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Abstract: Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable
from hard tissues by their low mineral and high water content. In this work, we proposed the
development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose
nanofibers (CNFs), both without any chemical modification, which processing did not incorporate
any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new
strategies for the design of environmentally friendly high mechanical performance composites. In the
here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a
biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs
provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing
(EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low
concentrations of chitosan (2.0–3.0% (w/v)) and cellulose nanofibers (0.2–0.4% (w/v)). CHI/CNF
printed hydrogels with good mechanical performance (Young’s modulus 3.0 MPa, stress at break
1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were
achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D
printability, resolution, and quality of the constructs (microstructure and mechanical properties),
resulting in good cell viability. This work allows expanding the library of the so far used biopolymer
compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the
natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically
demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.

Keywords: hydrogel 3D printing; polymer composites; chitosan; cellulose nanofibers; X-ray syn-
chrotron scattering; micromechanics; tissue engineering
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1. Introduction

There is an increasing interest in the development of 3D complex functional architec-
tures with appropriate biomaterials and cells, in particular with the strategy of mimicking
the cellular microenvironment of native tissues. Three-dimensional printing has emerged
as a powerful tool for tissue engineering, which applies additive manufacturing to bio-
fabricate 3D tissue-resembling objects with a high degree of spatial organization [1,2]. A
layer-by-layer deposition of materials [1], called (bio)inks, is performed in specifically
designed 3D shapes [3–5]. It can potentially impact patient care through fabrication of
tissue substitutes for implantation and regeneration, or for drug and toxicity screening [6].
Engineering of polymer biomaterials with controlled microstructure approaching tissue
functionalities, while serving as model to investigate cell behavior in more relevant 3D
mimicking environments, is challenging [7]. The biomaterial and the cell types are key
components, which can also impact the biofabrication process [8,9]. The development
of bioinks, with good printability and bioactive properties, controlling cellular fate, still
needs to be improved in order to advance the translation into the clinic. In a first step,
to provide the proper physical, chemical, and biological cues to the cells, bioprinting of
biocompatible biomaterials needs to be finely studied, since they directly act on cellular
adhesion, differentiation, and proliferation. Three-dimensional scaffolds with intercon-
nected pore network microstructures have been widely studied and shown to ensure cell
viability and colonization and the diffusion of nutrients [10,11]. Before scaffold formation,
(bio)ink characteristics should include appropriate viscosity, printability, biocompatibility,
enhanced cell adhesion, mechanical performance, and, finally, biodegradability, if desired.
A relatively limited number of biopolymer hydrogels are available as bioinks. Among them,
the alginate-based systems are the most investigated ones [12], which have been tested for
viability of fibroblasts, stem cells, chondrocytes, osteogenic activity support, neural tissue
construction, etc. [13]. Nevertheless, alginate does not bind strongly with cells, often lead-
ing to improper cellular interactions. In vivo, it may induce strong inflammatory response
and is relatively fast biodegraded. Gelatin is also commonly used due to its mild physical
gelation triggered by temperature change [14]. Hydrogels of collagen, gelatin modified
with methacrylate moieties, agarose, chitosan, carboxymethylchitosan, polycaprolactone
(PCL), silk fibroin, hyaluronic acid (HA) [15,16], have been 3D printed, even with cellulose
nanofibers [17], but not all of them were fabricated for tissue engineering applications.

There are three main methodologies used for 3D bioprinting: inkjet, extrusion-based,
and light-assisted bioprinting. Microextrusion (EBB) can be performed with a broad
viscosity range of dispensable materials by using inexpensive setups [18,19]. Depending
on ink and plotting device, thin lines of ink with a width range from around 45 to 1200 µm
can be printed by EBB. Liquids with low to very high viscosity (until around 107 mPa.s)
are reported to be printable via extrusion. Specially, the polymer ink needs to be in “liquid”
phase prior to extrusion to avoid nozzle clogging, and must gel very fast after extrusion,
to become a stable 3D free-standing object. Thus, not all biomaterials are printable by
EBB. In this work, EBB is the method of choice to fabricate mechanically performant 3D
fiber-reinforced hydrogel constructs only constituted of natural compounds like chitosan
and cellulose, without biopolymer modification or addition of any chemical crosslinker, for
a vast range of applications in tissue engineering.

In view of the exceptional properties of chitosan hydrogels for tissue engineer-
ing [20–25], we propose here the 3D printing of bioinspired functional chitosan (CHI)
hydrogels filled with non-modified cellulose nanofibers (CNF). Soft tissues like the in-
tervertebral dics, skin, among others, are commonly complex fiber-reinforced hydrogel
composites [21,22,26,27]. Chitosan is a family of chitin-derived cationic polysaccharides, con-
sisting of β-(1-4)-glucosamine and N-acetyl-glucosamine units [28–33]. It exhibits excellent
biological properties like biocompatibility, biodegradability, bacteriostaticity, and fungistatic-
ity, and promotes wound healing, cell proliferation, tissue repair [21,22,25,34–38]. Cellulose
is the main component of plant biomass and most abundant biopolymer worldwide. Its
chains naturally form a highly crystalline structure (namely cellulose I allomorph), assem-
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bled into microfibrils [39–43]. The unique crystalline properties of the processed native
cellulose nanofibrils, combined with their high aspect ratio and renewability, have placed
the cellulose nanofibers (CNF) as a green nanoreinforcement alternative for the design of
environmentally friendly and high mechanical performance composites [39,44–46]. Spe-
cially, the nano/microfibrillated cellulose (MFC) can be produced from the peeling of the
native fibers into a network of hairy fibrils [47–49]. As a nanomaterial, the question on CNF
toxicity and environmental impact has been addressed [22]. Low toxicity has been reported,
according to ecotoxicological, cytotoxicity and proinflammatory response studies [50–52].
Cellulose nanofibers have also been proposed for drug delivery systems [53], reinforcement
for biomaterials [21,22,54–56], protein immobilization [57], etc. In hydrogel biomaterials,
the use of CNFs is promising-in addition to their mechanical performance, CNFs form
a network with high water retention, they are biocompatible and can yield transparent
biomaterials [21,22,54,58]. Besides, cellulose nanofibers can be oriented within hydrogels.
Osorio et al. [39] performed pioneer works where cellulose whisker nanocrystals were
oriented in bulk polysaccharide hydrogel matrices by uniaxial stretching under controlled
humidity, to yield anisotropic hydrogels.

