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SUMMARY

Gene regulation often results from the action of multiple transcription factors (TFs) acting at a 

promoter, obscuring the individual regulatory effect of each TF on RNA polymerase (RNAP). 

Here we measure the fundamental regulatory interactions of TFs in E. coli by designing synthetic 

target genes that isolate individual TFs’ regulatory effects. Using a thermodynamic model, 

each TF’s regulatory interactions are decoupled from TF occupancy and interpreted as acting 

through (de)stabilization of RNAP and (de)acceleration of transcription initiation. We find that 

the contribution of each mechanism depends on TF identity and binding location; regulation 

immediately downstream of the promoter is insensitive to TF identity, but the same TFs regulate 

by distinct mechanisms upstream of the promoter. These two mechanisms are uncoupled and can 

act coherently, to reinforce the observed regulatory role (activation/repression), or incoherently, 

wherein the TF regulates two distinct steps with opposing effects.

In brief

Guharajan et al. investigate the isolated regulation of 6 E. coli transcription factors. The diverse 

regulatory outcomes are well described by a model wherein TFs act on two different steps of 

transcription. The degree to which each step is regulated depends on TF identity and binding 

location.
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Graphical Abstract

INTRODUCTION

Transcriptional regulation of gene expression is one of the major mechanisms by which 

cells respond to cues and stimuli. Transcription factors (TFs) perform this regulation through 

binding to the DNA around the promoter to alter the rate of transcription from individual 

genes (Jacob and Monod, 1961; Ptashne and Gann, 2002). The regulatory DNA of each 

gene is distinct and can involve several to dozens of TF binding sites arranged in specific 

architectures to achieve the desired expression level. However, predicting the level of gene 

expression based on the regulatory architecture of a gene remains a central challenge in the 

field (Guido et al., 2006; Sprinzak and Elowitz, 2005; Atkinson et al., 2003; Nielsen et al., 

2016; Ali et al., 2020).

The genomics era has enabled multiple techniques capable of determining where a TF will 

bind and with what specificity (Stormo, 2000; Messeguer et al., 2002; Wasserman and 

Sandelin, 2004; Weirauch et al., 2014). Although this information is crucial for building 

occupancy-based models of gene regulation, there is still another critical component that is 

missing; the quantitative regulatory role of a TF, when bound, is often unclear. Historically, 

measurements of TF function are the result of knocking out the endogenous TF and 

observing how gene expression changes as a result. This serves a purpose in predicting 

the specific role of that TF on a given gene but offers less predictive power when 
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examining regulation of other genes by that same TF or to different binding sites. These 

measurements of gene regulation are often entangled in indirect regulatory effects such as 

TF-TF interactions (Vidal et al., 2011; Rolland et al., 2014), feedback (Bateman, 1998; 

Shen-Orr et al., 2002), and physiological (i.e., growth rate) (Klumpp et al., 2009; Schmidt 

et al., 2016) and off-target competitive effects of decoy binding sites or other genes in the 

network (Brewster et al., 2014; Lee and Maheshri, 2012). Because of this, a single TF that 

binds at the same relative location on two different natural promoters can appear to have 

opposite regulatory roles. The entanglement between indirect and direct regulation likely 

contributes to this ambiguity and prevents the field from developing a basic intuition of 

TF regulatory function. The select few TFs that have arisen as “model TFs,” such as LacI 

(Oehler et al., 1990; Garcia and Phillips, 2011; Hammar et al., 2014; Daber et al., 2011; 

Vilar and Saiz, 2013), AraC (Lobell and Schleif, 1990; Schleif, 2010; Egan et al., 2000; 

Egan, 2002), lambda repressor (Ptashne et al., 1980; Shea and Ackers, 1985; Ptashne, 2004), 

CRP (Gaston et al., 1989; Ushida and Aiba, 1990; Kolb et al., 1993; Kinney et al., 2010; 

Forcier et al., 2018), and TetR (Ramos et al., 2005; Deng et al., 2013; Stanton et al., 2014; 

Gardner et al., 2000), have well-studied regulatory function. Indeed, these TFs have been 

utilized for design of synthetic circuits with an engineered purpose, such as creation of 

logic gates (Stanton et al., 2014; Anderson et al., 2007), bistable switches (Gardner et al., 

2000; Tan et al., 2009), oscillatory networks (Elowitz and Leibler, 2000; Stricker et al., 

2008; Atkinson et al., 2003), synthetic enhancers (Amit et al., 2011; Brunwasser-Meirom 

et al., 2016), and a host of other dynamic outcomes. Further characterizing the regulatory 

function of TFs beyond this small subset should provide a more complete toolset for broader 

synthetic design purposes.

