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Introduction. Lung adenocarcinoma (LAC) is the most frequent type of lung cancer and has a high metastatic rate at an early stage.
This study is aimed at identifying LAC-associated genes. Materials and Methods. GSE62950 downloaded from Gene Expression
Omnibus included a DNA methylation dataset and an mRNA expression profiles dataset, both of which included 28 LAC tissue
samples and 28 adjacent normal tissue samples. The differentially expressed genes (DEGs) were screened by Limma package in R,
and their functions were predicted by enrichment analysis using TargetMine online tool. Then, protein-protein interaction (PPI)
network was constructed using STRING and Cytoscape. Finally, LAC-associated methylation sites were identified by CpGassoc
package in R and mapped to the DEGs to obtain LAC-associated DEGs. Results. Total 913 DEGs were identified in LAC tissues. In
the PPI networks,MAD2L1, AURKB, CCNB2, CDC20, andWNT3A had higher degrees, and the first four genes might be involved
in LAC through interaction. Total 8856 LAC-associated methylation sites were identified and mapped to the DEGs. And there
were 29 LAC-associated methylation sites located in 27 DEGs (e.g., SH3GL2, BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3).
Conclusions. These key genes might play a role in pathogenesis of LAC.

1. Introduction

As themost common type of lung cancer and a non-small cell
lung carcinoma (NSCLC) [1], lung adenocarcinoma (LAC) is
characterized by gland or duct formation andmassive mucus
production [2]. LAC generally originates in peripheral lung
tissue, and this is in contrast with squamous cell lung cancer
and small cell lung cancer (SCLC), which are both apt to be
locatedmore centrally in lungs [3, 4]. InUS, LAC accounts for
approximately 40% of lung cancers [5]. Smoking is the main
cause of LAC, and the disease has a high metastasis rate even
at an early stage [4]. Therefore, it is necessary to identify key
genes in LAC and develop effective therapeutic schedule.

TheWNT/TCF signaling can promote osseous and brain
metastasis of LAC cells through targeting HOXB9 and LEF1
which mediates chemotactic invasion and colony outgrowth
[6]. Coexpression of Oct4 and Nanog, which are homeobox
transcription factors important for self-renewal of stem
cells, commands epithelial-mesenchymal transdifferentia-
tion, mediates tumor-initiating ability, and contributes to

metastasis of LAC [7]. As a noncoding RNA, MALAT-1
enhances motility of LAC cells via regulating motility-
associated gene expression in transcriptional and posttran-
scriptional levels [8, 9].BRAFmutation is frequently detected
in human LAC, indicating that BRAF may serve as a thera-
peutic target for a subset of patients with the disease [10, 11].
Overexpression of caveolin-1 is essential for mediating filopo-
dia formation, whichmay promote invasion of LAC cells [12].
In spite of the above researches, the mechanisms of LAC still
remain unclear.

Recently, along with the development of chip technology,
microarray data have been obtained and uploaded to Gene
Expression Omnibus (GEO) for us to study [13]. Using
microarray data GSE62950, we screened the differentially
expressed genes (DEGs) between LAC tissue samples and
adjacent normal tissue samples. And their potential functions
were predicted by Gene Ontology (GO), Kyoto Encyclopedia
of Genes andGenomes (KEGG), andDisease Ontology (DO)
enrichment analysis. Then, the interrelationships between
these DEGs were analyzed by protein-protein interaction
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(PPI) network and module analysis. At last, LAC-associated
methylation sites were identified and mapped to the DEGs to
obtain LAC-associated DEGs.

2. Materials and Methods

2.1. Microarray Data. Microarray data GSE62950 was down-
loaded from the database of GEO (http://www.ncbi.nlm.nih
.gov/geo/), which included a DNA methylation dataset and
an mRNA expression profiles dataset. The DNA methylation
dataset and the mRNA expression profiles dataset separately
were based on the platform of GPL8432 IlluminaHumanRef-
8 WG-DASL v3.0 and GPL8490 Illumina HumanMethyla-
tion27 BeadChip (HumanMethylation27 270596 v.1.2), and
both of them included 28 LAC tissue samples and 28 adjacent
normal tissue samples.

2.2. Data Preprocessing. Normalized series matrix file of
mRNA expression profiles was downloaded directly. After
beta matrix of DNA methylation data was downloaded,
primary methylation signals were preprocessed by Methy-
lation Module V1.9 [14] in BeadStudio V3.1.0.0 to obtain
normalized beta matrix. Those methylation sites which had
no signal values in one or more samples were removed.

