 mM KH2PO4, 8.56 mM Na2SO4,
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11.3 mM 15NH4Cl) at 0.01 and 3 mM cAMP. The samples were

processed as described previously (Hui et al, 2015). The comparison

of NQ1399 and wild type was performed as follows: Two replicate

cultures were grown in 15N reference M9 medium (in the presence of

0.2 mM cyclic AMP to match the wild-type growth rate). Then,

protein samples of the 15N replicate cultures were mixed (50 μg per

replicate) with 100 μg of an unlabeled wild-type protein sample from

a matched condition (without the addition of cyclic AMP) and

processed as described previously (Hui et al, 2015).

Quantification of intracellular metabolite concentrations by
untargeted metabolomics

Intracellular metabolomics samples were taken during mid-

exponential phase at OD600s between 0.5 and 0.6 by fast filtration

(sampling volume: 1 ml) (Link et al, 2013) and were immediately

quenched in 4 ml quenching/extraction solution (40% methanol,

40% acetonitrile, 20% H2O) at −20°C (Link et al, 2012). Samples

were incubated for 2 h at −20°C, subsequently dried completely at

120 μbar (Christ RVC 2-33 CD centrifuge and Christ Alpha 2–4 CD

freeze dryer), and stored at −80°C until measurements. Before

measurements, samples were resuspended in 100 μl water, centri-

fuged for 5 min (5,000 g, 4°C) to remove residual particles, diluted

1:10 in water, and transferred to V-bottom 96-well plates (Thermo

Fisher Scientific). Samples were measured by flow-injection time-of-

flight mass spectrometry with an Agilent 6550 QToF instrument

operated in negative ionization mode at 4 GHz high resolution in a

range of 50–1,000 m/z as described before (S�evin & Sauer, 2014).

Sample processing and ion annotation was performed based on

accurate mass within 0.001 Da using the KEGG E. coli database

(Ogata et al, 1999) as reference and accounting for single deproto-

nated forms of the respective metabolite (M–H+) as described before

(Fuhrer et al, 2011). Intensities of annotated ions were normalized

to NCM3722 wild type to yield relative concentrations.

Quantification of intracellular metabolite concentrations by
targeted metabolomics

Intracellular metabolomics samples were taken as described above,

with one difference: Immediately after quenching, 100 μl of a fully
13C-labeled E. coli internal metabolome extract was added for internal

normalization. Samples were incubated and dried as described above.

Before measurements, samples were resuspended in 100 μl water,

centrifuged for 5 min (5,000 g, 4°C) to remove residual particles, and

transferred to V-bottom 96-well plates (Thermo Fisher Scientific).

Measurements, data acquisition, peak integration, and quantification

of absolute metabolite concentrations were performed as described

previously (Buescher et al, 2010; Kochanowski et al, 2017). To

convert OD600 to cell volume, a conversion factor of 2.7 μl cell

volume per mg CDW (Winkler &Wilson, 1966) (and a OD600 conver-

sion factor to cell dry mass of 1 OD = 0.413 mg CDW/ml) was used.

Quantification of uptake and secretion rates

Culture samples were taken at 6–8 time points together with parallel

OD600 samples throughout exponential growth phase (sampling

volume: 100 μl). Supernatants were separated from cells by centrifuga-

tion (5,000 g, 4 min, at 4°C) and transferred to V-bottom 96-well

plates (Thermo Fisher Scientific). Glucose and acetate concentrations

in supernatants were determined by colorimetric enzymatic assays

(Megazyme). All other secreted metabolites were quantified by flow-

injection time-of-flight mass spectrometry as described above. Briefly,

supernatants were diluted 1:10 in water and measured with an Agilent

6550 QToF instrument operated in negative ionization mode at 4 GHz

high resolution in a range of 50–1,000 m/z. Sample processing and ion

annotation was performed based on accurate mass within 0.001 Da

using the KEGG E. coli database (Ogata et al, 1999) as reference and

accounting for single deprotonated forms of the respective metabolite

(M–H+) as described before (Fuhrer et al, 2011). Absolute extracellular

metabolite concentrations were determined using parallel dilution

series of the respective metabolite in the same medium as calibration

curves. Uptake and secretion rates were determined from extracellular

metabolite concentrations, corresponding OD600 (conversion factor to

cell dry mass: 1 OD = 0.413 g CDW/l), and corresponding growth

rates by linear regression as described previously (Haverkorn van

Rijsewijk et al, 2011). With the exception of 2-oxoglutarate, all other

quantified metabolites were secreted in minute amounts (< 70 μmol/

gCDW/h).