Here we study the isolated regulatory function of a set of E. coli TFs in a system designed 

to remove the typical confounding factors of natural genes and quantify the direct regulatory 

effect of a TF based on factors such as TF concentration, binding affinity, and binding 

location. Using a collection of strains where the average copy number of most TFs in the 

cell can be controlled, we measure the level of regulation of an individual TF acting on a 

synthetic promoter sequence. This promoter is designed to be regulated only by that TF, 

and it is targeted to a binding site whose location and sequence we control. To interpret 

these data, we use a thermodynamic model of gene regulation to parameterize TF regulatory 

function. In principle, the TF could exert its regulatory effect at any one of the distinct 

kinetic steps of the transcriptional process (Kontur et al., 2008; Revyakin et al., 2006; 

Young et al., 2002; Henderson et al., 2017; Jensen and Galburt, 2021) or on several of 

them, and our model coarse-grains TF activity into two distinct modes of regulation. The 

first regulatory mode, “stabilization,” corresponds to stabilization (or destabilization) of 

the polymerase at the promoter by the TF and models the TF’s ability to facilitate the 

emergence of the closed RNA polymerase (RNAP)-DNA complex. Essentially, this reflects 

a modification of the off-rate (koff) of bound RNAP when the TF is co-bound at the 

promoter, resulting in longer or shorter dwell times of RNAP (β greater than or less than 1) 

(Roy et al., 1998; Liu et al., 2017). The second mode, “acceleration,” corresponds to a TF’s 

ability to accelerate (or decelerate) initiation of transcription when the TF and polymerase 

are bound to the promoter. Canonically, the rate of transcription is dictated by the progress 

of several intermediate steps during promoter melting (Feklistov, 2013; Feklistov et al., 
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2017; Boyaci et al., 2019), and the TF’s propensity to accelerate or decelerate transcription 

can be viewed as acting on the ability of RNAP core subunits to initiate this process 

(Rhodius and Busby, 2000; Feng et al., 2016; Lee and Maheshri, 2012). Using this model, 

we infer the quantitative contribution from each of these modes in the data. Importantly, this 

process allows decoupling of properties that are extrinsic to the TF, such as affinity to the 

operator binding site, the overall concentration of the TF, or feedback in the network from 

the core regulatory role of the TF in modulating the steps of the transcription process.

We expect the regulatory parameters of a TF to vary based on the identity of the TF and 

the binding site location on the regulated promoter. In this study, we investigate the role of 

TF identity by measuring regulation of 6 TFs (AcrR, AgaR, ArsR, AscG, BetI, and CpxR). 

These 6 TFs were selected based on their diverse in vivo functions, which encompass 

multidrug resistance (AcrR) (Gu et al., 2008), regulation of metabolic homeostasis (AgaR, 

AscG, and BetI) (Ishida et al., 2009; Lamark et al., 1996; Ray and Larson, 2004; Leyn et 

al., 2012), tolerance of heavy metal toxicity (ArsR) (Ren et al., 2017), and coordination of 

the envelope stress response (CpxR) (DiGiuseppe and Silhavy, 2003; Hews et al., 2019). 