2.3. DEGs Screening. Using Limma package [15] in R, the
DEGs between LAC tissue samples and adjacent normal
tissue samples were identified. The 𝑝 values of DEGs were
adjusted by Benjamini-Hochberg (BH) method [16]. The
adjusted 𝑝 value < 0.05 and |log

2
fold-change(FC)| ≥ 1 were

taken as the thresholds.

2.4. GO, KEGG, and DO Enrichment Analysis. GO is utilized
for predicting potential functions of gene products in three
categories (biological process, BP; cellular component, CC;
and molecular function, MF) [17]. The KEGG database can
be used for systematic analysis of gene functions, which con-
nects genomic information with corresponding functional
information [18].TheDOdatabase contains a comprehensive
knowledge of human diseases and is applied to annotate
diseases [19]. Using TargetMine online tool [20], GO, KEGG,
and DO enrichment analyses were performed for the DEGs.
The 𝑝 values of enriched terms were corrected by Holm-
Bonferroni [21]. The adjusted 𝑝 value < 0.05 was used as the
cut-off criterion.

2.5. PPI Network and Module Construction. The STRING
[22] database was utilized to search PPI pairs among the
DEGs. And combined score > 0.4 was used as the cut-off cri-
terion. Then, the PPI network of the DEGs was visualized by
Cytoscape (http://www.cytoscape.org/) [23]. Subsequently,
igraph package [24] in R was used to calculate connectivity
degrees of nodes (proteins) in the PPI network, and nodes
with higher degrees were taken as hub nodes.

Furthermore,MCODEplugin [25] in Cytoscapewas used
to screen modules from the PPI network. Using BinGO plu-
gin [26], GO functional enrichment analysis was conducted
for the genes in each module.

2.6. Screening of LAC-Associated Methylation Sites. Using
genefilter package [27] in R, the methylation sites which had
higher beta value variations within groups compared with
variations among groups were deleted. And the 𝑝 value <
0.05 was used as the cut-off criterion. Then, the methylation
sites located in sex chromosomes were removed. Finally, the
associations between the screenedmethylation sites and LAC
were analyzed by CpGassoc package [28] in R. The 𝑝 value <
0.05 was taken as the threshold.

2.7. Correlation Analysis of Methylation Sites and DEGs.
According to the annotation information of the DNAmethy-
lation profiles, the nearest genes to the LAC-associated
methylation sites were obtained and then mapped to the
DEGs. At last, LAC-associated methylation sites of the DEGs
were gained.

2.8. Validation of Methylation Sites and DEGs in LAC Tissue
Samples. The RNASeqV2 data of LAC were downloaded
from The Cancer Genome Atlas (TCGA, http://cancergeno-
me.nih.gov/) database, which included 515 LAC tissue sam-
ples and 59 adjacent normal tissue samples. Using Limma
package [15] in R, the DEGs with the adjusted 𝑝 value <
0.05 and |log

2
FC| ≥ 1 were also screened. Meanwhile, the

methylation data of LAC were also downloaded from TCGA
database, which included 459 LAC tissue samples and 32
adjacent normal tissue samples. Moreover, LAC-associated
methylation sites were also identified and mapped to the
DEGs using the same methods as the above.

3. Results

3.1. Data Preprocessing and DEGs Screening. After prepro-
cessing, total 18626 beta values of DNAmethylation data and
18626 gene expression values of mRNA expression profiles
separately were obtained. Compared with adjacent normal
tissue samples, there were a total of 913 DEGs (including
409 upregulated and 504 downregulated genes) in LAC tissue
samples. In the heat map of the DEGs, LAC tissues could
be definitely separated from adjacent normal tissues by the
DEGs (Figure 1).

