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A B S T R A C T   

Immune cell infiltration and tumor-related immune molecules play key roles in tumorigenesis and 
tumor progression. The influence of immune interactions on the molecular characteristics and 
prognosis of clear cell renal cell carcinoma (ccRCC) remains unclear. A machine learning algo-
rithm was applied to the transcriptome data from The Cancer Genome Atlas database to deter-
mine the immunophenotypic and immunological characteristics of ccRCC patients. These 
algorithms included single-sample gene set enrichment analyses and cell type identification. 
Using bioinformatics techniques, we examined the prognostic potential and regulatory networks 
of immune-related genes (IRGs) involved in ccRCC immune interactions. Fifteen IRGs (CCL7, 
CHGA, CMA1, CRABP2, IFNE, ISG15, NPR3, PDIA2, PGLYRP2, PLA2G2A, SAA1, TEK, TGFA, 
TNFSF14, and UCN2) were identified as prognostic IRGs associated with overall survival and 
were used to construct a prognostic model. The area under the receiver operating characteristic 
curve at 1 year was 0.927; 3 years, 0.822; and 5 years, 0.717, indicating good predictive accuracy. 
Molecular regulatory networks were found to govern immune interactions in ccRCC. Addition-
ally, we developed a nomogram containing the model and clinical characteristics with high 
prognostic potential. By systematically examining the sophisticated regulatory mechanisms, 
molecular characteristics, and prognostic potential of ccRCC immune interactions, we provided 
an important framework for understanding the molecular mechanisms of ccRCC and identifying 
new prognostic markers and therapeutic targets for future research.   
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1. Introduction 

Renal cell carcinoma (RCC) is one of the most common cancers of the urinary system, accounting for 2 % of all malignancies in 
adults, of which clear cell renal cell carcinomas (ccRCCs) constitute the majority (approximately 75 %) [1]. ccRCC is a malignant 
parenchymal tumor with different molecular characteristics [2]. Over the years, significant advances have been made in the treatment 
of ccRCC. However, these improvements often fail to yield satisfactory therapeutic results [3,4]. Metastases occur in 35 % of patients at 
initial diagnosis, and distant metastases occur in 30 % of patients after surgery in the early stages of the disease [5–7]. Therefore, 
further research on the mechanisms by which ccRCC occurs and develops, efforts to identify potential biomarkers, and the devel-
opment of new diagnostic methods are urgently needed. 

The tumor microenvironment (TME) is a complex environment that includes immune cells, stromal cells, and extracellular matrix 
molecules that reflect the nature of the tumor and promote its immune escape, growth, and metastasis [8,9]. Regulatory T cells and 
tumor-associated macrophages are associated with tumor-promoting functions in the TME [10,11]. While CD8+ T cells predominate in 
the early stages of tumorigenicity or development, immunosuppressive immune cells predominate as the tumor progresses [12,13]. As 
one of the earliest and most sensitive malignancies to immunotherapy, ccRCC has been shown to be a highly immunologically infil-
trating tumor in several clinical and genomic studies [14–17]. One study found that ccRCC has the highest cytolytic activity index 
compared to that of other human cancers [18]. Additionally, spontaneous degeneration found in up to 1 % of ccRCC cases is primarily 
regarded as immune mediated [19]. However, the molecular characteristics of tumor-immune interactions remain to be fully studied 
to understand the cellular and molecular composition and function of the TME in ccRCC and to further evaluate its prognostic potential 
in ccRCC. 

Molecular characterization of tumor-immune system interactions has been systematically studied in a variety of human tumors. 
Based on The Cancer Genome Atlas (TCGA) database, Lin et al. found that 10 immune-related genes (IRGs) have a high prognosis for 
colorectal cancer and can also reflect the degree of infiltration of various immune cells [20]. Another study demonstrated that an 
IRG-based prognostic model is superior to two commercial prognostic markers for early non-small cell lung cancer [21]. Wang et al. 
developed an immune-related marker containing 15 IRGs that could better predict the prognosis of renal papillary cell carcinoma 
patients [22]. However, in the field of ccRCC, existing studies have only described the immune properties of ccRCC using a machine 
learning algorithm or from the perspective of immune cell infiltration [23–26], and the molecular characteristics and prognostic 
potential of ccRCC-immune interactions have not been systematically explored. Moreover, limited IRGs models are available to predict 
the prognosis of ccRCC patients. Therefore, it is important to develop novel IRG markers for screening new immunotherapy targets. 

Using an immunophenotypic perspective in this study, we aimed to address the molecular characterization of ccRCC-immune 
interactions and their prognostic potential from an immunophenotypic point of view. We systematically explored the molecular 
characteristics and prognostic potential associated with ccRCC immune interactions. The preliminary results revealed the complex 
immunological processes and biological functions of these molecules and their regulatory networks. Subsequently, we developed a 
predictive model and nomogram based on the IRGs, both showing high potential for diagnostic accuracy and individual risk strati-
fication, as well as higher discriminative and predictive power than those of commonly used clinical characterization methods. Further 
research on immunotherapy targets and the development of novel immunotherapeutic drugs will benefit from the findings of this 
study, which can help individualize immunotherapy strategies for ccRCC patients. 