Quantification of intracellular metabolic fluxes

Intracellular central metabolic fluxes were determined by 13C flux

analysis as follows. Cultivation was performed as described above,

and glucose was added as the [1-13C] isotope (> 99%; Cambridge

Isotope Laboratories), or as a mixture of 20% (wt/wt) [U-13C]

(> 99%; Cambridge Isotope Laboratories) and 80% [12C] isotopes.

Labeling samples (sampling volume 1 ml) were taken during mid-

exponential phase (OD600 0.5–0.7), cells were harvested by

centrifugation (13,000 g, 3 min), and cell pellets were washed once

in cold 0.9% NaCl and stored dry at −20°C. 13C flux ratios were

determined as described previously (Fischer, 2004; Zamboni &

Fendt, 2009; Haverkorn van Rijsewijk et al, 2011). Briefly, cell

pellets were hydrolyzed, dried, and derivatized, and labeling

patterns of derivatized proteinogenic amino acids were quantified

by GC-MS using a 6890 GC system combined with a 5973 Inert SL

MS system (Agilent Technologies, Santa Clara, USA). Metabolic flux

ratios were determined based on these labeling patterns (after

correcting for naturally occurring 12C as described in van Winden

et al (2002)) using the software FiatFlux (Zamboni et al, 2005). Two

flux ratios (glyoxylate shunt and malic enzyme flux) were found to

be zero in all conditions and were discarded in subsequent analyses.

Using the flux ratios, uptake/secretion rates, and the measured

growth rate as inputs, absolute central metabolic fluxes were

inferred using the software FiatFlux (Zamboni et al, 2005).

To infer metabolic fluxes beyond central carbon metabolism, flux

balance analysis (FBA) was performed with the Cobra toolbox v3.0

(Schellenberger et al, 2011; Heirendt et al, 2019) in MATLAB (Ver-

sion 2019A) using the E. coli genome-scale metabolic model

iJO1366 (Orth et al, 2011). This model was further modified as

follows: (i) Based on the measured metabolite exchange rates, a

phenylpyruvate exchange reaction was added using the Cobra tool-

box command addExchangeRxn. (ii) The reaction boundaries of

glyoxylate shunt and malic enzyme fluxes were set to zero based on

the 13C labeling data. (iii) The reaction boundaries of two additional

reactions (“FBA3” and “F6PA”), which emerged empirically as

glycolytic bypass reactions that were not supported by the 13C
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labeling data, were also set to zero. (iv) For those conditions in

which the strain NQ393 was used (i.e., anabolic limitation), the

reaction boundaries of the deleted enzyme glutamate dehydroge-

nase (“GLUDy”) were set to zero. (v) All measured major (glucose,

acetate, 2-oxoglutarate) and eight minor (succinate, fumarate,

malate, citrate, glycine, valine, glutamate, and phenylpyruvate)

