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Abstract: Heavy metals causing chronic nephrotoxicity may play a key role in the pathogenesis
of chronic kidney disease (CKD). This study hypothesized that plasma folate and vitamin B12

would modify the association of CKD with total urinary arsenic and blood lead and cadmium
levels. We recruited 220 patients with CKD who had an estimated glomerular filtration rate of
<60 mL/min/1.73 m2 for ≥3 consecutive months and 438 sex- and age-matched controls. We
performed inductively coupled plasma mass spectrometry to measure blood cadmium and lead
levels. The urinary arsenic level was determined using a high-performance liquid chromatography–
hydride generator–atomic absorption spectrometry. Plasma vitamin B12 and folate levels were
measured through the SimulTRAC-SNB radioassay. Compared with patients with plasma vitamin
B12 ≤ 6.27 pg/mL, the odds ratio (OR) and 95% confidence interval of CKD for patients with plasma
vitamin B12 > 9.54 pg/mL was 2.02 (1.15–3.55). However, no association was observed between
plasma folate concentration and CKD. A high level of plasma vitamin B12 combined with high levels
of blood lead and cadmium level and total urinary arsenic tended to increase the OR of CKD in a
dose-response manner, but the interactions were nonsignificant. This is the first study to demonstrate
that patients with high plasma vitamin B12 level exhibit increased OR of CKD related to high levels
of blood cadmium and lead and total urinary arsenic.

Keywords: vitamin B12; folate; cadmium; lead; arsenic; chronic kidney disease

1. Introduction

Chronic kidney disease (CKD) is characterized by a progressive and irreversible
decline in renal function occurring gradually over a period of a few months to many years.
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In CKD, the kidney gradually loses its ability to filter toxins from blood. Renal impairment
in CKD is diagnosed based on a decrease in the estimated glomerular filtration rate (eGFR)
to <60 mL/min/1.73 m2, the presence of proteinuria, or the presence of pathological
abnormalities for at least 3 months [1]. Because of the high prevalence as well as morbidity
and mortality of CKD, it has become a global public health concern [2]. In Taiwan, the
CKD prevalence was 11.9% in 2008 [3], and the prevalence of end-stage renal disease was
the highest in the world from a 2016 report [4]; therefore, CKD is a significant public health
issue in Taiwan.

Our recent study reported that the levels of blood lead and cadmium and total urinary
arsenic are significantly associated with an increased odds ratio (OR) of CKD, whereas the
plasma selenium level significantly reduced the OR of CKD [5]. A Thai study reported
that long-term exposure to cadmium and a high urinary cadmium level were associated
with a significant decrease in eGFR, resulting in CKD [6]. A Chinese follow-up study
showed that the levels of plasma arsenic and lead are associated with a significant annual
decline in eGFR after adjustment for demographic variables and risk factors for CKD [7].
Furthermore, an animal study demonstrated that lead causes an inflammatory response,
leading to CKD [8]. A high level of lead in the blood was related to proteinuria and
eGFR < 60 mL/min/1.73 m2 [9]. Exposure to arsenic, lead, and cadmium appears to be
related to CKD occurrence [5–9].

Vitamin B9 (folate) and vitamin B12 are water-soluble vitamins involved in several
normal cellar functions. Folate and vitamin B12 are vital cofactors in the remethylation
pathway in humans [10]. Folate treatment was associated with a decrease in the OR of CKD
progression in patients with mild-to-moderate CKD and high B12 levels [11]. A review
suggested that folate and vitamin B12 can be beneficial in CKD treatment [12]. However,
the levels of serum folate and vitamin B12 were not associated with increased levels of
homocysteine and cysteine in patients with CKD and diabetes [13]. Thus, whether plasma
folate and vitamin B12 prevent CKD remains unclear. Heavy metals with nephrotoxic
effects may accumulate gradually and cause CKD [14]. Therefore, this study investigated
whether the levels of plasma folate and vitamin B12 alter the OR of CKD related to total
urinary arsenic and blood lead and cadmium.