2. Materials and methods 

2.1. Data collection and collation 

We downloaded transcriptome data containing 72 normal renal tissue specimens and 539 ccRCC specimens from the TCGA 
database (https://portal.gdc.cancer.gov/). ArrayExpress was also accessed to obtain the E-MTAB-1980 dataset (https://www.ebi.ac. 
uk/arrayexpress/). After this, clinical data and transcriptome data were summarized and analyzed based on the following criteria: (a) 
duplicate samples were deleted, (b) censored data were deleted, (c) transcriptome data expressing values less than 1 were deleted, and 
(d) patients whose overall survival (OS) was less than 90 days were removed. 

2.2. Single-sample gene sets enrichment analysis (ssGSEA) 

The ssGSEA algorithm was used to evaluate the immune characteristics of each sample based on 29 immune gene sets associated 
with different immune cell types, functions, pathways, and checkpoints [27] (Table S1). Data analysis is mostly conducted using 
Bioconductor packages such as GSVA, limma, and GSEABase (www.bioconductor.org). 

2.3. Hierarchical cluster analysis 

In order to perform hierarchical cluster analysis, we used Euclidean distances and Ward’s links calculated by ssGSEA for each 
patient’s immunological characteristics. According to the clustering results, ccRCC patients with high immunity and low immunity 
were separated. 
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2.4. Estimation of stromal and immune cells in tumor tissues (ESTIMATE) 

ESTIMATE is a complex algorithm based on ssGSEA that evaluates the level of infiltration of tumor cells and different normal cells 
by analyzing the cancer cell transcription profile [15]. Based on ccRCC expression data, we estimated the stromal cells and immune 
cells in each sample and computed the StromalScore, ImmuneScore, and EstimateScore. This analysis is mainly conducted through the 
estimate package. 

2.5. Evaluating tumor-infiltrating immune cells in tumor tissues 

By estimating relative subsets of RNA transcripts (CIBERSORT) and its supplied LM22 gene set, the degree of infiltration of immune 
cells between different groups was estimated. The CIBERSORT algorithm assesses the relative abundance of immune cells infiltrating 
tumors in each patient based on data from 22 tumor infiltrating lymphocyte subsets. In this case, permutations were set to 1000 in this 
case. P < 0.05 was used as the filtering criterion. 

2.6. Differential expression IRGs analysis and evaluation of the correlation between gene modules and clinical parameters 

In order to identify the differentially expressed genes, we divided the transcriptome data into the Immunity High and Immunity 
Low groups and using the |log2 fold change (FC)| >1.0 and the false discovery rate (FDR) < 0.05, edgeR (http://www.bioconductor. 
org/packages/release/bioc/html/edgeR.html) package was used to identify genes that differed. The tumor-related immune gene set 
was downloaded from ImmPort (www.immport.org), and the differentially expressed IRGs were extracted. 

A weighted correlation network analysis (WGCNA) was performed for differentially expressed IRGs using the WGCNA package to 
evaluate their relationship with clinical parameters. A number of clinical parameters were analyzed, including age, gender, tumor 
grade, tumor stage, T stage, N stage, and M stage, as well as gene expression data. By setting the soft threshold (power), we were able to 
determine the optimal scale-free topological fitting model index (scale-free R2). On the basis of the topological overlap measure, we 
calculated gene cluster dendrograms based on the different degrees of genes. The correlation between module genes and the above 
clinical parameters was analyzed after clustering the modules and genes. The significance level was set at P < 0.05. 

2.7. Construction and assessment of IRGs-based prognostic related model 

A univariate Cox regression analysis was first used to screen for prognostic related IRGs. To further screen the data, the least 
absolute shrinkage and selection operator (LASSO) regression analysis was performed. Lastly, we screened IRGs with significant 
prognostic value using multivariate Cox regression. Significant results were determined by a P value of 0.05. We then built an IRGs- 
based prognostic model to predict ccRCC patients’ survival times. For each patient, the following formula was used to calculate the risk 
score: 

Risk score=
∑n

i=1
Expiβi 

The formula is composed of Expression Value and Regression Coefficient. Exp stands for the expression value of each gene, and β 
stands for the corresponding regression coefficient. On the basis of the median risk score, TCGA patients with high immunity were 
divided into low-risk and high-risk subgroups. In addition, Kaplan-Meier and log-rank tests were used to compare the OS and survival 
status between the two groups. To study the predictive power of prognostic IRGs-based risk models, we also used the Survival ROC R 
package to construct a time-dependent receiver operating characteristic (ROC) curve. Furthermore, the E-MTAB-1980 cohort con-
taining 101 samples was used as an external validation to evaluate the model’s predictability and stability. 

2.8. Correlation between the prognostic related model, prognostic related IRGs, and clinical parameters 

We then examined whether prognostic related models could be correlated with clinical parameters to determine whether they 
might influence ccRCC progression. As part of our analysis, we also compared prognostic related IRGs with clinical parameters in order 
to determine the role of immune system in ccRCC. 