Furthermore, these TFs encompass 5 distinct TF regulatory families and require different 

co-factors and allosteric configurations to realize their regulatory function (Salgado et al., 

2013). We tested each of these TFs at two common binding locations: directly downstream 

of the promoter, where repression is commonly observed, and 61 bases upstream of the 

promoter, a site commonly associated with activation (although databases of regulatory 

interactions record roughly as many TFs repress at −61 as activate). We find that, despite the 

diverse nature of the TFs tested (five of the TFs are annotated repressors, and one of them, 

CpxR, is a known activator), the regulation for all TFs immediately downstream is consistent 

with a form of repression that is set by the degree of occupancy of the TF at the promoter 

independent of TF identity. This commonality across the TFs disappears when we measure 

the effect at −61, where the TFs exhibit different degrees of stabilization, with CpxR and 

AgaR engaging in significant stabilization of RNAP. To compliment this, we took CpxR 

and systematically quantified the contribution of the regulatory modes as a function of TF 

binding location and find that CpxR sets the degree of activation by engaging in two distinct 

regulatory paradigms. Binding locations that see strong activation have CpxR engaging in 

“coherent” regulation: the activation is enforced by stabilization and acceleration of RNAP. 

Locations with weak activation, however, have CpxR regulating the two modes oppositely 

by stabilizing RNAP but slowing the rate of promoter escape, demonstrating that such 

“incoherent” regulation plays a useful role by allowing a single TF to generate a spectrum of 

regulatory responses emerging from the relative effects of the TF on these distinct steps.

RESULTS

Thermodynamic model for single TF regulation

To deconvolve the role of TF copy number, binding affinity, and binding location from 

the intrinsic regulatory interactions of the TF with polymerase, we use a thermodynamic 

model of gene expression (Ackers et al., 1982; Kuhlman et al., 2007; Bintu et al., 2005; 

Kinney et al., 2010; Buchler et al., 2003; Vilar and Leibler, 2003; Garcia et al., 2012), 

where we consider only a single TF acting on an otherwise unregulated gene. Figure 1A 
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shows the various promoter states considered in the model (left column), along with the 

relative probability of each state occurring (center column) and the rate of expression from 

each promoter state (right column); the promoter can be unbound by the TF and RNAP, 

bound by polymerase only, bound by the TF only, or bound by both. The probability with 

which these states occur is a function of each molecule’s (polymerase and TF) binding 

affinity with its specific DNA binding sites (ΔεP and ΔεTF) and the available number of 

each molecule in the cell (Np and NTF). For the co-bound state, we consider two distinct 

mechanistic influences of the TF on gene expression. The first effect represents altered 

stability of the polymerase at the promoter when TF is bound because of a favorable or 

disfavorable interaction between the TF and polymerase. As a result, the co-bound state 

occurs with increased relative probability to the single bound state by a factor β (implying 

an energetic interaction of log(β) in units of kBT). The second parameter α represents the 

change in transcription rate when the TF and polymerase are co-bound and is written as a 

multiplicative factor to the base expression rate of polymerase bound in the absence of the 

TF; for example, α = 2 would imply that the transcription initiation rate is doubled when 

the TF and polymerase are co-bound. In both cases the parameters represent increases in 

gene expression when greater than unity and decreases in gene expression when less than 

unity. Importantly, the parameters are not constrained and can, in principle, have opposing 

or compounding effects; i.e., this model allows a TF that stabilizes polymerase binding but 

slows the rate of transcription from that state, resulting in apparent activation or repression, 

depending on the relative strengths of those effects. The final parameter, NNS, is equated to 

the size of the genome in base pairs (4.6 × 106) and is not varied in our experiments (for 

more details, see Phillips et al., 2019, and Bintu et al., 2005). Furthermore, the parameters 

related to polymerase binding can be simplified into a single parameter in our model as P = 

Npexp(−ΔεP)/NNS.

The final expression, boxed in Figure 1A (and derived in the STAR Methods), predicts the 

fold change in gene expression of a target gene. Fold change is defined as the expression 

level of the target gene in the presence of a number of TFs (NTF) divided by the expression 

level in the absence of that TF (i.e., NTF = 0). A fold change greater than 1 signifies 

activation, whereas a fold change below 1 signifies repression. The fold change equation is 

simplified by collecting the regulatory parameters into two effective parameters: FCmax and 

χ. FCmax represents the fold change when the number of TFs in the system are saturating; 

in the case of a repressor, it is the minimum fold change achievable, and in the case of 

an activator, it is the maximum fold change achievable. Importantly, FCmax depends only 

on a TF’s degree of acceleration (α) and stabilization (β) and not TF binding affinity or 

concentration. The second term, χ, represents the rate at which the fold change approaches 

FCmax. This rate of approach depends on the TF binding affinity (ΔεTF) and the degree to 

which the TF recruits/stabilizes RNAP (1 + βP). These factors, together with the number of 

TFs (NTF), can be thought of as an effective TF concentration.