The goal of this work is the development by microextrusion of bioinspired mechani-
cally performant fiber-reinforced 3D hydrogel scaffolds, of completely natural polymers
like chitosan, without any chemical crosslinking to achieve its gelation, and using as nanor-
einforcement non-modified cellulose nanofibers, which hydrogel composites should find
application in the engineering of mechanically demanding hydrogel tissues like interverte-
bral disc (IVD) [21,22,59,60], cartilage, meniscus, etc. Different natural polymers have been
explored in hydrogel biomaterials to design provisional supports for regeneration/repair
of intervertebral disc and cartilaginous tissues; among them, collagen [61], hyaluronic
acid (HA) and its derivatives [61–64], chondroitin sulfate [64], agarose [65], alginate [66],
chitosan and its derivatives [21,22,25], cellulose and its derivatives [21,22,67]. Doench
et al. [21,22] prepared bulk chitosan hydrogels reinforced with CNFs for the regenera-
tion and repair of both the annulus fibrosus (AF)and the nucleus purposus (NP) regions of
the intervertebral disc. They concluded that the addition of CNF significantly improves
the mechanical properties of the composite hydrogels. Moreover, the in situ gelation
of the CHI/CNF precursor viscous suspension could be used as non-invasive injectable
applications in disc nucleosupplementation [22]. Additionally, they carried out ex vivo ex-
periments in porcine models, also evidencing that the implantation of CHI/CNF composite
hydrogels within fenestrated (defective) discs helps to restore their biomechanics [21,22].
Specially, the performance for annulus fibrosus (AF) tissue repair of distinct hydrogels
based on HA, chondroitin sulfate, collagen has been evaluated in vivo applying rabbit,
porcine, or bovine models [61–64]. Although hydrogels implantation has been related
to an upregulation of extracellular matrix (ECM) genes such as Col1, Col2, and Decorin
and catabolic matrix metalloproteases MMP13 and MMP3, nucleotomy, and implant ad-
ministration resulted in localized annular damage with AF inflammation and scarring,
impairing a proper tissue regeneration [61]. Therefore, other strategies focused on keeping
disc integrity, preventing AF damage and NP reherniation. In this context, treatment
of the nucleus pulposus with a liquid HA-based implant was proposed, which aimed to
fill irregularly shaped defects through in situ polymerization yielding a strain resistant
hydrogel [63]. A comparable approach investigated a minimal invasive shape-memory
annulus fibrosus closing device of poly(D,L-lactide–co–trimethylene carbonate) (PLA-TMC)
that revealed an elastic modulus of 1.7–2.5 MPa, ranging in the modulus of human AF
tissue [68]. In conclusion, there is increasing interest in designing a non-inflammatory,
mechanically performant, and well-integrated hydrogel for intervertebral disc repair, pos-
sibly with AF tissue sealing capacity, to ensure long-term regeneration of the IVD while
preventing further degeneration.

In this work, the interest of cellulose is to ensure the mechanical performance needed
in the pre-gelation state to deposit free-standing hydrogel constructs, while achieving
fiber-filled bioinspired hydrogel biomaterials. The development strategy was based on
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three main factors to obtain printable formulations: viscosity adjustment; ink flow prior to
extrusion, and printed material-specific gelation and mechanical performance. In terms of
nomenclature, it is worth noticing that the name “bioink” sometimes is used, as referred
to the achievement of 3D printed hydrogel constructs for cell seeding and growing, even
if biological bodies themselves were not directly incorporated in the initial ink. Different
CHI/CNF ink compositions will be considered in this work. To evaluate the suitability
of the 3D printed CHI/CNF hydrogel constructs for tissue engineering, cell growth and
migration will be evaluated in 3D cell culture studies. The CHI/CNF composition and
processing parameters will be optimized in terms of 3D printability and good quality of
constructs (microstructure and mechanics), resulting in good cell viability.

2. Materials and Methods
2.1. Chitosan Source and Characterization

Chitosan from squid pen chitin was supplied by Mahtani Chitosan (Veraval, India;
Batch type 144). The chitosan degree of acetylation (DA) was determined by 1H NMR
spectroscopy following the methodology of Hirai et al. [69,70]. The measurement was per-
formed on a Bruker ALS 300 spectrometer (Bruker GmbH, Ettlingen, Germany) (300 MHz
for 1H) at 298 K, which revealed a low DA of 2.5%. The CHI molecular weight was deter-
mined by size exclusion chromatography (SEC) coupled to multiangle laser light scattering
(MALLS) at the Chromatography Center of Institute of Chemistry of Lyon (ICL) [70–73].
To this end, chitosan solutions at 0.1% (w/v) were prepared in an acetic acid/ammonium
acetate buffer pH = 4.5 (AcOH (0.2 M)/AcONH4 (0.15 M)), which was used as an eluent.
Then, they were filtered through 0.45 µm pore size membranes (Millipore, Merck KGaA,
Darmstadt, Germany). The chromatographic equipment was composed of an IsoChrom LC
pump (Spectra-Physics, Santa Clara, CA, USA) connected to a Protein Pack 200 SW (Waters
GmbH, Eschborn, Germany) column and a TSK gel G6000 PWXL. A multiangle laser light
scattering detector DAWNDSP (Wyatt Technology Europe GmbH, Dernbach, Germany),
operating at 632.8 nm, was coupled online to a WATERS 410 differential refractometer.
The chitosan number (Mn) and weight-average molecular weights (Mw) determined by
SEC/MALLS were 4.10 × 105 g/mol (± 6.4%) and 6.11 × 105 g/mol (±9.6%), respectively,
which yield a polydispersity index Ip = Mw/Mn = 1.49 (±11.6%).

2.2. Cellulose Nanofibers

The used cellulose nanofiber type was nanofibrillated cellulose. Cellulose nanofiber
(CNF) suspensions were obtained from bleached pine sulfite dissolving pulp at the Centre
Technique du Papier (CTP, Grenoble, France), by a mechanoenzymatic method adapted
from Pääkkö et al. [74]. Before 1 h incubation at 50 ◦C with a solution of endoglucanase
FiberCare R® (Novozyme, Bagsvaerd, Denmark) at pH 5.0, the pulp was refined at 4.5%
consistency with a 12” single disk refiner for 25 min. The digested samples were further
refined to obtain a pulp suspension of Schopper-Riegler (SR) number higher than 80 SR and
mean fiber length lower than 300 µm. Fiber suspensions at 2% (w/w) were collected with
an Ariete homogenizer (Montigny le Bretonneux, France), involving one pass at 1000 bar,
followed by 3 passes at 1500 bars. The obtained CNFs displayed a surface charge density
of 40–80 mmol/kg and were weakly charged with carboxylate moieties.

2.3. Transmission Electron Microscopy

Morphology and dimensions of the cellulose nanofibers were investigated by transmis-
sion electron microscopy (TEM). Drops of a 0.001% (w/v) CNF suspension were deposited
on carbon coated copper grids (CF400-CU Carbon Film, 400 Mesh Copper grids), which
were previously cleaned with plasma to get rid of surface contamination and make the
grid more adhesive towards the sample. The samples were negatively stained with 2%
(w/v) uranyl acetate in suspension. Then, samples were allowed to dry and were observed
in the TEM microscope, model Zeiss LEO 912 Omega (Carl Zeiss Microscopy GmbH, Jena,
Germany), operating at 80 kV.
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2.4. Preparation of Chitosan/Cellulose Nanofiber Viscous Inks

Chitosan (CHI) viscous solutions: A stoichiometric amount of acetic acid was added to
chitosan powder dispersed in MilliQ water, as to protonate the free amine groups present
in the glucosamine units of chitosan (accounting for a chitosan degree of acetylation (DA)
value of 2.5%) and thereby allow the CHI complete solubilization. The mixture was left
under mechanical stirring overnight. Chitosan aqueous solutions at 2%, 3%, and 4% (w/v)
were prepared, named as CHI2, CHI3, and CHI4 formulations, respectively.

Cellulose nanofiber-filled CHI viscous suspensions: The CHI powder was firstly
mixed with CNFs aqueous suspension in MilliQ water and the dispersions were sonicated
with a SONOPULS Ultrasonic homogenizer (Bandelin electronic GmbH, Berlin, Germany)
for 5 min at 40% amplitude. Then, a stoichiometric amount of acetic acid was added to
completely solubilize the CHI contained in the mixture. The obtained suspension was
mechanically stirred overnight to ensure a good dispersion of CNFs within the CHI solution.
Viscous ink formulations, with CHI concentration of 2%, 3%, or 4% (w/v) and cellulose
nanofibers (CNF) contents of 0.4%, 0.5%, or 0.6% (w/v) were obtained.