3.2. GO, KEGG, and DO Enrichment Analysis. Using Target-
Mine online tool, functions of the DEGs were predicted by
GO, KEGG, and DO enrichment analyses. For the upregu-
lated genes, the enrichedGO functions includedmulticellular
organismal catabolic process (𝑝 value = 8.59𝐸 − 07) in BP
category, as well as extracellular region (𝑝 value = 2.67𝐸−04)
and extracellular space (𝑝 value = 0.002024) in CC category
(Table 1(a)). The enriched KEGG pathways for upregulated
genes included protein digestion and absorption (𝑝 value =
0.001244) and cell cycle (𝑝 value = 0.026338, which involved
cell division cycle 20, CDC20; cyclin B2, CCNB2; and mitotic
arrest deficient 2-like 1, MAD2L1) (Table 1(b)). The enriched
DO terms for upregulated genes included cell type cancer
(adjust.𝑝 value = 6.12𝐸−05), germ cell cancer (adjust.𝑝 value
= 0.001326), embryoma (adjust. 𝑝 value = 0.008727), and
embryonal cancer (adjust. 𝑝 value = 0.009481) (Table 1(c)).
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Figure 1: The heat map of the DEGs. Yellow and blue bars represent upregulated and downregulated genes, respectively. Two-way clustering
results in the left side indicate that DEGs were clustered into three categories. Yellow and blue columns represent upregulated genes in lung
adenocarcinoma tissues, while red column stands for downregulated genes.

And all of the DO terms involved MAD2L1 and aurora
B kinase (AURKB). The enriched GO functions for down-
regulated genes were listed in Table 1(d), including single-
organism process (𝑝 value = 5.73𝐸− 05) and single-multicel-
lular organism process (𝑝 value = 1.93𝐸 − 04, which involved
wingless-related MMTV integration site 3A,WNT3A) in BP
category, as well as cell periphery in CC category (𝑝 value =
1.03𝐸 − 05, which involvedWNT3A). In addition, there were
nonsignificant KEGG pathways and DO terms enriched for
the downregulated genes.

3.3. PPI Network and Module Analysis. PPI networks for
upregulated and downregulated genes were constructed,
respectively. The PPI network for upregulated genes had

229 nodes and 725 interactions (Figure 2(a)). Particularly,
MAD2L1 (degree = 36), AURKB (degree = 38), CCNB2
(degree = 40), and CDC20 (degree = 42) had higher degrees,
and they can interact with each other in the PPI network.
Several modules were screened from the PPI network for
upregulated genes, and the largest module (module 1) is also
showed in Figure 2(b). GO functional enrichment analysis
showed that the genes in module 1 were involved in mitosis-
associated terms.

The PPI network for downregulated genes had 233 nodes
and 368 interactions (Figure 3). Connectivity degrees of
the nodes in the PPI network were calculated, and cGMP-
dependent protein kinase II (PRKG2, degree = 11), VE-
cadherin (CDH5, degree = 12), WNT3A (degree = 15),
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Table 1: The GO functions, KEGG pathways, and DO terms separately enriched for upregulated and downregulated genes. (a)The top 5 GO
functions enriched for upregulated genes. (b)TheKEGGpathways enriched for upregulated genes. (c)TheDO terms enriched for upregulated
genes. (d) The top 5 GO functions enriched for downregulated genes.

(a)

Category ID Description Count Gene symbol 𝑝 value

BP GO:0044243 Multicellular organismal catabolic
process 15 ACE2, COL10A1, COL11A1, . . . 8.59𝐸 − 07

BP GO:0030574 Collagen catabolic process 14 FAP,MMP1,MMP10, . . . 4.49𝐸 − 06

BP GO:1903047 Mitotic cell cycle process 41 ANLN, AURKB, BUB1, . . . 1.70𝐸 − 05

BP GO:0044259 Multicellular organismal macromolecule
metabolic process 15 ACE2, COL10A1, COL11A1, . . . 4.16𝐸 − 05

BP GO:0007067 Mitotic nuclear division 22 ANLN, AURKB, CDC20, . . . 4.57𝐸 − 05

CC GO:0005576 Extracellular region 122 ACE2, ACOT11, ACY3, . . . 2.67𝐸 − 04

CC GO:0005615 Extracellular space 46 ACE2, AGR2, BPIFA1, . . . 0.002024

(b)

ID Description Count Gene symbol 𝑝 value
hsa04974 Protein digestion and absorption 11 ACE2, COL10A1, COL11A1, . . . 0.001244
hsa04110 Cell cycle 11 CDC20,MAD2L1, CCNB2, . . . 0.026338

(c)

DOID Description Count Gene symbol Adjust. 𝑝 value
DOID:0050687 Cell type cancer 64 AURKB,MAD2L1, ASPM, . . . 6.12𝐸 − 05