These effective parameters are useful because they transform this system with many 

variables (TF and polymerase binding affinity, TF and polymerase number, degree of 

acceleration, degree of stabilization, etc.) capable of producing a diverse range of response 

curves in the fold change versus TF copy number space into a very simple system dictated 

by two fundamental quantities: the maximum fold change, FCmax, and the effective TF 
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concentration, χNTF. This is demonstrated in Figure 1B, where we plot fold change against 

TF number for an activator (top curves) and a repressor (bottom curves) with FCmax = 100 

and FCmax = 1/100, respectively. In each scenario, we plot 3 colored curves. The red curve 

has no contribution from stabilization (β = 1). The blue curve is identical to the red curve 

except with slightly stronger TF binding affinity, and the green curve is again identical to the 

red curve except with significant contribution from stabilization (β = 10 with α adjusted to 

keep FCmax unchanged). Figure 1C demonstrates the fold change as a function of effective 

TF concentration, χNTF. When plotted this way, the data from all three curves collapses to 

a single curve that is determined entirely by the value of FCmax, independent of specific 

values of α and β. Points with identical TF concentrations in Figure 1B now scatter on 

the collapsed curves, and the green and blue points (which had higher values of χ) are 

farther along the curve; a large value of χ hastens the approach to FCmax for the same 

TF concentration (NTF). Specifically, two TFs with similar net regulatory effect (similar 

FCmax) that operate through different regulatory mechanisms (for instance, one through 

strong acceleration [large α, β ≈ 1] and one through strong stabilization [large β, α ≈ 1]) 

will trace out exactly the same curve in this space, but the strong stabilizer will have a 

higher effective TF concentration and, thus, move farther along the curve given the same 

TF concentrations and binding affinities. In Figure 1D, data collapse curves for a range of 

FCmax values are shown.

Figure 1E provides a hierarchical overview of model parameters and their relationship to 

controllable biological features of the in vivo system. The top level shows the effective 

parameters FCmax and χNTF, which define the contour of regulatory curves like those in 

Figure 1D. These effective parameters are composed of a combination of the “physical” 

parameters on the second level of the diagram. These parameters correspond to basic 

features of the system, such as numbers of molecules, affinities, or interactions between 

molecules. The third level of the diagram shows the biological controls we have available 

to control the corresponding physical parameters. The approach we take below will be to 

profile the regulatory function and characterize the inherent regulatory parameters (α and 

β) of six TFs (AgaR, ArsR, AcrR, AscG, BetI, and CpxR) by controlling the copy number, 

binding location, and binding sequence of each. A potential challenge in determining α 
and β stems from their connectedness in the effective parameters χ and FCmax. Because 

χ is proportional to (1 + βP), if the stabilization parameter β is much smaller than 1/P 
≈ 15 (measured previously for the promoter sequence used in our experiments; Brewster 

et al., 2012), then χ will no longer strongly depend on β because (1 + βP) ≈ 1. In cases 

such as this, which we label “weak stabilization,” we are left with only one effective 

parameter, FCmax, to determine the two regulatory parameters α and β, and it is not possible 

to distinguish between regulation driven by a change in the transcription rate (acceleration/

deceleration) or by modulation of polymerase occupancy at the promoter (stabilization/

destabilization).