Rheological Behavior

A rotational rheometer AR-2000 (TA Instruments, New Castle, DE, USA) fitted with a
cone and a plate flow geometry was used to characterize the rheological behavior of the
CHI/CNF viscous inks at 25 ◦C, with a gap size of 116 µm and a solvent trap to prevent
its drying or evaporation. The cone-plate geometry (25 mm diameter; 4◦) allows one to
ensure a uniform shearing to the sample. The analysis was performed in triplicate in the
continuous mode in a shear rate range from 0.005 to 1000 s−1 and the equilibrium time
was set at 15 s. TA Instruments TRIOS software was used in the measurements. Finally, the
flow diagrams of the CHI/CNF ink formulations were obtained, namely the plots of the
steady-state shear viscosity vs. shear rate.

2.5. 3D Printing of Cellulose Nanofiber-Filled Chitosan Hydrogel Scaffolds

The 3D printing of scaffolds of chitosan/cellulose nanofibers hydrogels was performed
with the 3D-Discovery Evolution bioprinter device (RegenHU, Villaz-St-Pierre, Switzer-
land), consisting of an x–y–z-axis positioning system with a tool charger equipped with
several printhead stations, and a building platform. The 3D structures were printed using
a CAD software controlled xyz motion-system that guides the tip position. Multilayer
square-shaped porous CHI/CNF hydrogel structures were 3D printed by microextrusion
using a pressure controlled direct-ink-writing system.

After preparing the inks as above (i.e., CHI solutions and CHI/CNF suspensions) they
were centrifuged for 20 min at 2000 rpm, to eliminate air bubbles before microextrusion. In
the 3D-Discovery bioprinter, the inks were loaded in a syringe (Nordson EFD, Feldkirchen,
Germany) mounted in a dispensing adaptor and extruded through precision conic dispense
tips with inner diameter of 250 or 410 µm (Nordson EFD, Feldkirchen, Germany), with a
printing speed of 40 mm·s−1 under applying a given pressure (0.15–0.77 bar). Scaffolds
were shaped as nets of 30 × 30 mm2 in size, composed by the alternation of 4 orthogonal
layers, each constituted of parallel hydrogel filaments printed with 0.85 mm interspace.
Hydreogel scaffolds were directly printed in Petri dishes containing aqueous 2 M NaOH
for chitosan neutralization, which was used as coagulation bath. The distance between
the extrusion needle tip and the Petri dish surface was set at 3 mm, by using a calibration
laser integrated to the 3D-Discovery Evolution bioprinter device. After a neutralization
time of 15 min, scaffolds were taken out from the alkaline bath and washed several times
with MilliQ water until neutrality. Chitosan/cellulose nanofiber hydrogel filaments and
3D scaffolds were printed using the above protocol with ink formulations containing CHI
at a concentration of 2 or 3% (w/v), and a CNF content of 0.4% (w/v). Table 1 summarizes
the varied CHI/CNF ink compositions with the different inner diameters (ID) of the
extrusion needles and extrusion pressure used in the direct-ink-writing process in the
bioprinter device.



Polymers 2021, 13, 1663 6 of 25

Table 1. Processing parameters for the printing of hydrogel filaments and 3D hydrogel scaffolds of CHI/CNF formulations.

Formulation CHI % (w/v) CNFs % (w/w) Needle Inner Diameter ID (µm) Extrusion Pressure (bar)

F1 (CHI2) 2 0 410 0.15
F2 (CHI2/CNF0.4) 2 0.4 410 0.25

F3 (CHI3) 3 0 410 0.35
F4 (CHI3/CNF0.4) 3 0.4 410 0.47

F5 (CHI2) 2 0 250 0.25
F6 (CHI2/CNF0.4) 2 0.4 250 0.35

F7 (CHI3) 3 0 250 0.70
F8 (CHI3/CNF0.4) 3 0.4 250 0.77

2.5.1. Scanning Electron Microscopy

The freeze-dried CHI/CNF printed hydrogel scaffolds were carefully fractured and
gold sputtered in a Polaron SC 7640 (VG Microtech, East Sussex, UK), and observed by
scanning electron microscopy (SEM) (Amray Inc., Bedford, MA, USA) at an accelerating
voltage of 15 kV. It is worth noticing that with this technique the analysis was performed in
the freeze-dry state. Nevertheless, it allowed to get insight into the dispersion of the CNFs
in the dry scaffold composites, which were originated from the hydrogel processing.

2.5.2. Microtensile Testing

The hydrogels of all CHI/CNF ink formulations shown in Table 1 were printed in a
single horizontal layer with an interspace of 2 mm, to characterize the hydrogel filament
resolution and mechanical properties. These latter were investigated using a microtensile
testing device. Hydrogel filaments were cautiously cut by using a razorblade to obtain
a length of approximately 8 mm. The cut filaments were glued onto a foliar frame with
a test span of about 7 mm by using cyanoacrylate glue (Loctite® 454, Henkel AG & Co,
Munich, Germany). Tests were conducted under controlled relative humidity (RH) of
45%, at a constant crosshead displacement speed of 8 µm/s, and the applied force (F)
was measured by a load cell with a maximum capacity of 50 N. The nominal stress σ was
calculated as the ratio of the applied force F to the initial cross sectional area A of the
hydrogel filament (σ = F/A), and the nominal strain ε was expressed as the ratio of the
extension of the hydrogel filament respect to its initial length l0 (ε = Dl/lo = (l− l0)/l0). The
Young’s modulus (E), ultimate stress (σb), and strain at break (εb) were determined from
the obtained stress–strain curves, considering at least six measurement replicates (n = 6)
for each printed formulation.

2.5.3. Wide and Small-Angle X-ray Synchrotron Scattering (WAXS and SAXS). In Situ
Microtensile Testing

X-ray synchrotron scattering analyses were performed at the microfocus beamline
mySpot, BESSY II at the Helmholtz-Zentrum Berlin HZB (Germany) and at the beamline
BM02/D2AM at the European Synchrotron Radiation Facility ESRF (Grenoble, France). At
Bessy II, data were collected at a wavelength λ = 1.0 Å, which setup allowed simultaneously
measuring small (SAXS) and wide-angle X-ray scattering (WAXS) using a two-dimensional
MARCCD detector. At this microfocus beamline, the synchrotron X-ray beam had a
diameter of around 10 µm, which passed through the CHI/CNF printed hydrogel filament
placed in a holder with Kapton foil windows, allowing for in situ tensile testing of the
hydrogel biomaterial while recording SAXS and WAXS signals. At the ESRF, SAXS data
were collected at a wavelength λ = 0.78 Å using a CCD detector (Roper Scientific GmbH,
Ottobrunn, Germany). Both at Bessy II and at the ESRF, the silver behenate was used
as standard to calibrate the scattering vector q-range, and transmission corrections and
background subtraction were performed in the SAXS/WAXS data treatment.
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2.6. 3D Cell Culture of Fibroblasts in the Printed Hydrogel Scaffolds