exchange rates (with maximal exchange rates across condi-

tions > 10 micromol/h/gCDW), as well as the measured growth

rate and the oxygen consumption rate as inferred by 13C flux analy-

sis (see above), were used as constraints (allowing for 5% deviation

for major exchange rates, oxygen consumption rate and growth rate,

as well as 10% deviation for minor exchange rates) (Mo et al,

2009). To enable fumarate secretion, the main fumarate transporter

DctA was set to be reversible. The exchange rates of pyruvate,

lactate, and ethanol (common secretion products that were not

found to be secreted in any of the conditions) were constrained to

zero. (vi) Four ratios of absolute fluxes (as determined above,

namely phosphofructokinase <> G6P dehydrogenase; phosphoglu-

coisomerase <> phosphogluconate dehydratase; malate dehydroge-

nase <> PEP carboxylase; and enolase <> PEP carboxykinase) were

incorporated as constraints using the Cobra toolbox command

addRatioReaction. Using this modified and constrained model, FBA

was performed in two steps. First, the ATP production rate was used

as an objective function (Schuetz et al, 2007) and maximized using

the Cobra toolbox command optimizeCBmodel (i.e., maximize flux

of reaction “ATPM”). Second, using the obtained ATP production

rate as an additional constraint, minimization of sum of fluxes was

performed to yield the final inferred flux distribution using the

Cobra toolbox command minimizeModelFlux. In both steps, Gurobi

V9.0.2 (Gurobi Optimization) was used as the FBA solver, and the

minNorm parameter was set to 1e-6. The quality of the FBA flux

estimates was assessed empirically by comparison with 13C flux

analysis data. For all non-zero fluxes, the uncertainty of the flux

estimates in the constrained FBA model (including the ATP produc-

tion rate obtained in the first FBA step as an additional constraint)

was determined by flux variability analysis using the Cobra toolbox

command fluxVariability (using the “fastSNP” option to prevent

loops). Due to numerical issues, both the optimality percentage and

the lower bound of the ATP production rate constraint had to be

relaxed very slightly (from 100 to 99.99%).

Regulation analysis

Regulation analysis was performed as described previously

(Chubukov et al, 2013; Gerosa et al, 2015). Only reactions with non-

zero fluxes in all tested conditions were considered. Absolute fluxes

were normalized to NCM3722 wild type in the respective experi-

ments and log-transformed. Transcriptional regulation coefficients

were determined using a previously published proteomics study,

which had determined relative protein concentrations in equivalent

carbon and glutamate limitations (Hui et al, 2015). Relative protein

concentrations were linearly interpolated to match exactly the same

growth rate as in the corresponding flux measurements, normalized

to NCM3722 wild type and log-transformed. Only proteins that were

quantified in at least one limitation were considered. For each

considered reaction, protein regulation coefficients were estimated

separately for each limitation (by linear regression) as the slope

between log-normalized fluxes and log-normalized protein

concentrations. Reaction-protein pairs were used as defined in the

aforementioned genome-scale metabolic model (Orth et al, 2011).

For reactions that are associated to more than one isoenzyme, the

final protein regulation coefficients were calculated as the average

regulation coefficient across all measured proteins.

Enzyme saturation regulation coefficients were determined as

follows. To account for potential non-linearity of the relationship

between substrate concentration and flux (e.g., due to non-

Michaelis–Menten type enzyme kinetics), approximate kinetic

orders (α) for substrates were estimated using the following equa-

tion across all conditions as described previously (Chubukov et al,

2013; Gerosa et al, 2015) (eq. 1):

min
0≤ α≤ 4

logðJiÞ� logðPiÞ¼ ∑
x∈Si

αix � logðMxÞ

where J denotes the normalized flux, P denotes the normalized

protein concentration, and M denotes the reaction substrate(s) with

corresponding kinetic order(s) α. α was constrained to be between

0 and 4 to set a biologically realistic upper bound on the non-linear

gain. Highly connected reactants (i.e., H2O, H+, CO2, HCO3
−,

sulfate, phosphate, ammonia) were excluded from the analysis.

Kinetic orders were estimated independently for each flux–enzyme

pair (considering both limitations) by least square optimization

using the lsqlin function of MATLAB. Only reactions for which all

substrates had been quantified were considered. As above, for

reactions that are connected to more than one isoenzyme, the final

regulation coefficients were calculated as the average regulation

coefficients across all measured proteins.

Data availability

The raw cAMP titration proteomics data are available at proteomeX-

change (accession number PXD024504) under the follow link:

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PX
D024504

The code necessary to reproduce the FBA, FVA, and regulation

analysis results is available on GitHub under the following link:

https://github.com/karl-kochanowski/MSB10064-Ecoli-metabolic_a

nalysis

Expanded View for this article is available online.

Acknowledgements
We thank for helpful discussions with various colleagues: Elad Noor on meta-

bolism, Hualin Shi for possible mechanisms of Crp-mediated indirect repres-

sion, and Uri Alon for the “rule of thumb” strategy of regulation. This work was

supported by the NIH (R01GM109069) and the NSF (MCB 1818384) to TH, by

the NIH (R01GM118850) to JRW, and by the SignalX project of the Swiss Initia-

tive for Systems Biology (SystemsX.ch).