Experimental measurements of individual TF regulatory function

To measure regulation by an individual TF in E. coli as a function of TF identity and 

binding position on the promoter, we utilize synthetic techniques to create simple and 

controllable gene circuits. In this approach, we have created E. coli strains, illustrated 
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schematically in Figures 2A and 2B, where the endogenous copy of each studied TF 

is knocked out and reintroduced as a TF-mCherry fusion integrated into the genome at 

the ybcN locus (Figure 2A). Expression of the synthetic TF-mCherry promoter can be 

induced with anhydrotetracycline (aTc) (for details, see STAR Methods). This system 

enables precise control of TF copy number (Figure 2D), which is measured by wide-field 

fluorescence microscopy or flow cytometry (Figure 2C; STAR Methods). In our data, we 

use a fluctuation-counting method to convert the arbitrary fluorescence from the microscope 

into TF copy number. We convert the arbitrary fluorescence from the cytometer to TF 

number through a reference measurement on the microscope measured in parallel on the 

flow cytometer. This process has been described previously (Rosenfeld et al., 2007; Teng 

et al., 2010; Brewster et al., 2014) and in more detail in the STAR Methods. Using this 

system, we are able to induce these TFs from leaky levels (several per cell) up to several 

thousand per cell; the full induction curve of each strain is shown in Figure 2D. Importantly, 

although we control the concentration of the TF, many TFs are capable of existing in distinct 

binding conformations that may alter the active TF number, the regulatory parameters (α 
and β), or both. For all but one of the TFs studied here, we expect that the TFs will always 

be active under our growth conditions; however, BetI is inactivated by choline (which we do 

not control for), and therefore we expect to have some fraction of BetI inactive at low TF 

concentrations (Lamark et al., 1991; Gama-Castro et al., 2016).

In each of these individually tunable tf-mCherry strains, a target promoter that drives YFP 

expression is integrated into the genome at the galK locus (Figure 2B). The basic promoter 

incorporates a modified lac RNAP binding sequence where the RNAP occupancy term, P, 

was measured previously (Brewster et al., 2012). Otherwise, the promoter is designed to 

be free of specific known TF binding sequences. To study the regulatory role of a specific 

TF, we introduce a TF-specific binding site (chosen from an array of known binding sites 

with strong evidence of that particular TF binding (Salgado et al., 2013; Keseler et al., 

2017)) cloned directly downstream of the transcription start site (TSS), annotated as +1 

for simplification, or centered at 61 bases upstream of the TSS, annotated as −61. The 

effect of TF binding to the promoter is then measured in terms of YFP fluorescence protein 

expression as a function of average number of TFs per cell for a given induction condition 

(Figure 2C). For this work, our focus is to select a binding site that will bind the TF. The 

affinity of the site or how the particular choice may influence the regulatory parameters is 

not something we explore exhaustively here. The specific binding sites chosen for each TF 

can be found in the STAR Methods.

Regulatory response of six different TFs at +1 and −61

Figures 3A–3F show the fold change in YFP expression (promoter activity) as a function of 

TF copy number for the TFs examined in this study, measured using single-cell fluorescence 

microscopy. In these plots, regulation at +1 is shown as red points, regulation at −61 is 

shown as green points, and a control promoter with no TF binding site is shown in blue. 

The six TFs display diverse regulatory behavior that depends on the TF identity and TF 

binding location on the gene. For example, CpxR (Figure 3F) is a repressor when bound 

at +1 but activates at −61. AscG (Figure 3D) is a strong repressor at +1 but has almost no 

regulatory role at −61, and BetI (Figure 3E) represses at +1 and −61 but much more weakly 

Guharajan et al. Page 7

Cell Rep. Author manuscript; available in PMC 2021 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at −61 despite binding to the same sequence at both locations. One commonality between 

the curves is that, at +1, every TF in this study acts as a repressor. Naively, the “strength” of 

this repression appears rather diverse; the repression from some TFs reduces YFP expression 

by 10−3 in fold change (BetI), whereas others never drop below 10−1 (AgaR). The solid lines 

in this figure show a fit to the model in Figure 1A (boxed equation). In this case, we are 

explicitly measuring the number of TFs, NTF, and we fit for the two unknown parameters χ 
and FCmax (Figure 1A). In four of the six curves (Figures 3A and 3D–3F), the +1 regulation 

data give FCmax consistent with zero. This result is consistent with the regulatory mode of 

perfect repression; i.e., that the TF completely shuts off the gene when bound. Therefore, 

the difference in regulation at +1 between the TFs must be attributed entirely to binding 

affinity or differing levels of stabilization (β) between TFs. A typical assumption is that TFs 

operating at +1 regulate by steric hindrance (β = 0) so that, when the TF is bound at +1, 

polymerase binding is occluded. Previous studies (Ptashne and Gann, 1998; Ackers et al., 