To evaluate the suitability of the CNF/CHI 3D printed hydrogels for tissue engineer-
ing, fibroblast cells were cultured in the 3D hydrogel scaffolds, as 3D printed and washed,
without any hydrogel drying step before cell cultivation. Cultures of 3T3 cells developed
using the NIH Swiss mouse embryo fibroblasts were performed (murine fibroblast, strain:
NIH/Swiss). Cells were grown in T75 (75 cm2) cell culture flasks (Sarstedt, Nümbrecht,
Germany). The cells were cultured in Dulbecco’s modified Eagle medium (DMEM) sup-
plemented with 2 mM L-glutamine and 10% fetal bovine serum (FBS) (Gibco, Thermo
Fisher Scientific, Leicestershire, UK) at 37 ◦C in a humidified atmosphere of 5% CO2 for
1 week. Upon 90% confluence, cells were rinsed twice with phosphate-buffered saline
(PBS) (Gibco, Thermo Fisher Scientific, Leicestershire, UK) followed by detachment with
trypsin/ethylene diamine tetra acetic acid (EDTA) for 5 min and neutralization with the
corresponding cell culture medium. After detachment, cells were spun down in a cen-
trifuge for 5 min at 110 rcf (Rotor F-45-30-11, Eppendorf 5417R, Hamburg, Germany). The
supernatant was discarded and cells were diluted into the culture medium. The 3D printed
CHI/CNF hydrogel scaffolds were put in 6-well cell culture plates, covering the whole well
surface for subsequent use for cell growth. To this end, 500 µL of suspension of the cells
in culture medium as above were added on the 3D printed CHI/CNF hydrogel scaffolds,
considering a starting loading average of 105 cells per well. The NIH/3T3 fibroblasts
seeded in triplicate in scaffolds of different CHI concentrations and CNF contents were
kept at 37 ◦C in CO2 incubation. Cells seeded in empty wells (i.e., without 3D-printed
hydrogels) were used as a control.

Live/Dead Cell Viability Assay

The viability of the cells was qualitatively evaluated to get an indication of whether
fibroblasts survive and grow in the CHI/CNF hydrogel scaffolds. Cultivation of at least 6
days was possible and proliferation was observed. The cells were inspected for viability
by fluorescent staining with a live/dead staining kit: calcein AM/ethidium-homodimer-1,
LIVE/DEAD™ viability/cytotoxicity kit, (Thermo Fisher Scientific, Leicestershire, UK).
After 1, 3, and 6 days of cell culture in the 3D hydrogel scaffolds as described above, a cell
washing step was performed with Hank’s balanced salt solution (HBSS, Gibco, Thermo
Fisher Scientific, Leicestershire, UK) and the freshly prepared LIVE/DEAD solution was
added to each sample. Samples were kept at incubation conditions for 15 min. After
staining, the wells were imaged using a confocal laser-scanning microscope (Leica TCS
SPE, Wetzlar, Germany). As the LIVE indicator, calcein AM marks cell cytoplasm in green
fluorescence; and as the DEAD indicator, ethidium homodimer-1 stains cell nucleus in
red fluorescence.

Cell counting: Image analysis of the LIVE/DEAD cell viability assay micrographs was
performed with Fiji (v1.52u), an ImageJ-based program [75]. Images were converted to 8-bit
and the contrast was normalized via ‘histogram normalization’ command. The trainable
weka segmentation tool was then used for cell segmentation [76]. Cells were counted using
the Fiji “find maxima” command with a constant noise level to distinguish cell maxima vs.
background noise. The results were exported to Excel for further statistical analyses.

Statistical analysis: All cell counting data were expressed as mean ± standard devia-
tion (SD). Statistical analysis was performed by the one-way analysis of variance (ANOVA)
using the software STATISTICA 10.0 (StatSoft Inc: Tulsa, OK, USA, 2011), followed by the
Tukey’s HSD post hoc test if significant differences were found (p < 0.05) in the ANOVA.

3. Results and Discussion
3.1. Cellulose Nanofibers Microstructure

Figure 1 shows TEM micrographs and the X-ray diffraction pattern of the cellulose
nanofibers (CNF) used to produce the CNF-filled chitosan inks and printed scaffolds. The
CNFs consisted of an entangled network of interconnected nanofibrils with very high
aspect ratio (length/width), with an average width of 35.2 ± 8.1 nm and bundles of up
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to around 50 nm width. The relatively high value of this latter could be related to the
drying during TEM sample preparation, which might induce partial fibril aggregation [74].
The mechanoenzymatic hydrolysis used to produce the nanofibers yields long nanofibrils
preserving the native cellulose I crystalline allomorph structure, as displayed in the X-ray
diffraction pattern (Figure 1c), with partly amorphous regions, which are able to inherently
entangle and form a fibril network with hairy branches [74]. The preserved native cellulose
I allomorph and the intramolecular hydrogen bonding within amorphous and crystalline
phases can lead to efficient nanoreinforcement effect, above from fibers consisting of
regenerated cellulose II allomorph.
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Figure 1. (a,b) TEM images of cellulose nanofibers (CNFs) at different magnifications. Scale bars:
(a) 100 nm; (b) 200 nm. (c) Wide angle X-ray diffraction pattern of the CNFs, with indexed crystallo-
graphic planes of native cellulose I allomorph.

3.2. Chitosan/Cellulose Nanofiber Inks Rheological Behavior

Figure 2 shows the flow diagrams of the CNF-filled chitosan viscous suspensions and
the corresponding chitosan solutions. A steady plateau corresponding to the Newtonian
viscosity is observed for all characterized samples. Two distinct regions can be observed in
the different curves: At low shear rates, the Newtonian flow region shows a constant zero-
shear viscosity (η0), as the provided shear forces to disentangle the polymer chains appear
to be lower or equal to those maintaining them tangled; at higher shear rates, a shear-
thinning behavior is observed with a decrease of viscosity as the shear rate increases [77,78].
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The flow diagrams (η vs.
.
γ = dγ/dt) of the “pure” chitosan solutions (Figure 2) could

be modelled with the three-parameter Cross law (Equation (1)): [79–81]

η =
η0,CHI

1 +
( .
γτCHI

)1−nCHI
(1)

The Cross equation yields the Newtonian or zero-shear viscosity η0, the flow behavior
index n, and the relaxation time of chitosan polymer chains τ, as displayed in Table 2. As
expected, the steady-state shear viscosity of the pure CHI inks increased with increasing
CHI concentration. The polymer chain interactions and entanglements increased with
the polymer concentration, restricting the chain relaxation into disentanglement. The
CHI/CNF viscous inks exhibited more complex flow diagrams, with higher Newtonian
viscosities measured in the low shear rate range (

.
γ < 1 s−1) and shear thinning occurring in

two different regimes, which was more evident for higher CNF contents (Figure 2). Thus,
these two-step flow diagrams of the CHI/CNF suspensions could be modelled with a
double Cross law (Equation (2)):