2. Materials and Methods
2.1. Study Participants and Interviews

Eligible participants were nephrology outpatients and adults or elderly people partici-
pating in a health examination who had signed an informed consent form and provided
blood and urine samples. In total, 220 patients with clinically confirmed CKD and 438 sex-
and age-matched controls were recruited from both Taipei Medical University Hospital
and Taipei Municipal Wan Fang Hospital between May 2018 and May 2019. All outpatients
with CKD received the diagnosis based on biochemical criteria such as blood urea nitrogen,
proteinuria, and serum creatinine at the Department of Internal Medicine/Nephrology.
Patients with CKD who had an eGFR of <60 mL/min/1.73 m2 were diagnosed as having
stage 3, 4, or 5 CKD for at least 3 months and did not receive hemodialysis. Those with
an eGFR of ≥60 mL/min/1.73 m2 were considered healthy controls. The ratio of control
participants to patients with CKD was approximately 1.5:1.

We interviewed all study participants and collected their blood and urine samples
as described in a previous study [15]. The current study was approved by the Research
Ethics Committee of Taipei Medical University, Taiwan (TMU Joint Institutional Review
Board N201804024, 25 May 2018–24 May 2019), and was conducted in accordance with the
Declaration of Helsinki.

2.2. Measurements of Urinary Arsenic Levels

The urinary arsenic level was measured as described previously [16]. The measure-
ment method, detection limits, and standard reference material used served as the quality
standard, and samples spiked with a standard solution (recovery rates) are shown in



Nutrients 2021, 13, 3841 3 of 10

Supplementary Table S1. The total urinary arsenic level (µg/g creatinine) was calculated
as the sum of the levels of inorganic arsenic (arsenite + arsenate), monomethylarsonic acid,
and dimethylarsinic acid after dividing for the level of urinary creatinine, which controls
hydration. The measurement of the creatinine level is shown in Supplementary Table S1.

2.3. Measurements of Blood Lead and Cadmium Levels

Because the literature indicates that the concentration of heavy metals (such as lead or
cadmium) in whole blood is a valid marker for long-term exposure [17], this study used
red blood cells to measure the concentration of heavy metals. Blood lead and cadmium
levels were measured as described previously [18]. The validity and reliability of the
measurements and detection limits are listed in Supplementary Table S1.

2.4. Measurements of Plasma Folate and Vitamin B12 Levels

The methods used for measuring plasma vitamin B12 and folate levels were described
in detail in our recent study [19]. The measurement method, detection limit, and variation
coefficient are presented in Supplementary Table S1.

2.5. Statistical Analysis

Continuous variables are presented as the mean ± standard deviation or median
(IQR). We used the Wilcoxon rank sum test to compare differences in continuous vari-
ables between patients with CKD and controls. Furthermore, we used the chi-square
test to examine the distribution of categorical variables between patients with CKD and
controls. We used a multivariate linear regression model to determine the correlation
between eGFR and the levels of plasma folate and vitamin B12 after adjusting for age; sex;
educational level; alcohol, coffee, and tea consumption; analgesic usage; history of diabetes
and hypertension; red blood cell lead and cadmium levels; and total urinary arsenic (µg/g
creatinine). Subsequently, we used multiple logistic regression to assess the association
between potential risk factors for CKD. The corresponding tertiles of controls were used
as cutoff points for continuous variables among independent variables. This approach is
generally a dose-response analysis method, which analyzes the increased CKD risk when
the dose of the exposure variable increases by one-third [20]. Multivariate-adjusted ORs
and 95% confidence intervals were calculated to determine CKD risk. In the significance
test of the linear trend of the OR in the exposed stratification, we used categorized exposure
variables as score variables, which also served as continuous variables. The respective
median of controls was used as the cutoff for risk factors in the interaction analysis. Ad-
ditive interactions between risk factors for CKD were evaluated in a pairwise manner by
using the synergy index provided by Rothman [21]. The observed synergy index value was
not equal to 1, indicating an additive interaction, and ORs and their variance–covariance
matrix were used to calculate 95% confidence intervals [22]. The product term between
levels of plasma vitamin B12, blood lead and cadmium, and total urinary arsenic was used
pairwise to test their multiplicative interactive effect on the OR of CKD in the multiple
logistic regression model. The SAS package (version 9.4; SAS Institute, Cary, NC, USA)
was used for these analyses. A two-tailed p value of <0.05 indicated statistical significance.