1982; Brewster et al., 2014; Forcier et al., 2018) support this assumption. The remaining 

curves (Figures 3B and 3C) show FCmax of order 10−1, but in both cases, the binding is 

weak to the point where we do not see the expected saturation of fold change with TF copy 

number, and, therefore, the data from these curves are also consistent with FCmax of zero 

with a slightly increased value of χ to compensate. The collapse of all +1 regulation data to 

the perfect repression contour (FCmax = 0) is demonstrated in Figure 4A, where we plot the 

fold change against the effective TF concentration, χNTF, for these six TFs; the +1 data for 

all six TFs largely fit to a single regulatory contour associated with perfect repression when 

the extrinsic features, such as TF copy number and binding affinity, are “normalized away.”

Although, at +1, the fold change curve for each TF collapsed on a unifying regulatory profile 

(with FCmax = 0), at −61, these TFs operate with a diverse range of regulatory effects; 

some TFs mirror the function at +1, showing a profile similar to the response function at 

+1, whereas others show limited repressive capabilities that saturate at specific fold change 

values (FCmax), and still other TFs activate expression at −61. To quantify FCmax and χ 
for each TF acting at −61, we fit the data in Figure 3 with the theory in the fold change 

equation above. We find that the repressive TFs have FCmax values ranging between 0.2 and 

0.7, whereas the lone activating TF is around 4. In Figure 4B, we plot the fold change data 

against the effective TF concentration, χNTF. Now, rather than each TF following the same 

trajectory, the regulation data for these six TFs follow unique trajectories corresponding to 

specific values of FCmax. Figure 4C demonstrates that FCmax at +1 and −61 for these six TFs 

is not correlated between the two locations.

In Figure 4D, we show the fit value of χ for each TF at −61 against the fit value of χ 
at +1. Recall that χ is composed of the product of two effects: the binding affinity and 

the stabilization. We do not expect the TF binding energy, ΔεTF, to depend on where the 

binding site is located because the binding sequence is not changed (Salgado et al., 2013). 

The other possible contribution to χ comes from stabilization and takes the form (1 + βP), 

which means that β must be of order 1/P or larger for stabilization to affect χ. We expect 

that the data points will fall into two potential outcomes. Points that lie on the black dashed 

line indicate that stabilization does not play a significant role in the regulation at −61. 

However, points that are above the black dashed lines imply that the TF utilizes stabilization 

of RNAP (shown as red lines in Figure 4D). Many of the data points are consistent with 
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small or zero β, but two TFs, corresponding to AgaR and CpxR, are significantly above this 

line, implying that stabilization may play a role in their respective regulation. The implied 

magnitude of stabilization is shown by the red lines. Interestingly, AgaR in this case is a 

repressor but appears to impart strong stabilization, suggesting that, even though this TF 

stabilizes (β > 1) the polymerase at the promoter, it more strongly decreases the rate of 

transcription from polymerase bound at the promoter (α < 1), resulting in a net repression 

of gene expression. This highlights a mechanism of repression that is fundamentally distinct 

from the downstream (+1) position regulation for AgaR and demonstrates an incoherent 

regulatory strategy where the TF engages RNAP at two distinct steps with opposing effects.