η = s
η0,CHI

1 +
( .
γτCHI

)pCHI
+

η0,CNF

1 +
( .
γτCNF

)pCNF
(2)

where η0,CNF, τCNF, and pCNF = 1− nCNF are the flow parameters of CHI chains, possibly
due to chains interacting with CNFs in the CHI/CNF suspensions in the slower flow
regime. Rheological model fitting used a Levenberg–Marquardt nonlinear regression
algorithm in the Octave 4.4.0 programming environment [22]. Table 2 shows the flow
parameters obtained for the CHI/CNF suspensions and the Newtonian viscosity η0,CHI,
the relaxation time τCHI, and the exponent pCHI = 1 − nCHI for pure CHI solutions. For
a given chitosan concentration, the presence of CNF increased the Newtonian viscosity
measured at low shear rates. With the increase of the shear rate, the viscosity of both the
pure CHI viscous solutions and the CHI/CNF inks similarly decreased, revealing almost
the same shear-thinning behavior. In the CHI/CNF formulations two different chain
relaxation phenomena might occur. In the “pure” CHI inks, the main chain relaxation,
being dominating at high shear rate and corresponding to the disentanglement of the
polymer chains transient network, shows relaxation time of 1 s in inks with 2% (w/v) CHI,
and around 6 s in inks with 3% (w/v) CHI (Table 2) [82,83]. At a low shear rate, in the
presence of CNFs, a second relaxation occurs with relaxation times of the order of 10 s
(practically independently of the CNF content, except for the formulation CHI3/CNF0.6
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with the highest CHI and CNF concentrations). To conclude, the higher Newtonian
viscosity measured at low shear rates in the CHI solutions filled with CNFs, in comparison
to the pure CHI solutions, and their similar shear-thinning behaviors with similar flow
exponents at high shear rates, could be explained due to the CHI polymer chain relaxation
(disentanglements) impacted by the CHI concentration [84]. As mentioned above, the
CNFs surface is weakly charged with carboxylate moieties displaying a surface charge
density of 40–80 mmol/kg [85,86]. Weak electrostatic interactions could establish between
the CHI polycation and the CNF polyanionic surface, allowing for stress transfer from
the CHI solution matrix to the nanofibers. According to the results, in the CHI/CNF inks
the establishment of a rigid cellulose network with permanent CNF–CNF interactions
would not occur, as a gel-like flow behavior with η~1/

.
γ would be instead observed [87].

Actually, CHI chains could absorb on the CNFs surface and play a role in the bridging
of nanofibers [88,89], resulting in entanglements formation between the adsorbed chains
and the other chains in the solution. Addition of the CNFs, even at low concentration, is
likely to impact the dynamics of CHI chains since the surface area of the nanofibers is very
large [58].

Thus, the relaxation time τ for chitosan is hypothesized to be interdependent with
the incorporation of CNF. When adding the CNFs, the observed relaxation time τCNF can
increase due to both the increase of CNF content and of CHI concentration (Table 2). Such
relaxation time is tentatively related to the rupture of CNF/CHI network (CNF strands
bridged by chitosan chains), which effect seems to be more important after reaching a
threshold of CHI concentration beyond 2% (w/v). Increasing the CNF content should result
in a denser CNF network, possibly involving rearrangements at larger scales of CNF aggre-
gates. Then, higher CHI concentration also should contribute to the CNF/CHI network,
since adsorbed CHI chain would act as fibril binders. It also will imply a denser network
with longer relaxation times, associated with larger scale reorientation and interfibrillar
bridge rupture with applied strains. Then, the decrease of the exponent pCNF (Table 2)
consistently should reflect a more heterogeneous CNF network disruption process at higher
CNF contents, specially emphasized in systems with higher CHI concentration. Never-
theless, the study of the flow diagrams in the extended shear rate range, for example by
capillary rheometry with use of the Weissenberg–Rabinowitsch correction as we previously
investigated (Doench et al. [22]), would be necessary to determine the exponent parameter
p with precision.

Table 2. Flow parameters determined from the viscosity vs. shear rate curves (Figure 2) of different
CHI/CNF compositions, by using the Cross model (Equation (1)) for naked CHI inks and double
Cross model (Equation (2)) for CHI/CNF formulations.

Formulation η0,CHI (Pa·s) τCHI (s) pCHI s η0,CNF (Pa·s) τCNF (s) pCNF

CHI2 83 1.0 0.73 - - - -
CHI2/CNF0.4 83 1.0 0.73 1.22 30.4 11.9 1.96
CHI2/CNF0.5 83 1.0 0.73 1.56 87.8 9.6 1.46
CHI2/CNF0.6 83 1.0 0.73 1.75 116.3 8.6 1.95

CHI3 674 6.0 0.71 - - - -
CHI3/CNF0.4 674 6.0 0.71 1.11 39.3 8.7 6.55
CHI3/CNF0.5 674 6.0 0.71 1.33 207.3 10.9 2.87
CHI3/CNF0.6 674 6.0 0.71 1.88 752.1 13.9 1.89

Thus, the CHI/CNF inks flow at high shear rates is dominated by the CHI chains
disentanglement and is less affected by the presence of the CNFs. This is advantageous
for printability by extrusion of this system, as CNFs can contribute to improve mechan-
ical properties and increase the zero shear viscosity while practically not affecting the
extrudability of CHI-based systems (higher shear rates).
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3.3. Cellulose Nanofiber-Filled Chitosan Printed Hydrogels
3.3.1. Morphology and Dimensions

Figure 3 shows images of hydrogel filaments printed from different CHI/CNF formu-
lations by varying the extrusion needle inner diameter (ID) and pressure as displayed in
Table 1. The addition of CNFs into the CHI viscous solutions slightly decreases the diameter
of the printed hydrogel filaments. This might be related to a limited swelling at the die
outlet due to the increased viscosity and relaxation time resulting from mild interaction
between CHI and CNFs, as inferred from the rheological analysis. In general, the decrease
of extrusion needle inner diameter offers an increase resolution of printed filaments [90].
Thus, the combined effect of the composition of the CHI/CNF formulation, needle inner
diameter, and pressure contribute to the size resolution of the hydrogel filaments.
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Figure 3. Photos of the hydrogel filaments obtained by microextruding CHI/CNF viscous suspensions of different
compositions through needles with tip inner diameters (ID) of 250 or 410 µm (scale bars: 1500 µm). Histograms with
hydrogel filament mean diameters obtained after printing the different CHI/CNF formulations. Right: Printed hydrogel
average filament diameters obtained for the different CHI/CNF formulations, using the two different extrusion needle
ID. For the statistical analysis, independent sample t-tests were performed with STATISTICA 10.0 (StatSoft Inc: Tulsa, OK,
USA, 2011). p < 0.05 was accepted as statistically significant. Filament diameter values are expressed as means ± SDs. n = 6
(** p < 0.01, *** p < 0.001).

Figure 4 shows scanning electron microscopy (SEM) micrographs of the cross-section
of the CHI/CNF filaments after freeze-drying. Although the lyophilizates are known to
exhibit a coarser morphology in comparison with hydrogels [91], the obtained scaffolds
show a fine spider web-like network microstructure with interconnected fibrils, which
might facilitate cell adhesion, proliferation, and migration. Cellulose nanofibers were not
distinguishable, which should confirm a good dispersion of the CNFs in the composite. The
SEM images revealed that with the increase in CHI concentration, the porosity decreases
and the pore sizes strongly increases with the incorporation of CNFs (Figure 4). In one
hand, the nanofibers seem to favor microstructures with more expanded flat walls with
still residual fibrillar network morphology (Figure 4b). Sereni et al. [92] reported on the
formation of radial capillaries or microrange tubular pores in CHI physical hydrogels,
related to directional neutralization of chitosan chains during hydrogel processing. The
addition of CNF has influence on CHI/CNF suspension viscosity, which should impact the
size of resulting tubular pores in hydrogels [92]. Such tubular porosity revealed in related
biopolymer hydrogels might be also observed in the freeze-dried scaffolds.
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Figure 4. Scanning electron micrographs (SEM) of hydrogels printed from neat chitosan CHI 2% and 3% (w/v) ink
formulations ((a,c), respectively), and from CHI2/CNF0.4 ink formulation (b). Scale bars: 5 µm.