Author contributions
Conceived and designed the study: KK, TH. Performed experiments and analy-

ses: KK, HO, VP, TH. Supervised the study: JW, US, TH.

Conflict of interest
The authors declare that they have no conflict of interest.

ª 2021 The Authors Molecular Systems Biology 17: e10064 | 2021 11 of 14

Karl Kochanowski et al Molecular Systems Biology

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD024504
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD024504
https://github.com/karl-kochanowski/MSB10064-Ecoli-metabolic_analysis
https://github.com/karl-kochanowski/MSB10064-Ecoli-metabolic_analysis
https://doi.org/10.15252/msb.202010064


References

Arthur D, Vassilvitskii S (2007) K-means++: The advantages of careful

seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms pp 1027–1035. USA: Society for Industrial and

Applied Mathematics

Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, Hwa T (2015)

Overflow metabolism in Escherichia coli results from efficient proteome

allocation. Nature 528: 99–104
Borkowski O, Goelzer A, Schaffer M, Calabre M, M€ader U, Aymerich S, Jules M,

Fromion V (2016) Translation elicits a growth rate-dependent, genome-

wide, differential protein production in Bacillus subtilis. Mol Syst Biol 12: 870

Bosdriesz E, Molenaar D, Teusink B, Bruggeman FJ (2015) How fast-growing

bacteria robustly tune their ribosome concentration to approximate

growth-rate maximization. FEBS J 282: 2029–2044
Bremer H, Dennis PP (1996) Modulation of chemical composition and other

parameters of the cell by growth rate. In Escherichia coli and Salmonella,

Neidhardt FC (ed.) pp 1553–1569. Washington, DC: ASM Press

Buescher JM, Moco S, Sauer U, Zamboni N, Chemistry A (2010) Ultra-high

performance liquid chromatography-tandem mass spectrometry method

for fast and robust quantification of anionic and aromatic metabolites.

Anal Chem 82: 4403–4412
Chatterji D, Kumar Ojha A (2001) Revisiting the stringent response, ppGpp

and starvation signaling. Curr Opin Microbiol 4: 160–165
Cho B-K, Federowicz S, Park Y-S, Zengler K, Palsson BØ (2012) Deciphering

the transcriptional regulatory logic of amino acid metabolism. Nat Chem

Biol 8: 65–71
Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of

microbial metabolism. Nat Rev Microbiol 12: 327–340
Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, Link H, Aymerich S,

Stelling J, Sauer U (2013) Transcriptional regulation is insufficient to

explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol

9: 709

Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD (2011) α-ketoglutarate
coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat

Chem Biol 7: 1–8
Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U, Hwa T (2017) A

global resource allocation strategy governs growth transition kinetics of

Escherichia coli. Nature 551: 119–123
Federowicz S, Kim D, Ebrahim A, Lerman J, Nagarajan H, Cho BK, Zengler K,

Palsson B (2014) Determining the control circuitry of redox metabolism at

the genome-scale. PLoS Genet 10: e1004264

Fendt S-M, Buescher JM, Rudroff F, Picotti P, Zamboni N, Sauer U (2010)

Tradeoff between enzyme and metabolite efficiency maintains metabolic

homeostasis upon perturbations in enzyme capacity. Mol Syst Biol 6: 356

Fischer E (2004) High-throughput metabolic flux analysis based on gas

chromatography–mass spectrometry derived 13C constraints. Anal Biochem

325: 308–316
Fuhrer T, Heer D, Begemann B, Zamboni N (2011) High-throughput, accurate

mass metabolome profiling of cellular extracts by flow injection-time-of-

flight mass spectrometry. Anal Chem 83: 7074–7080
Gerosa L, Haverkorn van Rijsewijk BRB, Christodoulou D, Kochanowski K,

Schmidt TSB, Noor E, Sauer U (2015) Pseudo-transition analysis identifies

the key regulators of dynamic metabolic adaptations from steady-state

data. Cell Syst 1: 270–282
Gerosa L, Kochanowski K, Heinemann M, Sauer U (2013) Dissecting specific

and global transcriptional regulation of bacterial gene expression. Mol

Syst Biol 9: 658

Goel A, Eckhardt TH, Puri P, de Jong A, Branco dos Santos F, Giera M, Fusetti

F, de Vos WM, Kok J, Poolman B et al (2015) Protein costs do not explain

evolution of metabolic strategies and regulation of ribosomal content:

does protein investment explain an anaerobic bacterial Crabtree effect?