3. Results

Table 1 lists the sociodemographic characteristics, lifestyle, and disease histories of
patients with CKD and controls. CKD cases and controls were not statistically different
in age, sex, and smoking status. However, CKD cases were less educated, less likely to
consume alcohol, coffee, or tea, but were more likely to use analgesics and were more likely
to be diabetic or hypertensive.
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Table 1. Sociodemographic characteristics, lifestyle, and disease histories of CKD cases and controls.

Variables CKD Cases
(n = 220)

Controls
(n = 438) p Value

Age (years) 65.1 ± 13.5
66.0 (19.0)

64.2 ± 12.5
65.0 (18.0) 0.3796

Sex
Male 135 (61.4%) 270 (61.6%) 0.9444

Female 85 (38.6%) 168 (38.4%)

eGFR (mL/min/1.73 m2)
31.6 ± 14.6
32.2 (25.2)

84.3 ± 15.7
81.0 (19.3) <0.0001

Educational level
Illiterate/elementary school 92 (41.8%) 100 (22.8%) <0.0001
Junior/senior high school 72 (32.7%) 152 (34.7%)

College and above 56 (25.5%) 186 (42.5%)
Cigarette smoking

Nonsmoker 162 (73.6%) 319 (72.8%) 0.7197
Former smoker 33 (15.0%) 75 (17.1%)
Current smoker 25 (11.4%) 44 (10.1%)

Alcohol consumption
Never 181 (82.3%) 279 (63.7%) <0.0001

Occasional or frequently 39 (17.7%) 159 (36.3%)
Coffee consumption

Never 171 (77.7%) 225 (51.4%)
Occasional or frequently 49 (22.3%) 213 (48.6%) <0.0001

Tea consumption
Never 124 (56.4%) 157 (35.8%) <0.0001

Occasional or frequently 96 (43.6%) 281 (64.2%)
Analgesic use

No/yes as needed 192 (87.3%) 419 (95.7%) <0.0001
Yes, routinely 28 (12.7%) 19 (4.3%)

Diabetes
No 134 (60.9%) 393 (89.7%) <0.0001
Yes 86 (39.1%) 45 (10.3%)

Hypertension
No 96 (43.6%) 306 (69.9%) <0.0001
Yes 124 (56.4%) 132 (30.1%)

Values expressed as the mean± standard deviation, or median (IQR) for age and eGFR or the number (percent).

We analyzed the relationship of plasma nutrients, blood lead and cadmium, and
urinary metals with CKD risk (Table 2). The higher the levels of plasma vitamin B12,
blood lead and cadmium, and total urinary arsenic, the higher the OR of CKD. When
the concentration of blood lead, cadmium, urinary total arsenic, or plasma vitamin B12
increased by a tertile, the risk of CKD increased significantly. Plasma folate levels were not
related to CKD (Table 2). We also show the spread of data in Supplementary Figure S1.

The log eGFR decreased significantly with the increase of the log plasma vitamin B12
concentration. However, there was no correlation between plasma folate concentration and
eGFR (Figure 1).

Because plasma vitamin B12 was related to CKD, we conducted a stratified analysis to
determine whether it affects the association of blood cadmium and lead or total urinary
arsenic concentration with CKD risk. The effect of blood lead concentration on the OR of
CKD in patients with a low plasma vitamin B12 level was higher than that in patients with
a high plasma vitamin B12 level. The OR of CKD did not vary between blood cadmium and
total urinary arsenic concentrations (Supplementary Table S2). Subsequently, we examined
the interactive effects of plasma vitamin B12, total urinary arsenic, and blood lead and
cadmium levels on CKD (Table 3). A trend analysis revealed that the OR of CKD gradually
but significantly increased with exposure to no risk factors or to either one or both risk
factors (a high plasma vitamin B12 level and a high blood lead level). Furthermore, the
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interaction of other paired risk factors exerted the same effect on CKD; however, these
interactions were nonsignificant.
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Figure 1. Correlation of eGFR with (a) plasma vitamin B12 and (b) plasma folate. β (SE): Adjusted
for age; sex; educational level; alcohol, coffee, and tea consumption; analgesic usage; diabetes;
hypertension; blood lead and cadmium levels; and total urinary arsenic (µg/g creatinine).
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Table 2. Association of the levels of total urinary arsenic, blood cadmium and lead, and plasma
vitamin B12 and folate with CKD.