2.9. A multidimensional regulatory network analysis and functional enrichment analysis of prognostic related IRGs 

The Cistrome Project (www.cistrome.org) provides transcription factors (TFs) associated with tumorigenesis and progression, and 
the TCGA cohort provides TFs associated with ccRCC. A co-expression analysis based on |Cor| > 0.3, under P = 0.01, was conducted to 
examine the regulatory relationships between TFs and prognostic IRGs. Following this, the clusterProfiler package was used to perform 
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG) enrichment analyses of these differentially 
expressed IRGs (http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html). These IRGs were investigated for 
their biological functions and molecular mechanisms by GO annotation, and their signal regulation pathways were identified by KEGG 
enrichment analysis. 
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2.10. Construction of a nomogram 

The clinical prognostic significance of each clinical parameter and risk score was assessed using Cox regression analysis and 
multiple regression analysis. To establish a quantitative method to predict the prognosis of patients with ccRCC, we constructed a 
nomogram using the rms package combining different clinical parameters and risk scores. The accuracy of the nomogram is also 
evaluated by drawing calibration curves at different time points. In addition, the accuracy and stability of the nomogram were further 
evaluated by Kaplan-Meier survival analysis and ROC analysis based on data from TCGA and E-MTAB-1980. 

2.11. Comparison of IRGs-based prognostic related model with other prognostic models 

We compared our immune-related model with four other immune-related models in order to determine if it was superior to other 
ccRCC-related models. Our ROC curve and survival curve for the entire TCGA cohort were constructed by obtaining the genes in these 
models from the literature. 

3. Results 

3.1. Immunophenotypes and tumor microenvironment in ccRCC tissues 

Fig. 1 illustrates the examination of IRGs in ccRCC, focusing on their molecular function and prognostic significance. A total of 72 
kidney tissue specimens and 539 ccRCC specimens were downloaded from TCGA transcriptome database. Accordingly, 539 ccRCC 
tissues from TCGA database were analyzed for immune cell activity or enrichment, function, pathway, and checkpoints using the 
ssGSEA algorithm and 29 immune gene sets. Based on the hierarchical clustering results, we examined the immunity characteristics of 
clusters 1 (n = 519) and 2 (n = 20); the results are shown in Fig. 2. A cluster with high immunity was referred to as “Immunity High,” 
and a cluster with low immunity was referred to as “Immunity Low” (Fig. 2A). Each TME sample was scored, and the characteristics of 
the groups with Immunity High and Immunity Low were compared. The results showed that the StromalScore of the Immunity High 
and Immunity Low groups were 691.8 ± 21.22 and − 602.9 ± 133.1, respectively. The ImmuneScore of the Immunity High and 
Immunity Low groups were 1066 ± 28.29 and − 535.1 ± 66.03, correspondingly. The EstimateScore of the Immunity High and 

Fig. 1. Flowchart illustrating IRG analysis in ccRCC.  

C. Wang et al.                                                                                                                                                                                                          
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Immunity Low groups were 1758 ± 42.63 and − 1138 ± 183.5, respectively (Fig. 2D, E, F). We used the CIBERSORT algorithm to 
compare the degree of immune cell infiltration between the Immunity High and Immunity Low groups (Fig. 2B). Between the two 
groups, the degree of infiltration of T cells CD8, CD4 naïve T cells, CD4 memory activated T cells, regulatory T cells (Tregs), mac-
rophages M1, activated dendritic cells, resting mast cells, and eosinophils differed significantly (Fig. 2C). There was a significant 
difference in the infiltration of immune cells between the two groups regardless of the machine learning algorithm. 

3.2. Identifying differentially expressed IRGs in ccRCC patients 

Owing to the lack of knowledge on immune-related molecular characteristics and their prognostic potential in ccRCC, we inves-
tigated the immunophenotype-specific molecular characteristics and the prognostic potential of ccRCC-immune interactions. Our first 
step was to obtain 2483 tumor-related immune genes from the ImmPort database. By screening for differentially expressed IRGs 
according to the screening criteria (|log2 FC| >1.0 and FDR<0.05), 355 upregulated IRGs and 200 downregulated IRGs were iden-
tified. As shown in Fig. 3A and B, these IRGs were expressed inconsistently. 

Fig. 2. Immunophenotype and tumor microenvironment of ccRCC patients. 
(A) Immune characteristics and tumor microenvironment landscape in TCGA cohort determined using ssGSEA algorithm and hierarchical cluster 
analysis. (B) The infiltration landscape of 22 immune cells in the Immunity Low and Immunity High groups determined employing CIBERSORT 
algorithm. (C) Boxplot displaying the infiltration degree of 22 immune cells in the Immunity Low and Immunity High groups. (D) Violin plot 
depicting the StromalScore in the Immunity Low and Immunity High groups. (E) Violin plot showing the ImmuneScore in the Immunity Low and 
Immunity High groups. (F) Violin plot displaying the EstimateScore in the Immunity Low and Immunity High groups. 
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3.3. Evaluation of the correlation between gene modules and clinical parameters 

We utilized WGCNA to build various gene modules and evaluate the relationship between differentially expressed IRGs and clinical 
parameters. This analysis involved the application of WGCNA to the identified differentially expressed IRGs. Six gene modules were 
identified based on an optimal soft threshold. These modules were correlated with clinical parameters, including age, sex, tumor grade, 
tumor stage, T stage, N stage, and M stage, as shown in Fig. 3C. The results showed that all modules were associated with tumor grade 
(P < 0.05), with three modules showing significant correlations with tumor stage and T stage (P < 0.01); additionally, three modules 
displayed a notable negative correlation with M stage (P < 0.01). No significant correlations were found between age, sex, N stage, or 
gene modules. Consequently, further analysis of these differentially expressed IRGs is warranted because they may have implications 
for clinical prognosis. 