3.3.2. Mechanical Properties

Figure 5 shows the stress–strain curves of microtensile testing performed on the
printed CHI and CHI/CNF hydrogel filaments. Figure 5c summarizes the achieved
Young’s modulus (E), stress (σb), and strain at break (εb) obtained for filaments of dif-
ferent compositions and printing conditions. The mechanical behavior was influenced by
the CHI concentration, the CNFs content and the printing processing parameters like the
extrusion needle inner diameter (ID). The Young’s modulus and tensile strength increased
with the CHI and CNF concentrations, but decreased with the increase of needle inner
diameter. As expected, varying CNFs concentrations from 0 to 0.4% induced a significant
enhancement in the mechanical properties of composite hydrogel filaments. Finally, me-
chanical properties of CHI hydrogels could be improved by reinforcing with the CNFs.
The enhanced properties are due to the CNFs nanoscale (large specific surface area), high
Young’s modulus, and aspect ratio typical of nanofibrillated cellulose [21,22,42,43,56]. In
the hydrogel composites, an efficient matrix/reinforcement interaction should contribute to
the stress transfer from the CHI matrix to the nanofibers, thereby yielding higher stiffness
and strength. Moreover, in the microtensile testing the uniaxial stretching was performed
in the same direction as the axis of the extrusion needle. Thus, the obtained mechanical
properties should be also impacted by the orientation of both the CHI polymer chains
and the CNFs along the hydrogel extrudate axis, due to shear-induced orientation during
extrusion. Such effect could be more significant when using a thinner extrusion needle like
that of ID = 250 µm (Figure 5).
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Figure 5. Stress–strain curves of uniaxially stretched printed hydrogel filaments of chitosan (CHI) alone and cellulose
nanofiber (CNF) filled chitosan composites, for different CHI and CNF concentrations, by using conic extrusion needles with
inner diameter (ID) of: (a) 410 µm and (b) 250 µm. (c) Young’s modulus (E), stress (σb), and strain at break (εb) achieved for
the tensile tested filaments in (a,b), obtained with the two different extrusion needle IDs.

3.3.3. Synchrotron X-ray Scattering SAXS/WAXS Analyses of Printed Hydrogels.
Characterization of the Cellulose Nanofibers Dispersion and Orientation

Microstructural characterization was also performed by synchrotron X-ray scattering
SAXS and WAXS of the CHI/CNF printed hydrogel filaments. Figure 6a shows the SAXS
analyses of printed CHI/CNF hydrogel composites and the corresponding CHI reference.
In the low q-range (where qR0 << 1, with R0 being the radius of nanofibrillar objects),
a scattering law between 1/q2 and 1/q3 was observed, closer to 1/q2 for the pure CHI
hydrogel, and to 1/q3 for the CHI/CNF systems. This scattering laws could be attributed
to a large distribution of cross-section radii R0 of the fibril-like features constituting the
hydrogel fibrillar network microstructure in pure CHI hydrogels [40,93], as revealed by
SEM (Figure 4); and also to the morphology of the CNF rod-like particles with broad cross-
sectional size distribution. In the q-range for q > 0.7 nm−1, the Porod’s law (I(q) = C/q4)
is evidenced, revealing the sharp electron density variation within the microstructure.
The Porod’s law can be used to estimate the Porod’s length ( lp = VCNF

SCNF
∼ Q

ϕCNFπC ) of the

CNFs, where Q is the scattering invariant Q =
∞∫
0

I(q)q2dq, and C the Porod’s constant [94].

Then, the invariant Q can be estimated using the Equation (3), which is divided in three
subintegrals (Q1, Q2, and Q3) corresponding to integration in different regions of the SAXS
scattering curve (Figure 6a): (Q1) at the lowest (low-q Guinier region, q→0), (Q2) middle
(intermediate-q Guinier region) with qmax around 0.7 nm−1, and (Q3) final slope (Porod
region) q-values, with the lowest q-angle SAXS trend of the regions (1) and (i2) mainly
obtained by extrapolation.

Q =

∞∫
0

I(q)q2dq =

qmin∫
0

Aq2+αdq +
qmax

∑
qmin

I(qi)q2
i ∆q +

∞∫
qmax

C· exp
(
−s2q2)

q2 dq (3)

The Porod’s constant C was deduced by non-linear least square fit (using lsqcurvefit()
function in Matlab). The approximate value of the Porod’s length lp was expressed as
lp ∼ Q

πC , with Q being the sum of the subintegrals Q1, Q2, and Q3. For example, from the
SAXS curve of the formulation CHI3/CNF0.4, containing 3% (w/v) CHI and 0.4% (w/v)
CNF, the resulted lp value was ~8 nm, which should correspond to the smallest width of
the cellulose fibrils within the suspension. This fairly agrees with the width range of the
individualized cellulose nanofibrils as observed by TEM (Figure 1a), demonstrating that
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an excellent dispersion of the CNFs was obtained within the printed CNF-filled chitosan
hydrogel composites.
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Figure 6. (a) Synchrotron small-angle X-ray scattering (SAXS) radial average curves of the CHI/CNF printed hydrogel
filaments; (b) 2D SAXS image patterns recorded for different strains after stretching the CHI3/CNF0.4 printed hydrogel
formulation, with printed CHI hydrogel reference included. (c) Synchrotron wide-angle X-ray scattering (WAXS) radial
average of printed CHI3/CNF0.4 hydrogel composite, for example, after 14% of tensile strain; (d) Evolution of the Herman’s
orientation factor f H estimated from the azimuthal intensity plots of the (200)I reflection of cellulose I (fitted with Lorentz
function) at different strain values during in situ uniaxial stretching (rate: 1 µm/s, RH: 45%) using X-ray synchrotron
radiation, for the CHI3/CNF0.4 printed hydrogel. The red dashed-line in (d) shows the CNF orientation distribution
function obtained by the affine model used for reorientation of rigid rod-like crystals [95,96].

Then, uniaxial stretching of the printed hydrogel filaments was performed at the
synchrotron beamline to allow in situ microstructural characterization by X-ray scattering
(SAXS/WAXS) and the orientation of the CNFs within the CHI/CNF hydrogels and its
quantification (Figure 6a). The appearance of the SAXS patterns in Figure 6b (Right), which
become more anisotropic when the strain values increased, shows that the preferential
orientation of CNF and chitosan nanofibrils in the hydrogel biomaterial could be further
increased at stretching the printed filaments. From the 2D WAXS synchrotron patterns
of the CHI/CNF hydrogels, the Herman’s orientation factor fH of cellulose crystals could
be calculated. To this end, the 2D X-ray scattering images were azimuthally sectorized,
and the intensity peak around the (200)I crystallographic ring of Cellulose I allomorph
was deconvoluted (Figure 6c) for each sector centered at the azimuthal angle ϕk. This
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calculation was performed for different diffraction images obtained for different strain
values (Figure 6d) during stretching the CHI/CNF hydrogel filament at the synchrotron
X-ray beamline. From this I200,k sectorization, the Hermans’ orientation factor for the (200)I
reflection of Cellulose I was obtained as follows (Equation (4)):

fH =

360∫
ϕ=0

I200(ϕ)cos2(ϕ) sin(ϕ)dϕ

360∫
ϕ=0

I200(ϕ) sin(ϕ)dϕ

=

∑
k sec tor

I200,kcos2(ϕk) sin(ϕk)∆ϕ

∑
k sec tor

I200,k sin(ϕk)∆ϕ
(4)

where ∆ϕ is the azimuthal angle differentiate for each sector. The details of the deconvolu-
tion fit with Lorentz functions and parabolic contribution of water, the treatment of the
sector-averaged azimuthal intensity vs. azimuthal angle ϕk, and the resulting calculation of
the <cos2 ϕ> are described in the Supporting Information (Supplementary Materials Figure
S1 and Equation (S2)). Figure 6d shows that the Hermans’ orientation factor evolved from
close to 0 (random orientation) to −0.11 (anisotropic orientation of CNF) at stretching the
CHI3/CNF0.4 printed hydrogel till strain around 20%. For printed CHI3/CNF0.2 hydro-
gels, a similar decrease of fH until down to −0.08 was obtained after a 20% applied strain
(data not shown). The evolution of the fH values confirms the enhancement of alignment of
CNFs in the stretching axis, which enhances the mechanical performance of the hydrogel
composites. The calculated values of Hermans’ factor fH due to CNF orientation are in
good agreement with the affine model calculation [95,96] shown in Figure 6d (red) (see also
Supplementary Materials Figure S1), describing the reorientation of rigid rod-like crystals.