DOID:2994 Germ cell cancer 41 AURKB,MAD2L1, CA9, . . . 0.001326
DOID:4766 Embryoma 38 AURKB, BUB1,MAD2L1, . . . 0.008727
DOID:688 Embryonal cancer 38 AURKB,MAD2L1, CA9, . . . 0.009481

(d)

Category ID Description Count Gene symbol 𝑝 value
BP GO:0044699 Single-organism process 296 AADAC, ABCB1, ABCG2, . . . 5.73𝐸 − 05

BP GO:0044707 Single-multicellular organism process 150 WNT3A, ACVRL1, ADCY4, . . . 1.93𝐸 − 04

BP GO:0003013 Circulatory system process 24 ACVRL1, ADRA1A, ADRB1, . . . 4.58𝐸 − 04

BP GO:0032501 Multicellular organismal process 152 WNT3A, ACVRL1, ADCY4, . . . 0.001393
BP GO:0008015 Blood circulation 23 ACVRL1, ADRA1A, ADRB1, . . . 0.001693
CC GO:0031226 Intrinsic component of plasma membrane 72 ACVRL1, ADRA1A, ADRB1, . . . 2.38𝐸 − 06

CC GO:0005886 Plasma membrane 139 WNT3A, ADCY8, ADGRB3, . . . 8.04𝐸 − 06
CC GO:0071944 Cell periphery 140 WNT3A, ANXA8, AQP10, . . . 1.03𝐸 − 05

CC GO:0044459 Plasma membrane part 86 AGER, AGTR1, AQP10, . . . 1.44𝐸 − 05

CC GO:0005887 Integral component of plasma membrane 68 FZD4, GHR, GP9, . . . 1.75𝐸 − 05

adenylyl cyclase 8 (ADCY8, degree = 16), and adenylyl cyclase
4 (ADCY4, degree = 17) were the top 5 nodes which had
higher degrees. What is more, nonsignificant modules were
screened from the PPI network for downregulated genes.

3.4. Screening of LAC-Associated Methylation Sites. After
screening, total 8856 methylation sites were obtained. Then,
the associations between the screened methylation sites and
LACwere analyzed under the threshold of𝑝 value< 0.05. As a
result, 230 LAC-associated methylation sites were identified.

3.5. Correlation Analysis of Methylation Sites and DEGs.
There were 29 LAC-associated methylation sites located
in 27 DEGs (e.g., Src homology 3 domain GRB2-like 2,

SH3GL2; brain-specific angiogenesis inhibitor 3, BAI3; H-
cadherin, CDH13; junctional adhesion molecule 2, JAM2;
metallothionein 1A, MT1A; LIM-homeobox containing 6,
LHX6; and insulin-like growth factor binding protein-3,
IGFBP3) (Table 2). And all of the methylation sites were
within 2 kb from transcriptional start sites (TSSs) of the
DEGs. For the 29methylation sites, theirmethylation indexes
in LAC tissue samples were compared with that in adjacent
normal tissue samples. The methylation indexes of 19 methy-
lation sites were significantly increased, and the downstream
genes mediated by those 19 methylation sites were down-
regulated. Nevertheless, 1 methylation site had significantly
decreased methylation index, and its downstream genes were
upregulated.
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Figure 2: The PPI network and module for upregulated genes. (a) The PPI network for upregulated genes. (b) Module 1 of the PPI network
for upregulated genes. Red nodes represent upregulated genes. Thickness of edges is in direct proportion to combined scores. Node sizes are
positively correlated with connectivity degrees of nodes.

3.6. Validation of Methylation Sites and DEGs in LAC Tissue
Samples. Total 4893 DEGs (including 2191 upregulated genes
and 2702 downregulated genes) were identified in the LAC
sample data downloaded from TCGA database. There were
691 common DEGs (including 310 upregulated genes and
381 downregulated genes) between the 4893 DEGs identified

in the LAC sample data downloaded from TCGA database
and the 913 DEGs identified in the microarray data of
GSE62950. The common DEGs included genes such as
WNT3A,MAD2L1,AURKB,CCNB2,CDC20, SH3GL2, BAI3,
CDH13, JAM2,MT1A, and IGFBP3. In addition, the 29 LAC-
associated methylation sites identified in the microarray data
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Figure 3:The PPI network for downregulated genes. Green nodes represent downregulated genes.Thickness of edges is in direct proportion
to combined scores. Node sizes are positively correlated with connectivity degrees of nodes.

of GSE62950 were also detected in the methylation data
downloaded from TCGA database.