3.4. Construction and evaluation of immune associated prognostic model 

As a result of the univariate Cox regression analysis of these differentially expressed IRGs, we identified 190 IRGs that were 
associated with prognosis (Table S1). After performing LASSO regression analysis on these IRGs, 16 IRGs (CCL7, CHGA, CMA1, 

Fig. 3. Differential expression analysis of IRGs and evaluation of the correlation between gene modules and clinical parameters. 
(A) Heatmap of the 555 differentially expressed IRGs. (B) Volcano plot of 1144 IRGs. (C) Module-trait relationships based on WGCNA analysis; red 
and blue indicate high expression and low expression, respectively. 

Table 1 
Multivariate Cox regression analysis to identify prognosis-related immune genes.  

Gene Coef Exp(coef) se(coef) z Pr(>|z|) 

CCL7 0.0710 1.0736 0.0588 1.2075 0.2272 
CHGA 0.0935 1.0980 0.0506 1.8479 0.0646 
CMA1 − 0.1179 0.8888 0.0625 − 1.8863 0.0593 
CRABP2 0.0668 1.0691 0.0554 1.2062 0.2277 
IFNE 0.0999 1.1051 0.0508 1.9680 0.0491 
ISG15 0.1679 1.1828 0.1041 1.6128 0.1068 
NPR3 0.0095 1.0096 0.0576 0.1651 0.8688 
PDIA2 0.1025 1.1079 0.0453 2.2615 0.0237 
PGLYRP2 0.0619 1.0639 0.0519 1.1924 0.2331 
PLA2G2A 0.0078 1.0078 0.0371 0.2104 0.8333 
SAA1 0.0270 1.0273 0.0297 0.9095 0.3631 
TEK − 0.0207 0.9795 0.0848 − 0.2441 0.8072 
TGFA − 0.1503 0.8605 0.0730 − 2.0580 0.0396 
TNFSF14 0.0949 1.0996 0.0630 1.5059 0.1321 
UCN2 0.0571 1.0587 0.0654 0.8728 0.3828  

C. Wang et al.                                                                                                                                                                                                          
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CRABP2, DCD, IFNE, ISG15, NPR3, PDIA2, PGLYRP2, PLA2G2A, SAA1, TEK, TGFA, TNFSF14, and UCN2) were identified as having 
prognostic significance (Fig. S1). These IRGs were then analyzed using multivariate Cox regression to determine the most relevant IRGs 
regarding prognosis, yielding 15 IRGs in total, including CCL7, CHGA, CMA1, CRABP2, IFNE, ISG15, NPR3, PDIA2, PGLYRP2, 
PLA2G2A, SAA1, TEK, TGFA, TNFSF14, and UCN2. 

To establish a prognostic model, a multivariate Cox regression analysis was conducted on these 15 IRGs (Table 1). Each ccRCC 
patient was assigned a risk score based on the following formula:  

Risk score = (0.0710 × Exp CCL7) + (0.0935 × Exp CHGA) + (− 0.1179 × Exp CMA1) + (0.0668 × Exp CRABP2) + (0.0999 × Exp 
IFNE) + (0.1679 × Exp ISG15) + (0.0095 × Exp NPR3) + (0.1025 × Exp PDIA2) + (0.0619 × Exp PGLYRP2) + (0.0078 × Exp 
PLA2G2A) + (0.0270 × Exp SAA1) + (− 0.0207 × Exp TEK) + (− 0.1503 × Exp TGFA) + (0.0949 × Exp TNFSF14) + (0.0571 × Exp 
UCN2)                                                                                                                                                                                           

The median risk scores of 480 ccRCC patients in TCGA were used to categorize the patients into high- and low-risk subgroups.– 
Kaplan–Meier survival analysis showed that patients with high-risk disease had worse outcomes than those with low-risk disease (P =
4.663e-15, Fig. 4A). To further evaluate the predictive performance of the model, the areas under the ROC curves (AUCs) were 
calculated, which were 0.837 after 1 year, 0.751 after 3 years, and 0.749 after 5 years (Fig. 4B). Survival status and expression heat 
maps of TCGA cohort members are shown in Fig. 4C and D. In addition, we calculated the risk score of the E-MTAB-1980 cohort using 
the same formula to determine whether the model had similar predictive power in other ccRCC patient cohorts. Similarly, 
Kaplan–Meier survival analysis showed a worse outcome for patients with high-risk factors (P = 3.671e-04, Fig. S2A), with predicted 
AUCs of 0.854, 0.817, and 0.867 at 5 years (Fig. S2B). The survival status and expression heat map of each patient in the E-MTAB-1980 
cohort are shown in Figs. S2C and S2D. The results indicated that the IRG-based prognostic model was stable and performed 
satisfactorily. 

3.5. Prognostic significance of the model stratified by clinical parameters 

The TCGA data were stratified by age, sex, tumor grade, tumor stage, T stage, N stage, and M stage to explore the clinical sig-
nificance of this model. Kaplan–Meier survival analysis showed that the OS of high-risk patients was significantly lower than that of 
low-risk patients (Fig. 5). Based on these results, a prediction model based on IRGs can be used to predict the prognosis of ccRCC 
patients regardless of clinical parameters. 