3.3.4. Experimental Design for the Optimization of the Size Resolution and Mechanical
Performance of CHI/CNF Printed Hydrogels

An experimental design allowed statistically evidencing the impact of the processing
parameters discussed above on the printed hydrogel filament diameter and mechanical
properties. To determine the most significant parameters affecting the resolution and me-
chanical performance of the printed CHI/CNF hydrogels, the three independent variables:
concentration of chitosan c(CHI), cellulose nanofibers content c(CNF), and printing extru-
sion needle tip inner diameter (ID) were considered in the statistical analysis. As above, the
c(CHI), c(CNF), and needle ID were varied following two levels: c(CHI): 2% and 3% (w/v);
c(CNF): 0% and 0.4% (w/w); needle ID: 250 and 410 µm. A 23 factorial design was used,
including the eight formulations described in Table 1. The run order of the experiments
was randomized to prevent systematic errors. The following responses: printed CHI/CNF
hydrogel filament diameter (Figure 3) and mechanical properties (Young’s modulus E, and
stress at break σb) (Figure 5) were evaluated with the analysis of variance (ANOVA) using
the software STATISTICA 10.0 (StatSoft Inc: Tulsa, OK, USA, 2011). The significance of the
effects was verified with Fisher’s statistical test using 0.05 as significance level. ANOVA
analyses showed that the CNFs content and the needle ID were the most significant vari-
ables (p < 0.05) influencing on the diameter of the printed hydrogel filaments. Concerning
mechanical properties, the three factors: (1) c(CHI); (2) c(CNF); (3) needle ID were signifi-
cant for the Young’s modulus and the stress at break of the printed filaments. Interactions
of c(CHI)*needle ID (1 by 3) and of c(CNF)*needle ID (2 by 3) also have significant influence
on the filament diameter. The ANOVA results are shown in Supplementary Materials
Tables S1–S3 while Pareto Charts are depicted in Figure 7. The needle ID has the strongest
effect on the hydrogel filament diameter. As expected, a thinner needle leads to smaller
filament diameters. The c(CNF) has a negative effect on this response, which means that
higher c(CNF) is needed to achieve thinner filaments. The interaction between c(CHI) and
needle ID (1 by 3) also has a negative effect on the filament diameter. When the needle
ID is in its lower level (250 µm), the c(CHI) also should be in its lower level (2% (w/v)) in
order to reach the lowest filament diameter. Similarly, if the needle ID is in its higher level
(410 µm), a high c(CHI) is preferred to develop filaments with smaller diameter. These
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effects are shown in Supplementary Materials Figure S2. For the mechanical properties,
the c(CHI) and c(CNF) have positive effect, while needle ID has a negative one. Thus,
higher Young’s modulus and stress at break are achieved for higher concentrations of CHI,
CNF, and smaller needle ID. Finally, as both responses are important to achieve printable
and functional CHI/CNF hydrogel filaments of high size resolution and good mechanical
properties, which might be a premise for the 3D printing of hydrogel constructs, the desir-
ability function was used to simultaneously optimize the two responses (filament diameter
and mechanical properties). This function is based on a numerical interval that defines
the desirability of the analyst in relation to the process optimal condition. To achieve
hydrogel filaments with the lowest diameter and the highest mechanical performance, the
optimization using the desirability function yielded as optimum processing parameters:
c(CHI) = 3% (w/v); c(CNF) = 0.4% (w/w); needle ID = 250 µm (Supplementary Materials
Figure S3), corresponding to that used in the formulation F8 of Table 1.

Polymers 2021, 13, x FOR PEER REVIEW 16 of 25 
 

 

have positive effect, while needle ID has a negative one. Thus, higher Young’s modulus 
and stress at break are achieved for higher concentrations of CHI, CNF, and smaller needle 
ID. Finally, as both responses are important to achieve printable and functional CHI/CNF 
hydrogel filaments of high size resolution and good mechanical properties, which might 
be a premise for the 3D printing of hydrogel constructs, the desirability function was used 
to simultaneously optimize the two responses (filament diameter and mechanical 
properties). This function is based on a numerical interval that defines the desirability of 
the analyst in relation to the process optimal condition. To achieve hydrogel filaments 
with the lowest diameter and the highest mechanical performance, the optimization using 
the desirability function yielded as optimum processing parameters: c(CHI) = 3% (w/v); 
c(CNF) = 0.4% (w/w); needle ID = 250 μm (Supplementary Materials Figure S3), 
corresponding to that used in the formulation F8 of Table 1. 

 

 
Figure 7. Cont.



Polymers 2021, 13, 1663 17 of 25Polymers 2021, 13, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 7. Pareto chart of the three responses: (a) hydrogel filament diameter, (b) Young’s modulus 
E, and (c) stress at break σb, after considering a two level variation of the variables: (1) c(CHI), (2) 
c(CNF), and (3) needle ID, in a 23 factorial experimental design. 

3.4. 3D Printed CHI/CNF Hydrogel Scaffolds 
The obtained good conditions for hydrogel filament resolution and mechanical 

properties were considered for the printing of hydrogel scaffolds and in vitro cell culture 
experiments. The 3D scaffolds of varied CHI and CNF concentrations were printed for 
comparison, and with the different needle IDs, to demonstrate the feasibility of extending 
the above results into printing approaches in 3D, in the form of layered hydrogels. Again, 
the benefit of adding CNFs as reinforcement in CHI hydrogels to print 3D CHI/CNF 
hydrogel composites was clearly observed, where 3D CHI-based scaffolds of both 2% and 
3% (w/v) chitosan containing CNFs amount as low as 0.4% showed lower filament 
diameter, i.e., better resolution than those scaffolds only containing chitosan (Figure 8). 

Needle ID: 410 μm CHI2 

 

CHI2/CNF0.4 

 

CHI3 

 

CHI3/CNF0.4 
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E, and (c) stress at break σb, after considering a two level variation of the variables: (1) c(CHI),
(2) c(CNF), and (3) needle ID, in a 23 factorial experimental design.

3.4. 3D Printed CHI/CNF Hydrogel Scaffolds

The obtained good conditions for hydrogel filament resolution and mechanical prop-
erties were considered for the printing of hydrogel scaffolds and in vitro cell culture
experiments. The 3D scaffolds of varied CHI and CNF concentrations were printed for
comparison, and with the different needle IDs, to demonstrate the feasibility of extending
the above results into printing approaches in 3D, in the form of layered hydrogels. Again,
the benefit of adding CNFs as reinforcement in CHI hydrogels to print 3D CHI/CNF
hydrogel composites was clearly observed, where 3D CHI-based scaffolds of both 2% and
3% (w/v) chitosan containing CNFs amount as low as 0.4% showed lower filament diameter,
i.e., better resolution than those scaffolds only containing chitosan (Figure 8).
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Suitability of 3D Printed CHI/CNF Hydrogel Scaffolds for Three-Dimensional
Cell Culture

NIH/3T3 fibroblast cells were cultured in the printed multilayer CHI/CNF hydrogels.
Three different ink formulations (CHI2, CHI3, and CHI2/CNF0.4) were considered in the
cell culture studies. LIVE/DEAD cell viability assays at Day 1, 3, and 6 were performed.
Figure 9a shows micrographs obtained at the confocal fluorescent microscope for different
scaffold compositions at the corresponding culture times.