4. Discussion

In this study, 913 DEGs including 409 upregulated and 504
downregulated genes were identified in LAC tissue samples
compared with adjacent normal tissue samples. Total 230
LAC-associated methylation sites were identified, among
which 29 LAC-associatedmethylation sites were located in 27
DEGs. Afterwards, the RNASeqV2 data andmethylation data
of LAC were downloaded from TCGA database to validate
the obtained methylation sites and DEGs. There were 691
commonDEGs (such asWNT3A,MAD2L1,AURKB,CCNB2,
CDC20, SH3GL2, BAI3, CDH13, JAM2, MT1A, and IGFBP3)
between the 913 DEGs identified in the microarray data of
GSE62950 and the 4893 DEGs identified in the LAC sample
data downloaded from TCGA database. In addition, the 29
LAC-associatedmethylation sites identified in themicroarray
data of GSE62950 were also detected in the methylation data
downloaded from TCGA database. Functional enrichment

indicated that WNT3A was involved in single-multicellular
organism process and cell periphery. Overexpression of
Wnt5a, which belongs to Wnt family that encodes signaling
glycoproteins, promotes invasion of NSCLC during tumor
progression [29, 30]. Via activating JNK pathway, Wnt-7a
and Fzd-9 signaling plays role in inducing the receptor
tyrosine kinase inhibitor Sprouty-4 and cadherin proteins
and is essential for maintaining epithelial differentiation and
inhibiting transformed cell growth in some NSCLC patients
[31]. In the PPI network for downregulated genes, WNT3A
had higher degrees.These suggested thatWNT3Amight play
a role in LAC.

Besides, CDC20, CCNB2, and MAD2L1 were enriched
in the pathway of cell cycle. Meanwhile, MAD2L1 and
AURKB were involved in DO terms of type cancer, germ
cell cancer, embryoma, and embryonal cancer. Results of
immunohistochemistry suggest that CDC20 can be a nega-
tive marker in prognosis of patients with resected NSCLC,
especially adenocarcinoma [32]. Overexpressed CDK5RAP3
and CCNB2, as well as suppressed RAGE, may be promising
biomarkers in lung adenocarcinoma [33]. The 5-year overall
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Table 2: The 29 lung adenocarcinoma-associated methylation sites located in 27 DEGs.

IllumID Chromosome Meth.pos (Genome Build 36) DEG Distance to TSS log
2
FC(DEG) log