3.6. Relationship between prognostic related IRGs and clinical parameters 

To better understand the role of these genes in ccRCC, we examined the relationship between the 15 IRGs and clinical parameters. 
IFNE, NPR3, and SAA1 showed significant correlations with sex; CHGA, CMA1, IFNE, ISG15, NPR3, PDIA2, PLA2G2A, SAA1, TEK, 
TGFA, TNFSF14, and UCN2 were significantly associated with tumor grade; CCL7, CHGA, CMA1, CRABP2, IFNE, ISG15, NPR3, PDIA2, 
PGLYRP2, PLA2G2A, SAA1, TEK, TGFA, TNFSF14, and UCN2 showed significantly links to tumor stage and T stage; TEK was 
significantly correlated with N stage; and CCL7, CMA1, ISG15, NPR3, PDIA2, SAA1, TEK, TGFA, TNFSF14, and UCN2 were signifi-
cantly associated with M stage (Table 2). 

3.7. Multi-dimensional regulatory network and functional enrichment analysis of prognosis-related IRGs 

Using the prognostic model, we studied the upstream mechanism of IRGs to further explore the role of their multidimensional 
regulatory network in tumorigenesis and development. After differential analysis of 318 transcriptional factors (TFs) from the Cis-
trome Project, 79 TFs were identified, including 45 upregulated and 34 downregulated TFs (Fig. 6A). TF and IRG co-expression an-
alyses were conducted to identify the regulatory relationships between differentially expressed TFs and prognostic indicators. A total 
of 50 TFs were involved in upstream regulation, as shown in Fig. 6B. The regulatory relationships between these TFs and the prognosis- 
related IRGs are presented in Table S2. 

Next, we performed GO and KEGG enrichment analyses of the differentially expressed IRGs using the ClusterProfiler package to 
explore the biological functions and molecular mechanisms associated with these IRGs. According to GO enrichment analysis, the 
molecular regulatory network can be viewed from three different perspectives. Biological process analysis revealed that these 
differentially expressed IRGs were significantly enriched in leukocyte migration, cell chemotaxis, positive regulation of external 
stimuli, leukocyte chemotaxis, leukocyte proliferation, myeloid leukocyte migration, ERK1 and ERK2 cascade activation, granulocyte 
migration, granulocyte chemotaxis, and neutrophil chemotaxis (Fig. 6C). These differentially expressed IRGs were greatly enriched on 
the external side of the plasma membrane, lumen of vesicles, membrane rafts, membrane microdomains, secretory granule lumen, 
membrane region, collagen-containing extracellular matrix, plasma membrane receptor complex, and alpha granule lumen of the 
platelets (Fig. 6C). These differentially expressed IRGs had significantly higher receptor ligand, cytokine receptor binding, cytokine, 
growth factor, G protein-coupled receptor binding, cytokine receptor, cytokine binding, hormone binding, chemokine receptor 
binding, and chemokine activities (Fig. 6C). Furthermore, KEGG analysis indicated that the differentially expressed IRGs were mainly 
enriched in interactions between cytokines and cytokine receptors, viral proteins and cytokine receptors, chemokine signaling 
pathways, JAK-STAT signaling pathways, PI3K-Akt signaling pathways, MAPK signaling pathways, Ras signaling pathways, and Rap1 
signaling pathways. 

C. Wang et al.                                                                                                                                                                                                          
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We also conducted a joint analysis to evaluate the genes involved to predict the efficacy of immunotherapies (Fig. S3). Therefore, 
we further compared the expression of common immune checkpoint inhibitor genes (PD-1, PD-L1, and CTL4) in different patient 
populations by high and low risk subgroups of the IRG-based prognosis-related model to further investigate the role of our predictive 
model in immunotherapy. The expression of PD-1 and CTLA-4 was significantly higher in the high-risk group than in the low-risk 
group, however, the expression of PD-L1 showed the opposite result (Figs. S3A–C). Subsequently, we conducted a stratified sur-
vival analysis based on the risk scores from our predictive model and the expression of immune checkpoint inhibitor genes. The OS of 
patients in the low-risk and high-immune checkpoint genomics category was significantly superior to that of their counterparts in the 

Fig. 4. Risk score analysis on a prognostic model consisting of 15 IRGs in the TCGA cohorts. 
(A) Kaplan–Meier survival curve analysis in the TCGA cohort for high-risk and low-risk groups. (B) Time-dependent ROC curves in the TCGA cohort. 
(C) Survival status of each patient in the TCGA cohort. (D) Expression of 15 prognostic IRGs in the TCGA cohort for high-risk and low-risk groups; 
red and blue indicate the high-risk and low-risk groups, respectively. 

Fig. 5. Kaplan–Meier survival curve analysis stratified by various clinical parameters. 
(A) Age≤65; (B) Age>65; (C) Male; (D) Female; (E) Grade1-2; (F) Grade3-4; (G) Stage I-II; (H) Stage III-IV; (I) T stage1–2; (J) T stage3–4; (K) N 
stage0; (L) N stage1-X; (M) M stage0; and (N) M stage1-X. 