Mol Microbiol 97: 77–92
Gr€uning N-M, Rinnerthaler M, Bluemlein K, M€ulleder M, Wamelink MMC,

Lehrach H, Jakobs C, Breitenbach M, Ralser M (2011) Pyruvate kinase

triggers a metabolic feedback loop that controls redox metabolism in

respiring cells. Cell Metab 14: 415–427
Hackett SR, Zanotelli VRT, Xu W, Goya J, Park JO, Perlman DH, Gibney PA,

Botstein D, Storey JD, Rabinowitz JD (2016) Systems-level analysis of

mechanisms regulating yeast metabolic flux. Science 354: aaf2786

Haverkorn van Rijsewijk BRB, Nanchen A, Nallet S, Kleijn RJ, Sauer U, Van

RBRBH, Rb B, Van RH (2011) Large-scale 13C-flux analysis reveals distinct

transcriptional control of respiratory and fermentative metabolism in

Escherichia coli. Mol Syst Biol 7: 1–12
van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJM, Planqu�e R,

Hulshof J, O’Toole TG, Wahl SA, Teusink B et al (2014) Lost in transition:

startup of glycolysis yields subpopulations of nongrowing cells. Science

343: 1245114

Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A,

Haraldsd�ottir HS, Wachowiak J, Keating SM, Vlasov V et al (2019) Creation

and analysis of biochemical constraint-based models using the COBRA

Toolbox vol 3.0. Nat Protoc 14: 639–702
Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T,

Williamson JR (2015) Quantitative proteomic analysis reveals a simple

strategy of global resource allocation in bacteria. Mol Syst Biol 11: e784

Ikeda TP, Shauger AE, Kustu S (1996) Salmonella typhimurium apparently

perceives external nitrogen limitation as internal glutamine limitation. J

Mol Biol 259: 589–607
Kafri M, Metzl-Raz E, Jona G, Barkai N (2016) The cost of protein production.

Cell Rep 14: 22–31
Kao KC, Yang Y-L, Boscolo R, Sabatti C, Roychowdhury V, Liao JC (2004)

Transcriptome-based determination of multiple transcription regulator

activities in Escherichia coli by using network component analysis. Proc

Natl Acad Sci USA 101: 641–646
Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V,

Aidelberg G, Bren A, Zeevi D, Weinberger A et al (2013) Promoters

maintain their relative activity levels under different growth conditions.

Mol Syst Biol 9: 701

Kim D, Seo SW, Gao Y, Nam H, Guzman GI, Cho B-K, Palsson BO (2018)

Systems assessment of transcriptional regulation on central carbon

metabolism by Cra and CRP. Nucleic Acids Res 46: 2901–2917
Kim M, Zhang Z, Okano H, Yan D, Groisman A, Hwa T (2012) Need-based

activation of ammonium uptake in Escherichia coli. Mol Syst Biol 8: 616

Kochanowski K, Gerosa L, Brunner SF, Christodoulou D, Nikolaev YV, Sauer U

(2017) Few regulatory metabolites coordinate expression of central

metabolic genes in Escherichia coli. Mol Syst Biol 13: 903

Kochanowski K, Sauer U, Chubukov V (2013a) Somewhat in control—the role

of transcription in regulating microbial metabolic fluxes. Curr Opin

Biotechnol 24: 987–993
Kochanowski K, Sauer U, Noor E (2015) Posttranslational regulation of

microbial metabolism. Curr Opin Microbiol 27: 10–17
Kochanowski K, Volkmer B, Gerosa L, Haverkorn van Rijsewijk BR, Schmidt A,