2
FC(𝛽)

cg17398595 chr9 17568725 SH3GL2 469 −2.461984643 0.419097018

cg01817029 chr12 70951777 TRHDE 953 −2.080720357 0.379725667

cg18182399 chr2 219991419 DES 76 −1.912270714 0.648411911

cg01532771 chr19 7733560 CLEC4M 521 −1.867543929 0.109407145

cg17407908 chr6 32261093 AGER 1092 −1.805516071 −0.076347441

cg21057494 chr3 45041975 CLEC3B 799 −1.784051786 0.176075101

cg08555612 chr3 71917330 PROK2 428 −1.734814286 0.599490205

cg04884908 chr2 72228348 CYP26B1 123 −1.568955357 0.541885215

cg06615154 chr1 151789177 S100A3 819 −1.430114286 0.141081243

cg10244047 chr6 69402835 BAI3 1323 −1.417121429 0.364653419

cg18343862 chr11 10546579 XLKD1 276 −1.346532857 0.053465056

cg01880569 chr16 81217829 CDH13 250 −1.329384643 0.115405772

cg08977371 chr16 81217991 CDH13 88 −1.329384643 0.396503001

cg24829483 chr4 14950739 C1QTNF7 29 −1.192036429 0.119720772

cg08448751 chr3 52454641 SEMA3G 558 −1.143811071 0.044592487

cg03382304 chr21 25934047 JAM2 587 −1.120553571 0.697781695

cg02992632 chr3 193928074 FGF12 8 −1.1105825 0.296886805

cg09137696 chr16 55229916 MT1A 163 −1.0697075 0.541279943

cg03192737 chr3 192413893 OSTN 877 −1.036060357 0.126389084

cg10031651 chr3 46596690 LRRC2 114 −1.033286429 0.101896116

cg05564657 chr3 153014065 AADAC 486 −1.018512857 −0.054630151

cg06866657 chr9 124030575 LHX6 230 −1.000721071 0.437413369

cg08831744 chr7 45927871 IGFBP3 475 1.023873571 0.456738536

cg03462055 chr6 3172555 TUBB2B 315 1.175827143 0.725177791

cg00910067 chr19 38409385 SLC7A10 837 1.289525714 0.253285976

cg05976074 chr19 38408113 SLC7A10 435 1.289525714 0.380324218

cg14546153 chr20 56523721 FLJ90166 366 1.331159286 0.43120249

cg00616129 chr12 10718281 STYK1 375 1.541281786 −0.209664965

cg23582408 chr20 61600555 EEF1A2 394 2.431418571 0.497897542

Note: IllumID represents probe name. Meth.pos stands for the position of methylation site in genome. Distance to TSS indicates the distance of methylation
site from transcriptional start site of downstream gene. 𝛽 in log

2
FC(𝛽) represents methylation index of methylation probe.

survival rates of LAC patients with low CCNB2mRNA levels
were significantly higher than that with high levels, and
overexpressed CCNB2 mRNA can independently predict a
poor prognosis in patients with LAC [34, 35]. Immuno-
histochemical analysis indicates AURKB, which mediates
chromosome segregation during mitosis, is frequently over-
expressed in primary lung carcinomas [36, 37]. Immuno-
histochemistry shows that overexpression of cell division
cycle associated 8 (CDCA8) and AURKB can result in bad
outcome of lung cancer patients; thus, suppression of the
CDCA8-AURKB pathway is a potential therapeutic strategy
for lung cancer [38]. Semiquantitative RT-PCR shows that
mitotic arrest defective protein 2 (MAD2) is overexpressed in
a high percentage of lung cancers, and multivariate analysis
suggests that high-level MAD2 can be a prognostic marker
independently [39]. In the PPI network for upregulated genes,
MAD2L1, AURKB, CCNB2, and CDC20 had higher degrees,
and they can interact with each other. Therefore, MAD2L1,
AURKB, CCNB2, and CDC20might be implicated in LAC by
interacting with each other.

Additionally, LAC-associated methylation sites were
identified and mapped to the DEGs. And there were 29
LAC-associated methylation sites located in 27 DEGs (e.g.,
SH3GL2, BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3).
Loss of SH3GL2 is frequently detected in NSCLC and
SH3GL2 can mediate cellular growth and invasion through
interactingwithEGFR [40].CDX2,VIL1, andBAI3 levels have
significant differences in SCLCand large-cell neuroendocrine
lung carcinoma (LCNEC); therefore, they can be diagnostic
markers of these tumor types [41]. Tumor suppressor gene
CDH13, located on chromosome 16q24.2–3, is downregulated
in lung cancer and its aberrant methylation may be a
potential marker for cancer detection [42–44]. Via mediating
𝛽1 integrin subunit and ERK activation in human dermal
lymphatic endothelial cells (HDLEC), junctional adhesion
molecule-C (JAM-C) contributes to lymphangiogenesis and
nodal metastasis, suggesting that JAM-C may be a target for
treating lymphatic metastases in NSCLC [45]. Overexpres-
sion of metallothionein (MT) can be used as an independent
predictor of short-term survival in SCLC patients enduring
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chemotherapy [46, 47]. Previous study indicates that LHX6
is a candidate tumor suppressor gene that has epigenetic
silencing in patients with lung cancer [48]. In NSCLC,
methylation status of IGFBP-3 before cisplatin therapy seems
to be a biomarker of prognosis, helping to select appropriate
therapeutic method for patients [49, 50]. These declared that
SH3GL2, BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3
might relate to LAC.

In conclusion, we carried out a comprehensive bioinfor-
matics analysis to screen LAC-associated genes. We iden-
tified 913 DEGs and 8856 methylation sites in LAC tissue
samples. Besides, LACmight correlate with several key genes
(e.g.,WNT3A,MAD2L1, AURKB, CCNB2, CDC20, SH3GL2,
BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3). However,
these bioinformatic findings need to be validated by further
researches.

Additional Points

Highlights. (1) We screened 913 DEGs and 8856 methylation
sites in LAC tissue samples. (2) In the PPI networks,MAD2L1,
AURKB, CCNB2, CDC20, and WNT3A had higher degrees.
(3) There were 29 LAC-associated methylation sites located
in 27 DEGs.
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