C. Wang et al.                                                                                                                                                                                                          
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high-risk and high-immune checkpoint genomics group. Furthermore, the prognosis for patients with low-risk and low-immune 
checkpoint genomics profiles was more favorable compared to those with high-risk and low-immune checkpoint genomics profiles 
(Figs. S3D–F). 

3.8. Construction and validation of a nomogram 

To assess the prognostic significance of different clinical parameters and risk scores in ccRCC patients, we first performed a Cox 
regression analysis. Age (P = 0.004), primary tumor location (P < 0.001), tumor grade (P < 0.001), tumor stage (P < 0.001), lymph 
node infiltration (P = 0.031), distant metastasis (P < 0.001), and risk score (P < 0.001) of ccRCC patients were significantly correlated 
with OS (Fig. 7A). However, multiple regression analysis indicated that age (P = 0.042), tumor stage (P < 0.001), primary tumor 
location (P = 0.023), and risk score (P < 0.001) were independent prognostic factors associated with OS (Fig. 7B). 

After combining the clinical parameters and risk scores, a nomogram was constructed using the RMS package (Fig. 7C). A 0–100 
distribution was normalized by mapping the points of each variable to the corresponding horizontal line. The survival rates of ccRCC 
patients were calculated by drawing vertical lines between the points and total points, which served as a reference for clinical decision- 
making. The calibration curve also showed a good correlation between the predicted and actual values (Fig. 7D, E, and F). To extend its 
clinical application and availability, the nomogram was verified in TCGA and E-MTAB-1980 cohorts. In both cohorts, the nomogram 
was able to better distinguish between patients with poor prognosis (P < 0.001 and P = 1.923e-06, Fig. 7G–I). Based on the nomogram, 

Table 2 
Relationship between prognosis-related immunity genes and clinicopathologic parameters.  

Gene  Gender (Male/ 
Female) 

Grade (G1-2/G3- 
4) 

Stage (I-II/III- 
IV) 

T stage (T1-T2/T3- 
T4) 

N stage (N0/N1- 
X) 

M stage (M0/M1- 
X) 

N  318/162 221/257 292/185 310/170 213/267 382/96 
CCL7 t-value 0.762 1.639 2.691 2.525 0.429 2.021 

P- 
value 

0.447 0.102 0.007 0.012 0.668 0.044 

CHGA t-value 0.675 3.595 3.451 3.374 0.156 1.773 
P- 
value 

0.500 <0.001 <0.001 <0.001 0.876 0.077 

CMA1 t-value 1.409 4.590 6.814 5.772 0.602 5.487 
P- 
value 

0.160 <0.001 <0.001 <0.001 0.548 <0.001 

CRABP2 t-value 0.868 1.396 3.088 3.076 0.785 0.361 
P- 
value 

0.386 0.163 0.002 0.002 0.433 0.718 

IFNE t-value 2.200 4.068 3.040 3.204 1.142 0.483 
P- 
value 

0.028 <0.001 0.003 0.001 0.254 0.630 

ISG15 t-value 1.798 3.798 4.804 3.621 1.252 3.732 
P- 
value 

0.073 <0.001 <0.001 <0.001 0.211 <0.001 

NPR3 t-value 2.240 4.513 3.996 3.713 0.369 3.714 
P- 
value 

0.026 <0.001 <0.001 <0.001 0.713 <0.001 

PDIA2 t-value 0.549 3.560 5.851 4.853 1.238 4.614 
P- 
value 

0.584 <0.001 <0.001 <0.001 0.216 <0.001 

PGLYRP2 t-value 0.281 1.465 4.133 3.278 0.744 1.501 
P- 
value 

0.779 0.144 <0.001 0.001 0.457 0.134 

PLA2G2A t-value 0.615 4.946 5.338 6.165 0.778 1.104 
P- 
value 

0.539 <0.001 <0.001 <0.001 0.437 0.270 

SAA1 t-value 3.231 6.930 7.382 6.598 0.454 4.251 
P- 
value 

0.001 <0.001 <0.001 <0.001 0.650 <0.001 

TEK t-value 1.054 6.582 5.976 4.897 2.068 5.338 
P- 
value 

0.292 <0.001 <0.001 <0.001 0.039 <0.001 

TGFA t-value 1.761 3.349 3.547 2.953 1.217 5.708 
P- 
value 

0.079 <0.001 <0.001 0.003 0.224 <0.001 

TNFSF14 t-value 1.523 6.451 4.582 3.850 0.920 2.008 
P- 
value 

0.128 <0.001 <0.001 <0.001 0.358 0.045 

UCN2 t-value 0.666 3.796 4.727 4.528 0.042 2.060 
P- 
value 

0.506 <0.001 <0.001 <0.001 0.966 0.040  
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the predicted AUCs for 1, 3, and 5 years were 0.897, 0.803, and 0.775, respectively, in the TCGA cohort (Fig. 7H), whereas the 
predicted AUCs in the E-MTAB-1980 cohort were 0.916, 0.919, and 0.904, respectively, indicating that the nomogram was very ac-
curate and predictive. 