Cells proliferated within the accessible interfilament spaces predefined for the printed
multilayer hydrogel mesh, which yielded cellularized bioconstructs. For the lower CHI
concentration (2% (w/v)), after initial cell adhesion on the filaments surface, the cells also
colonized the inner microstructure of the hydrogel filaments as clearly observed after
days 3 and 6 for the CHI2 and for the CHI2/CNF0.4 formulations (Figure 9). This was
hardly observed in the mesh printed with CHI 3% (w/v), which might be related to a lower
porosity of the hydrogel filaments at higher CHI concentrations (as displayed in the SEM
observation of corresponding lyophilizates, Figure 4c), which might hinder cell colonization
in the denser hydrogel. This led to significant cell death after 6 days of incubation in the
CHI3 formulation. In contrast, for scaffolds prepared with CHI 2% (w/v), which in addition
contained 0.4% of CNFs, an appreciable colonization of cells was observed both in the
inner porous microstructure of the CHI2/CNF0.4 hydrogel filaments and in the interspaces
(big pores) of the scaffold mesh with dimensions predetermined in the 3D printing process.
Thus, fluorescent micrographs after 3 and 6 days of culture in the CHI2/CNF0.4 constructs
display a growing of cells in 3D, which becomes more significant and homogeneous after
6 days (Figure 9). The incorporation of CNFs at that low content of 0.4% (w/v), in hydrogels
prepared with low CHI concentration like 2% (w/v), seems to phenomenologically yield
the appropriate composition for the best in vitro response, which related microstructure is
displayed in the SEM analysis of Figure 4b in comparison to the other compositions. The
achieved pore sizes combination, the inner walls surface of the composite microstructure
and the mechanical properties (Young’s modulus: 2 MPa, stress at break: 1 MPa) of this
CHI2/CNF0.4 composition seems to be optimal for cell adhesion and proliferation with
guaranteed nutrients exchange in the 3D hydrogel scaffold, resulting in homogeneous
cell colonization within the whole scaffold (Figure 9). Thus, the addition of CNFs to CHI
improves hydrogel stiffness and does not compromise the biocompatibility of chitosan and
viability of cells.
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Figure 9. (a) LIVE/DEAD assay confocal laser scanning microscopy (CLSM) images after culture of NIH/3T3 fibroblast
cells in 3D printed CHI/CNF hydrogel composite scaffolds of different CHI and CNF concentrations (Figure 8). LIVE
indicator: green fluorescence; DEAD indicator: red fluorescence. Scale bars: 500 µm. Three-dimensional frames (3 days)
scale: CHI2) x*y*z: 2.3*2.3*0.075 mm3; CHI2/CNF0.4) x*y*z: 2.3*2.3*0.50 mm3; CHI3) x*y*z: 3.0*3.0*0.15 mm3. (b) (Left)
Number of LIVE cells n(LIVE); (Right) n(LIVE)/n(DEAD) cell ratio obtained for the different CHI/CNF formulations at the
different days, expressed as means ± SDs, n = 4 (* p < 0.05, ** p < 0.01, *** p < 0.001).

The above findings were quantitatively evaluated and demonstrated in the statis-
tical analysis of the LIVE and DEAD counted cells (see also Supporting Information).
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Figure 9b reports the number of LIVE cells counted after 1, 3, and 6 days of culture of
fibroblasts within the 3D printed hydrogel scaffolds containing different concentrations
of CHI and CNFs. Between the different formulations, after 3 days significant differences
were observed in the number of living cells with more alive cells in the formulations con-
taining low chitosan concentration like the CHI2 and CHI2/CNF0.4, respect to the CHI3
hydrogel scaffold; and with no significant differences in the number of living cells
between those formulations of low chitosan concentration (CHI2 and CHI2/CNF04).
Then, after 6 days incubation, the number of living cells in the cellulose nanofiber-filled
chitosan hydrogel was significantly higher than in the scaffolds prepared with chitosan
alone (Figure 9b). The ratio of living to dead cells n(LIVE): n(DEAD) was also statistically
evaluated (Figure 9b) and significant differences were observed in the CHI2 and CHI3
formulations for the days 3 and 6 with respect to day 1, this is with a significant increase of
the number of dead cells after day 3. In contrast, in the formulation containing the cellulose
nanofibers (CHI2/CNF0.4) the balance between LIVE and DEAD cells did not significantly
change along the considered culture days.

4. Conclusions

The engineering of purely natural and mechanically performant bioinspired 3D
printed hydrogels, for application in tissue engineering, of chitosan (CHI) hydrogels filled
with cellulose nanofibers (CNFs) without any modification of the biopolymer constituents
and addition of any chemical crosslinker, was achieved by extrusion-based 3D printing
technology. The addition of cellulose nanofibers with high mechanical properties into
chitosan hydrogel ensured good printing ability and printed constructs resolution without
compromising chitosan bioactivity and biocompatibility. The viscosity of the printable
CHI/CNF suspensions (inks) was as low as 100–500 Pa·s at shear rate 1 s−1 and allowed
the deposition of gel filaments of good mechanical performance and printing resolution
(220–430 µm). Stable 3D hydrogel meshes were obtained with very low concentration both
of the biopolymer matrix and the nanofiber filler, still supporting three-dimensional cell
colonization and good cell viability, yielding cellularized bioconstructs. Finally, the most
relevant CHI/CNF biomaterial technical characteristics were optimized to produce natural
bioinspired 3D functional fiber-filled hydrogels for tissue engineering applications with
great potential in the repair of mechanically demanding hydrogel tissues like intervertebral
disc, cartilage, meniscus, among others. The immediate perspective of this work is the
development of different 3D-shape bioconstructs, targeting the anisotropic and multil-
amellar hydrogel structure of intervertebral disc regions. This will constitute a forward
step of our previous studies dedicated to assess biocompatible and functional composite
hydrogel implants in disc tissue engineering and regeneration, with the advantage of using
3D printed more-mimicking hydrogel environments for cell and tissue growth.

5. Patents

Osorio-Madrazo, A.; David, L.; Montembault, A.; Viguier, E.; Cachon, T. Hydro-
gel Composites Comprising Chitosan and Cellulose Nanofibers. International Patent
Application No. WO 2019/175279 A1, 19 September 2019; US Patent App. 16/980,383,
12 February 2021.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13101663/s1, Figure S1: Azimuthal intensity around the diffraction signal (200)I of
cellulose I crystals constituting the cellulose nanofibers (CNFs) vs. azimuthal angle ϕ; Figure S2:
Effect of the interaction between c(CHI) and needle ID on the hydrogel filament diameter; Figure S3:
Profiles of predicted values and desirability; Table S1: ANOVA analysis for printed hydrogel filament
diameter, Table S2: ANOVA analysis for Young’s modulus E of printed hydrogel filament, Table S3:
ANOVA analysis for stress at break of printed hydrogel filament.
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