Heinemann M (2013b) Functioning of a metabolic flux sensor in

Escherichia coli. Proc Natl Acad Sci USA 110: 1130–1135
Kotte O, Zaugg JB, Heinemann M (2010) Bacterial adaptation through

distributed sensing of metabolic fluxes. Mol Syst Biol 6: 355

12 of 14 Molecular Systems Biology 17: e10064 | 2021 ª 2021 The Authors

Molecular Systems Biology Karl Kochanowski et al



Kuhlman T, Zhang Z, Saier MH, Hwa T (2007) Combinatorial transcriptional

control of the lactose operon of Escherichia coli. Proc Natl Acad Sci USA

104: 6043–6048
LaCroix RA, Sandberg TE, O’Brien EJ, Utrilla J, Ebrahim A, Guzman GI, Szubin

R, Palsson BO, Feist AM (2015) Use of adaptive laboratory evolution to

discover key mutations enabling rapid growth of Escherichia coli K-12

MG1655 on glucose minimal medium. Appl Environ Microbiol 81: 17–30
Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH (2004)

Catabolite activator protein: DNA binding and transcription activation.

Curr Opin Struct Biol 14: 10–20
Lemke JJJJ, Sanchez-Vazquez P, Burgos HLHL, Hedberg G, Ross W, Gourse

RLRL (2011) Direct regulation of Escherichia coli ribosomal protein

promoters by the transcription factors ppGpp and DksA. Proc Natl Acad Sci

USA 108: 5712

Li G-W, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute

protein synthesis rates reveals principles underlying allocation of cellular

resources. Cell 157: 624–635
Li X, Gianoulis TA, Yip KY, Gerstein M, Snyder M (2010) Extensive in vivo

metabolite-protein interactions revealed by large-scale systematic

analyses. Cell 143: 639–650
Li X, Wang X, Snyder M (2013) Systematic investigation of protein-small

molecule interactions. IUBMB Life 65: 2–8
Link H, Buescher JM, Sauer U (2012) Targeted and quantitative metabolomics

in bacteria. Systems biology of bacteria pp 127–150. Elsevier Ltd
Link H, Kochanowski K, Sauer U (2013) Systematic identification of allosteric

protein-metabolite interactions that control enzyme activity in vivo. Nat

Biotechnol 31: 357–361
Lyons E, Freeling M, Kustu S, Inwood W (2011) Using genomic sequencing for

classical genetics in E. coli K12. PLoS One 6: e16717

Maaløe O (1979) Regulation of the protein-synthesizing machinery—
ribosomes, tRNA, factors, and so on. In Biological regulation and

development, Goldberger RF (ed), Vol. 1, pp 487–542. Boston, MA: Springer

Madar D, Dekel E, Bren A, Alon U (2011) Negative auto-regulation increases

the input dynamic-range of the arabinose system of Escherichia coli. BMC

Syst Biol 5: 111

Millard P, Smallbone K, Mendes P (2017) Metabolic regulation is sufficient for

global and robust coordination of glucose uptake, catabolism, energy

production and growth in Escherichia coli. PLOS Comput Biol 13: e1005396

Mo ML, Palsson BO, Herrg�ard MJ (2009) Connecting extracellular

metabolomic measurements to intracellular flux states in yeast. BMC Syst

Biol 3: 37

Nanchen A, Schicker A, Sauer U (2006) Nonlinear dependency of intracellular

fluxes on growth rate in miniaturized continuous cultures of Escherichia

coli. Appl Environ Microbiol 72: 1164

Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R (2014)

Pathway thermodynamics highlights kinetic obstacles in central

metabolism. PLoS Comput Biol 10: e1003483

O’Brien EJ, Utrilla J, Palsson BO (2016) Quantification and classification of

E. coli proteome utilization and unused protein costs across environments.

PLOS Comput Biol 12: e1004998

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG:

kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:

29–34
Okano H, Hermsen R, Kochanowski K, Hwa T (2020) Regulation underlying

hierarchical and simultaneous utilization of carbon substrates by flux

sensors in Escherichia coli. Nat Microbiol 5: 206–215
Olin-Sandoval V, Yu JSL, Miller-Fleming L, Alam MT, Kamrad S, Correia-Melo

C, Haas R, Segal J, Pe~na Navarro DA, Herrera-Dominguez L et al (2019)