3.9. Comparison of IRGs-based prognosis-related model with other prognostic models 

Using four different types of models, we compared our immune-related model to four-gene models [23], seven-gene models [26], 
six-gene models [25], and five-gene models [24]. For these models, we obtained genes from the literature and constructed the ROC and 
survival curves for the entire TCGA cohort. Our model was more accurate in predicting the prognosis of ccRCC than the other four 
models after analysis and comparison (Fig. 8). 

4. Discussion 

An ecosystem of adaptive and innate immune cells infiltrates the TME and regulates all aspects of tumor development [28,29]. By 
upregulating or downregulating IRGs at specific immune checkpoints, tumor-infiltrating immune cells can suppress cancer cells [18, 
30]. Numerous clinical studies have shown that ccRCC is a highly immunologically infiltrating tumor [15,31,32]. Furthermore, ccRCC 
exhibits early and sensitive responsiveness to immunotherapy [33,34]. Therefore, identifying objective and sensitive predictors of 
ccRCC is crucial for optimizing clinical diagnosis and accurately determining prognosis. Our analysis of TCGA transcriptome data for 
ccRCC revealed 555 differentially expressed IRGs between the Immunity High and Immunity Low groups. An immune-associated 
prognostic model for OS was constructed by performing Cox regression analysis and by identifying 15 prognosis-related IRGs. The 
roles of these prognostic IRGs in ccRCC were examined in relation to prognostic models and clinical parameters. In addition, we 

Fig. 6. Multi-dimensional regulatory network and functional enrichment analysis of prognosis-related IRGs. 
(A) Heatmap of the 79 differentially expressed TFs in the TCGA cohort. (B) Sankey plot of differentially expressed TFs and prognostic IRG regulatory 
networks. (C) GO enrichment analysis of the differentially expressed IRGs. (D) KEGG enrichment analysis of the differentially expressed IRGs. 
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examined the regulatory relationships between prognostic IRGs and TFs. Bioinformatics techniques were used to systematically 
analyze the biological functions and molecular mechanisms of these IRGs. A nomogram combining the model and the clinical pa-
rameters was constructed and validated. Based on these results, our clinical prognostic model can predict patient prognosis and 
identify potential immunotherapeutic targets. 

Using ssGSEA, we identified two immunophenotypic clusters: Immunity Low and Immunity High. Compared to that of patients 
with low immune responses, those with a high immune response had a higher percentage of stromal and immune cells infiltrating the 
TME. This finding is consistent with those of previous studies indicating that patients with strong immune responses have a higher 
number of immune and stromal cells [27]. Evidence suggests that immune cells, the extracellular matrix, growth factors, and tumor 
cells themselves play important roles in influencing the immune escape, immune-inflammatory interactions of tumor cells, and 
participating in tumor development processes [35,36]. Multivariate Cox regression, LASSO regression, and univariate Cox regression 
analyses were conducted on the differentially expressed IRGs. As a result, 15 prognosis-related IRGs were identified, including CCL7, 
CHGA, CMA1, CRABP2, IFNE, ISG15, NPR3, PDIA2, PGLYRP2, PLA2G2A, SAA1, TEK, TGFA, TNFSF14, and UCN2. Various tumors 
progress and metastasize via CCL7, a member of the chemokine ligand subfamily [37]. The protein CHGA is soluble in secretory 
vesicles of neuroendocrine, nerve, and endocrine cells and is considered a marker for neuroendocrine prostate cancer [38]. Gastric 

Fig. 7. Assessment of the prognostic significance of various clinical parameters, and construction of a nomogram in the TCGA cohort. 
(A) Univariate Cox regression analysis of correlations between risk score and clinical parameters. (B) Multivariate Cox regression analysis of cor-
relations between risk score and clinical parameters. (C) Nomogram for predicting the 1-, 3-, and 5-year OS of ccRCC patients. (D, E, F) Calibration 
curves of the nomogram predicting OS at 1-, 3-, and 5-years. (G) Kaplan–Meier survival curve analysis in the TCGA cohort based on the nomogram. 
(H) Time dependent ROC curve analysis in the TCGA cohort based on the nomogram. (I) Kaplan–Meier survival curve analysis in the E-MTAB-1980 
cohort based on the nomogram. (J) Time dependent ROC curve analysis in the E-MTAB-1980 cohort based on the nomogram. 
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cancer is associated with immune infiltration caused by CMA1, which is expressed in mast cells [39]. CRABP2 is a protein that binds to 
retinoic acid and is associated with lymph node metastasis, poor overall survival, and recurrence in lung cancer patients [40]. We 
speculated that IFNE is a susceptibility gene for melanoma [41]. Tumorigenesis is enhanced by ubiquitin-like proteins such as ISG15, 
which are induced by type I interferon. It regulates the expression of oncogenes and tumor suppressors and prevents the degradation of 
oncogenes and tumor-related proteins by inhibiting proteasomes and lysosomes [42]. ccRCC metastasis is associated with high 
expression of NPR3, a natriuretic peptide receptor [43]. There is also an association between gallbladder cancer and PDIA2 expression 
[44]. PGLYRP2, a peptidoglycan-sensitive pattern recognition receptor, has been implicated in predicting the antitumor immune 
response and survival in hepatocellular carcinoma [45]. Inflammatory responses, antibacterial defense, and gastrointestinal phos-
pholipid degradation are the main functions of PLA2G2A, an important regulator of gastric cancer invasion and metastasis [46]. A 
significant increase in SAA1 levels is associated with injury, inflammation, and nasopharyngeal cancer and has antiangiogenic and 
tumor-inhibiting effects [47]. High serum levels of soluble TEK have been identified as an independent risk factor for bladder cancer 
mediated by vascular endothelial cells [48]. Lung adenocarcinoma patients with high TGFA expression have a low survival rate [49]. 
Conversely, in patients with colorectal cancer liver metastases, overexpression of TNFSF14 leads to improved survival rates and 
recurrence-free survival, attributed to the immune-stimulating properties of this cytokine [50]. UCN2, a ligand of the 
corticotropin-releasing factor receptor, acts as an inhibitor of tumor growth by suppressing vascularization and cell proliferation [51]. 
These findings suggest that these 12 IRGs play a role in the occurrence and progression of ccRCC. However, many molecular mech-
anisms remain unknown, underscoring the need for future research to shed light on these areas. A prognostic model based on IRGs was 
developed, and survival analysis showed that patients in the high-risk group had worse OS than those in the low-risk group. Using this 
prognostic model, ccRCC patients with poor prognosis can be better identified. 