Variables CKD Cases
(n = 220)

Controls
(n = 438)

Age–Sex
Adjusted

OR (95% CI)

Multivariate
Adjusted

OR (95% CI)

Total urinary arsenic
(µg/g creatinine)

27.3 ± 21.7
22.5 (18.8)

19.9 ± 13.8 #

16.0 (15.9)
≤12.07 36 (16.4%) 146 (33.3%) 1.00 § 1.00 §,a

>12.07–21.90 70 (31.8%) 146 (33.3%) 1.95 (1.23–3.11) ** 1.80 (0.98–3.31)
>21.90 114 (51.8%) 146 (33.3%) 3.22 (2.06–5.05) ** 2.65 (1.45–4.82) **

Red blood cell lead
(µg/L)

69.0 ± 38.9
63.7 (46.6)

41.8 ± 22.8 #

37.4 (27.0)
≤27.94 19 (8.6%) 146 (33.3%) 1.00 § 1.00 §,b

>27.94–46.36 46 (20.9%) 136 (31.1%) 2.65 (1.47–4.77) ** 2.56 (1.20–5.45) *
>46.36 155 (70.5%) 156 (35.6%) 7.87 (4.61–13.44) ** 4.92 (2.42–9.99) **

Red blood cell
cadmium (µg/L)

2.4 ± 3.5
1.7 (1.5)

1.2 ± 0.9 #

1.0 (0.8)
≤0.80 20 (9.1%) 149 (34.0%) 1.00 § 1.00 §,b

>0.80–1.30 47 (21.4%) 147 (33.6%) 2.57 (1.44–4.60) ** 2.30 (1.07–4.98) *
>1.30 153 (69.6%) 142 (32.4%) 8.77 (5.13–14.98) ** 6.48 (3.02–13.90) **

Plasma vitamin B12
(pg/mL)

15.6 ± 13.2
8.6 (21.9)

8.7 ± 5.0 #

7.8 (5.1)
≤6.27 68 (30.9%) 158 (36.1%) 1.0 § 1.0 §,c

>6.27–9.54 52 (23.6%) 140 (32.0%) 0.87 (0.56–1.34) 0.87 (0.48–1.57)
>9.54 100 (45.5%) 140 (32.0%) 1.66 (1.12–2.45) * 2.02 (1.15–3.55) *

Plasma folate (ng/mL) 701.6 ± 856.0
465.0 (339.0)

590.7 ± 454.4
503.0 (270.0)

≤422 89 (40.5%) 157 (35.8%) 1.00 1.00 c

>422–589 60 (27.3%) 142 (32.4%) 0.74 (0.50–1.11) 1.02 (0.58–1.80)
>589 71 (32.3%) 139 (31.7%) 0.89 (0.60–1.32) 0.99 (0.57–1.72)

Values are expressed as the mean ± standard deviation, median (IQR) for total urinary arsenic, red blood cell
lead and cadmium, and plasma vitamin B12 and folate or the number (percent). * p < 0.05, ** p < 0.01, # p < 0.05
for the Wilcoxon rank sum test, § p < 0.05 for the trend test. a Adjusted for sex; age; educational level; alcohol,
coffee, and tea consumption; analgesic usage; diabetes; hypertension; red blood cell lead and cadmium levels;
and plasma vitamin B12 level. b Adjusted for sex; age; educational level; alcohol, coffee, and tea consumption;
analgesic usage; diabetes; hypertension; urinary creatinine; total urinary arsenic (µg/L); and levels of red blood
cell lead or cadmium and plasma vitamin B12. c Adjusted for sex; age; educational level; alcohol, coffee, and tea
consumption; analgesic usage; diabetes; hypertension; urinary creatinine; total urinary arsenic (µg/L); and red
blood cell lead and cadmium.

Table 3. The interaction between plasma vitamin B12, urinary arsenic, and red blood cell lead and
cadmium levels on CKD.