Lysine harvesting is an antioxidant strategy and triggers underground

polyamine metabolism. Nature 572: 249–253
Oliveira AP, Sauer U (2012) The importance of post-translational

modifications in regulating Saccharomyces cerevisiae metabolism. FEMS

Yeast Res 12: 104–117
Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ (2011) A

comprehensive genome-scale reconstruction of Escherichia coli

metabolism—2011. Mol Syst Biol 7: 1–9
Paczia N, Nilgen A, Lehmann T, G€atgens J, Wiechert W, Noack S (2012)

Extensive exometabolome analysis reveals extended overflow metabolism

in various microorganisms. Microb Cell Fact 11: 122

Parker DJ, Demetci P, Li GW (2019) Rapid accumulation of motility-

activating mutations in resting liquid culture of Escherichia coli. J

Bacteriol 201: 3–6
Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL

(2004) DksA: a critical component of the transcription initiation machinery

that potentiates the regulation of rRNA promoters by ppGpp and the

initiating NTP. Cell 118: 311–322
Pisithkul T, Patel NM, Amador-Noguez D (2015) Post-translational

modifications as key regulators of bacterial metabolic fluxes. Curr Opin

Microbiol 24: 29–37
Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:

35–51
Price MN, Deutschbauer AM, Skerker JM, Wetmore KM, Ruths T, Mar JS, Kuehl

JV, Shao W, Arkin AP (2013) Indirect and suboptimal control of gene

expression is widespread in bacteria. Mol Syst Biol 9: 660

Reaves ML, Young BD, Hosios AM, Xu Y-F, Rabinowitz JD (2013) Pyrimidine

homeostasis is accomplished by directed overflow metabolism. Nature

500: 237–241
Renilla S, Bernal V, Fuhrer T, Casta~no-Cerezo S, Pastor JM, Iborra JL, Sauer U,

C�anovas M (2012) Acetate scavenging activity in Escherichia coli: interplay

of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat

cultures. Appl Microbiol Biotechnol 93: 2109–2124
Rossell S, van der Weijden CC, Lindenbergh A, van Tuijl A, Francke C, Bakker

BM, Westerhoff HV (2006) Unraveling the complexity of flux regulation: a

new method demonstrated for nutrient starvation in Saccharomyces

cerevisiae. Proc Natl Acad Sci USA 103: 2166–2171
Sander T, Farke N, Diehl C, Kuntz M, Glatter T, Link H, Sander T, Farke N,

Diehl C, Kuntz M et al (2019) Allosteric feedback inhibition enables robust

amino acid biosynthesis in E. coli by enforcing article allosteric feedback

inhibition enables robust amino acid biosynthesis in E. coli by enforcing

enzyme overabundance. Cell Syst 8: P66-75.e8

Santos-Zavaleta A, Salgado H, Gama-Castro S, S�anchez-P�erez M, G�omez-

Romero L, Ledezma-Tejeida D, Garc�ıa-Sotelo JS, Alquicira-Hern�andez K,

Mu~niz-Rascado LJ, Pe~na-Loredo P et al (2019) RegulonDB v 10.5: tackling

challenges to unify classic and high throughput knowledge of gene

regulation in E. coli K-12. Nucleic Acids Res 47: D212–D220
Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, W€uthrich K,

Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental

modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:

6679–6688
Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC,

Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of

cellular metabolism with constraint-based models: the COBRA Toolbox

v2.0. Nat Protoc 6: 1290–1307
Schmidt A, Kochanowski K, Vedelaar S, Ahrn�e E, Volkmer B, Callipo L, Knoops K,

Bauer M, Aebersold R, Heinemann M (2016) The quantitative and condition-

dependent Escherichia coli proteome. Nat Biotechnol 34: 104–110

ª 2021 The Authors Molecular Systems Biology 17: e10064 | 2021 13 of 14

Karl Kochanowski et al Molecular Systems Biology



Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D

(2002) BRENDA: a resource for enzyme data and metabolic information.