Many TFs are involved in regulating the immune response, thus affecting its intensity and occurrence of the immune response. In 
their study [52], Zaiss et al. examined the central role of forkhead box TFs in homeostasis regulation and immune response. STAT1 
expression is increased by elF4F, as demonstrated by Kingwell et al. [53]. Hence, it is noteworthy to highlight that prognosis-related 
IRGs and TFs form regulatory networks. Upstream regulation of prognosis-related IRGs was mediated by 50 differentially expressed 
TFs. Research on these TFs is warranted because they may trigger an immune response or have extensive regulatory potential in the 
presence of cancer. 

GO and KEGG enrichment analyses indicated that these differentially expressed IRGs were associated with cell chemotaxis, re-
ceptor ligand activity, JAK-STAT signaling pathways, T cell receptor signaling pathways, PI3K-Akt signaling pathways, MAPK 
signaling pathways, Ras signaling pathways, and other immune response-related processes. Immune surveillance mechanisms that 
eliminate transformed cells are crucial to control and prevent tumor growth. Changes in the tumor microenvironment may lead to 
changes in the immune response, allowing transformed cells to survive undetected by immune cells and promote tumor growth [36,54, 
55]. Various strategies have been employed by tumors to avoid immune recognition, including downregulation of MHC class I 
expression on the cell surface, reduction in the ability of cytotoxic T lymphocytes to recognize tumors, and alteration of the expression 
of key molecules during antigen processing [56,57]. Therefore, it may be possible to limit tumor growth, invasion, and metastasis by 
regulating the immune response. 

A nomogram comprising the model and common clinical characteristics was developed to expand the clinical applications and 

Fig. 8. Comparison of IRG-based prognosis-related model with other prognostic models. 
(A) PMID: 32452055; (B) PMID: 31821170; (C) PMID: 32983989; and (D) PMID: 32028264. 
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availability of IRG-based prognostic models. By comparing the calibration curves at different times and verifying the two cohorts, it 
can be concluded that this nomogram exhibited good discriminant ability in predicting survival times. Additionally, we compared our 
model with other relevant models and found that it was based on an immunophenotypic perspective, which matched better with the 
correlation between immunity and tumor growth. Furthermore, our model was more accurate in predicting ccRCC patient survival 
than the previous models. 

In conclusion, this study provides new insights into the immunophenotypic basis of ccRCC occurrence and progression. We 
developed a prognostic model that can better predict survival probabilities for ccRCC patients and may serve as a biomarker for 
prognosis. However, this study had certain limitations. First, the results were based on a single bionomic dataset, and different 
platforms may yield different results. A large multicenter prospective cohort of ccRCC patients is required for further validation and 
evaluation of our model. Finally, we analyzed several key IRGs in ccRCC patients using bioinformatics techniques. Nonetheless, the 
specific molecular mechanisms by which these key IRGs are involved in ccRCC progression and development remain unclear, and 
further research is required to confirm these findings. 

Bioinformatics techniques were used to systematically study the biological function of differentially expressed IRGs and their 
prognostic value in ccRCC from an immunophenotypic perspective. Moreover, we developed a model to predict the prognosis of cancer 
patients based on immune-associated prognostic factors. These results may provide new prognostic biomarkers and therapeutic targets 
for ccRCC and shed light on the mechanisms underlying this disease. 
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RCC Renal cell carcinoma 
CcRCC Clear cell renal cell carcinoma 
TCGA The Cancer Genome Atlas 
TME Tumor microenvironment 
IRGs Immune-related genes 
SsGSEA Single-sample gene sets enrichment analysis 
ESTIMATE Estimation of stromal and immune cells in tumor tissues 
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CIBERSORT Cell type identification by estimating relative subsets of RNA transcripts 
OS Overall survival 
FC Fold change 
FDR False discovery rate 
WGCNA Weighted correlation network analysis 
LASSO Least absolute shrinkage and selection operator 
ROC: Receiver operating characteristic 
TFs Transcription factors 
GO Gene ontology 
KEGG Kyoto Encyclopedia of Genes and Genomes 
AUC Area under the receiver operating characteristic curve 
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