Variables Variables Case/Control
Age–Sex

Adjusted ORs
(95% CI)

Multivariate
Adjusted ORs

(95% CI)

Plasma vitamin
B12 (pg/mL)

Urinary arsenic
(µg/g creatinine)

≤7.76 <16.01 27/116 1.00 § 1.00 §,a

>7.76 <16.01 31/103 1.33 (0.74–2.39) 1.49 (0.71–3.15)
≤7.76 ≥16.01 71/112 2.77 (1.65–4.66) ** 2.13 (1.08–4.18) *
>7.76 ≥16.01 91/107 3.81 (2.26–6.42) ** 4.09 (2.04–8.21) **

Synergistic index 1.34 (0.64–2.81) 1.91 (0.64–5.64)
p interaction 0.3886 0.7213

Plasma vitamin
B12 (pg/mL)

Red blood cell lead
(µg/L)

≤7.76 <37.37 19/108 1.00 § 1.00 §,b

>7.76 <37.37 25/111 1.32 (0.68–2.54) 1.53 (0.68–3.40)
≤7.76 ≥37.37 79/120 3.84 (2.17–6.80) ** 3.18 (1.54–6.57) **
>7.76 ≥37.37 97/99 5.84 (3.28–10.41) ** 5.26 (2.51–11.00) **

Synergistic index 1.53 (0.78–3.02) 1.57 (0.61–4.06)
p interaction 0.9892 0.8834
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Table 3. Cont.

Variables Variables Case/Control
Age–Sex

Adjusted ORs
(95% CI)

Multivariate
Adjusted ORs

(95% CI)

Plasma vitamin
B12 (pg/mL)

Red blood cell
cadmium (µg/L)

≤7.76 <1.02 19/106 1.00 § 1.00 §,b

>7.76 <1.02 24/110 1.30 (0.67–2.52) 1.74 (0.76–4.02)
≤7.76 ≥1.02 79/122 3.90 (2.20–6.92) ** 2.76 (1.32–5.78) **
>7.76 ≥1.02 98/100 6.40 (3.54–11.56) ** 4.68 (2.18–10.04) **

Synergistic index 1.69 (0.85–3.35) 1.46 (0.55–3.89)
p interaction 0.3599 0.5206

a Adjusted for sex; age; educational level; alcohol, coffee, and tea consumption; analgesic use; diabetes; hyper-
tension; and red blood cell lead and cadmium levels. b Adjusted for sex; age; educational level; alcohol, coffee,
and tea consumption; analgesic use; diabetes; hypertension; and levels of urinary arsenic (µg/g creatinine) and
red blood cell lead or cadmium. * p < 0.05, ** p < 0.01, and § p < 0.05 for the trend test; p interaction: p value for
multiplicative interaction.

4. Discussion

The results of the present study revealed that the prevalence of hypertension and
diabetes was higher in patients with CKD than in controls. Hypertension and diabetes
are crucial risk factors for CKD [23]. Furthermore, the present study demonstrated that
the increase in plasma vitamin B12, total urinary arsenic, and blood lead and cadmium
levels gradually and significantly increased the OR of CKD. In addition, high levels of
plasma vitamin B12 and blood lead and cadmium tended to increase the OR of CKD, but
the interaction was nonsignificant.

Our study demonstrated a significantly positive correlation of blood cadmium and
lead and total urinary arsenic levels with the OR of CKD [5,24]. In addition, this study
also found that urinary total arsenic and blood lead and cadmium were related to CKD,
as proposed in other studies. One study did not find an association between the blood
lead level and kidney function [25]. However, a cohort study found that plasma arsenic
was associated with an increased risk of kidney graft failure [26]. A Thai study showed
that long-term exposure to a low cadmium level was associated with decreased renal
function [27]. Another study reported that exposure to high levels of lead and cadmium
reduced eGFR and increased the albumin to creatinine ratio, adversely affecting renal
function [28]. Furthermore, recent studies have revealed that with an increase in plasma
cadmium concentration, the risks of long-term kidney transplant failure and reduced
kidney function increase [29]. These findings suggest that exposure to cadmium, lead,
and arsenic is associated with CKD. Because the kidney is the main organ responsible
for toxin excretion from blood, it is susceptible to the toxicity of heavy metals such as
lead, cadmium, and arsenic [30,31]. Cadmium, lead, and arsenic metabolism can produce
reactive oxygen species, induce oxidative stress, and cause kidney damage [32–34]. Lead
exposure promotes lipid peroxidation and the degradation of phospholipids in kidney cells,
leading to a loss of cell membrane integrity and nephrotoxicity, or a loss of mitochondrial
function in proximal tubular cells [35,36].