Trends Biochem Sci 27: 54–56
Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions

for predicting intracellular fluxes in Escherichia coli.Mol Syst Biol 3: 119

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010)

Interdependence of cell growth and gene expression: origins and

consequences. Science 330: 1099–1102
Semsey S, Krishna S, Sneppen K, Adhya S (2007) Signal integration in the

galactose network of Escherichia coli. Mol Microbiol 65: 465–476
S�evin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress

tolerance in Escherichia coli. Nat Chem Biol 10: 266–272
Shimada T, Fujita N, Yamamoto K, Ishihama A (2011) Novel roles of cAMP

receptor protein (CRP) in regulation of transport and metabolism of

carbon sources. PLoS One 6: e20081

Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh

K, Alon U (2012) Evolutionary trade-offs, pareto optimality, and the

geometry of phenotype space. Science 336: 1157–1160
Soupene E, Van Heeswijk WC, Plumbridge J, Stewart V, Bertenthal D, Lee H,

Prasad G, Paliy O, Charernnoppakul P, Kustu S (2003) Physiological studies

of Escherichia coli strain MG1655: growth defects and apparent cross-

regulation of gene expression. J Bacteriol 185: 5611

Su X, Wellen KE, Rabinowitz JD (2016) Metabolic control of methylation and

acetylation. Curr Opin Chem Biol 30: 52–60
Towbin BD, Korem Y, Bren A, Doron S, Sorek R, Alon U (2017) Optimality and

sub-optimality in a bacterial growth law. Nat Commun 8: 14123

Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and

biases. Science 185: 1124–1131
Valgepea K, Adamberg K, Nahku R, Lahtvee P-J, Arike L, Vilu R (2010) Systems

biology approach reveals that overflow metabolism of acetate in

Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA

synthetase. BMC Syst Biol 4: 166

Valgepea K, Adamberg K, Seiman A, Vilu R (2013) Escherichia coli achieves

faster growth by increasing catalytic and translation rates of proteins. Mol

Biosyst 9: 2344–2358
Vanwinden WA, Wittmann C, Heinzle E, Heijnen JJ (2002) Correcting mass

isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng

80: 477–479

Varma A, Palsson BO (1994) Stoichiometric flux balance models

quantitatively predict growth and metabolic by-product secretion

in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:

3724–3731
Vind J, Sørensen MA, Rasmussen MD, Pedersen S (1993) Synthesis of proteins

in Escherichia coli is limited by the concentration of free ribosomes.

Expression from reporter genes does not always reflect functional mRNA

levels. J Mol Biol 231: 678–688
Wang Z, Sun J, Xia T, Liu Y, Fu J, Lo YK, Chang C, Yan A, Liu X (2018)

Proteomic delineation of the arca regulon in salmonella typhimurium

during anaerobiosis. Mol Cell Proteomics 17: 1937–1947
Wayman JA, Varner JD (2013) Biological systems modeling of metabolic and

signaling networks. Curr Opin Chem Eng 2: 365–372
Winkler HH, Wilson TH (1966) The role of energy coupling in the

transport of beta-galactosides by Escherichia coli. J Biol Chem 241:

2200–2211
You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang Y-P, Lenz P,

Yan D, Hwa T (2013) Coordination of bacterial proteome with metabolism

by cyclic AMP signalling. Nature 500: 301–306
Yuan J, Doucette CD, Fowler WU, Feng X-J, Piazza M, Rabitz HA, Wingreen

NS, Rabinowitz JD (2009) Metabolomics-driven quantitative analysis of

ammonia assimilation in E. coli. Mol Syst Biol 5: 302

Zamboni N, Fendt S-M, R€uhl M, Sauer U (2009) (13)C-based metabolic flux

analysis. Nat Protoc 4: 878–892
Zamboni N, Fendt S (2009) 13C-based metabolic flux analysis. Nat Protoc 4:

878–892
Zamboni N, Fischer E, Sauer U (2005) FiatFlux–a software for metabolic flux

analysis from 13C-glucose experiments. BMC Bioinformatics 6: 209

Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister

W, Surette MG, Alon U (2006) A comprehensive library of

fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:

623–628

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and

reproduction in any medium, provided the original

work is properly cited.

14 of 14 Molecular Systems Biology 17: e10064 | 2021 ª 2021 The Authors

Molecular Systems Biology Karl Kochanowski et al