A recent clinical trial indicated that a baseline vitamin B12 level of ≥248 pmole/L and
folate treatment were associated with an increased reduction in the OR of CKD progres-
sion [11]. However, another study reported that folate, vitamin B12, homocysteine, and
cysteine were not related to the CKD stage [13]. The relationship of hyperhomocysteinemia,
folate, and vitamin B12 with CKD progression is controversial [12]. By contrast, a high
level of plasma vitamin B12 was related to all-cause mortality after adjustment for renal
function and other confounding factors [37,38]. A previous study found elevated plasma
vitamin B12 concentrations in patients with liver disease, autoimmune disease, and kidney
disease [39]. Why the vitamin B12 in the plasma of CKD patients is higher than that in
the control group is not fully understood. The liver is the largest reservoir of vitamin B12
in the body, which may be the destruction of the absorption of vitamin B12 by the liver;
alternatively, increased hepatocyte turnover/damage may cause more vitamin B12 to leak
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from the liver, resulting in increased levels of vitamin B12 in the plasma [34]. In addition, a
high level of plasma vitamin B12 may be a response to an increased release of vitamin B12
stored in the liver, decreased clearance, upregulation of haptocorrin and transcobalamin
synthesis, or decreased affinity of vitamin B12 to transporters. These conditions usually
result in liver damage or CKD [38]. Furthermore, the findings of the present study suggest
that the level of plasma vitamin B12 is significantly higher in patients with CKD than in
controls. Thus, a high plasma vitamin B12 level, but not a high folate level, was associated
with CKD. These results may have occurred by chance. Thus, at present, our knowledge
regarding the association of high plasma vitamin B12 with CKD is incomplete.

In the present study, we observed that high levels of blood lead and plasma vitamin
B12 tended to interact with CKD. This may be because the high levels of blood lead [5] and
plasma vitamin B12 (Figure 1) significantly decrease eGFR and increase the OR of CKD
or the high levels of blood lead and plasma vitamin B12 significantly increase the OR of
hyperhomocysteinemia [40], which leads to increased oxidative stress and CKD risk [41].
Thus, an increase in the levels of plasma vitamin B12, blood lead or cadmium, and total
urinary arsenic increase the OR of CKD.

Some limitations of this study must be considered while interpreting the results. This
study is cross-sectional in nature. Patients with CKD recruited in this study were prevalent
cases; therefore, the causal relationship of plasma folate and vitamin B12, blood cadmium
and lead, and total urinary arsenic levels with CKD could not be confirmed. We cannot
exclude the possibility of the typical reverse causality. Samples were collected only once
to evaluate plasma folate and vitamin B12, blood cadmium and lead, and total urinary
arsenic levels. However, if all patients maintained a stable lifestyle and had homeostatic
metabolism, these measurements may be reliable. Moreover, we did not consider the
homocysteine level, lipid profile, and supplement use in this study. For future research, it
is necessary to determine the role of homocysteine to assess whether plasma vitamin B12
and folate concentrations could affect the metabolism of metals, and thus, affect the risk of
CKD. Nevertheless, these findings are crucial to understand potential factors associated
with CKD.

5. Conclusions

The findings from this study suggest that a high concentration of plasma vitamin
B12 was related to the risk of CKD after adjusting for other covariates. In addition, this
research indicates that there was a possible interaction between plasma vitamin B12 and
blood lead or cadmium, resulting in an increased risk of CKD. However, the mechanism of
this association is not fully understood, and further investigation is warranted to advance
the understanding of risks associated with CKD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13113841/s1, Figure S1: The dot plots of measured variables by CKD status. (A) Plasma
vitamin B12 (pg/mL) (B) Plasma folate (ng/mL) (C) Total urinary arsenic (µg/g creatinine) (D) Red
blood cell lead (µg/L) (E) Red blood cell cadmium (µg/L), Table S1: Validity and reliability of
measurements used for determining urinary arsenic and plasma selenium, folate, and vitamin B12
as well as red blood cell lead and cadmium concentrations, Table S2: Association of levels of total
urinary arsenic and blood cadmium and lead with CKD stratified by B12 levels.
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