Profiling the spatial regulatory landscape of the CpxR TF

We now examine how the regulatory parameters that quantify stabilization (β) and 

acceleration (α) vary with binding location for one TF, CpxR. As demonstrated in Figure 

5A, CpxR naturally binds to a wide range of promoter locations to regulate dozens of 

different genes in E. coli. However, the regulatory role of CpxR as a function of binding 

location is unclear from these data; repressive and activating interactions are attributed 

to many of the locations upstream of the promoter. Furthermore, we have evidence that 

CpxR is capable of regulating through stabilization at −61, implying that we may be able 

to separate regulation through stabilization and regulation through acceleration in a more 

thorough examination. To measure the isolated regulatory behavior of CpxR as a function 

of binding location, we take the same synthetic target gene (Figure 2B) and move the TF 

binding site between positions centered at −48 bp from the TSS to −112 bp from the TSS 

(Figure 5B). We chose this range because the vast majority of natural CpxR binding sites 

occur within these limits (Figure 5A). To enable rapid cloning and measurement, the target 

gene is cloned into a low-copy plasmid (rather than integrated into the genome), and fold 

change in target expression and TF abundance is measured using flow cytometry (rather 

than single-cell microscopy) (Table 1). We find consistent results with the target gene on the 

plasmid or integrated into the genome (STAR Methods).

The data for fold change as a function of CpxR copy number for the binding location sweep 

is shown in Figure 5D. Regulation of the positions studied here is primarily activation, 

with 11 positions showing increased expression ranging from 2-fold to over 100-fold and 

just one upstream position showing moderate repression. We find that the regulatory effect 

of CpxR depends strongly on binding site location; the −54 binding location shows weak 

repression but is flanked by activating positions only a few bases away (−50 and −56). As 

expected, positions that are far from the promoter (in this case, beyond roughly 82 bp) show 

little to no regulation. In Figure 5C, we show fit values of FCmax as a function of binding 

location on the promoter for these data. We expected to see an 11-base periodicity in FCmax 

corresponding to the helicity of DNA (Müller et al., 1996; Garcia et al., 2012; Sharon et al., 

2012); we see this very roughly with maxima in activation around −48, −60, −70, and −80 

(± 1 bp), but −64 is a strong outlier that is expected to be close to a minimum but is strongly 

activating as measured here.

To precisely extract the regulatory parameters α and β from these data, it is helpful to 

replot the fold change data using a manifold approach. A recent approach used regulatory 
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manifolds to explore how the CRP TF acted on dozens of different promoters and employed 

different RNAP binding sequences to trace out the regulatory space of the TF (Forcier et al., 

2018). In this case, the power in the manifold approach arises from the ability to eliminate 

the need to measure (or know) the binding affinity of polymerase to each promoter; by 

replotting the data, specific data trajectories (or “allelic manifolds”) corresponded to unique 

values of CRP regulatory parameters. For our study, we use a “concentration manifold” 

to avoid the need to measure the effective concentration (in particular, the binding affinity 

of the TF). This approach is demonstrated schematically in Figure 6A. The concentration 

manifold plots the fold change at one position against the fold change of another position; 

each data point in this space corresponds to a measurement of both TF binding positions at 

the same effective TF concentration. In this case, we chose to plot all position data against 

the corresponding fold change at +1; we chose +1 because, based on Figure 4A, we believe 

that regulation is “pure steric hindrance” (FCmax = 0, β = 0) here. The advantage of this 

approach is that it enables inference of β at other positions based on the curvature of the 

data without the need to simultaneously infer the TF binding affinity or TF copy number 

(see STAR Methods for model assumptions). As seen in Figure 6B, data in the concentration 

manifold are expected to be lines emanating from (1, 1), which is the defined fold change of 

both locations when the number of TFs is zero. As TF concentration is increased, the fold 

change at +1 decreases toward 0, and the fold change at the second position will increase or 

decrease depending on the regulatory function at that position; therefore, activating positions 

have curves that rise as you move toward zero on the x axis, whereas repressive positions 

decrease. The role of β is clear in this formulation. When β is small (compared with 1/P), 

the profiles are straight lines. However, larger β will cause the curve to rise or fall more 

rapidly than linear, reaching FCmax at higher values of the corresponding +1 Fold-change.

In Figure 6C, we replot the data from Figure 5D as fold change at an upstream regulatory 

position against fold change at +1; each data point represents a measurement of fold change 

at these two different binding locations for a given TF copy number within the cell. The 

plots are arranged from the highest FCmax (strong activation at −64) to the lowest FCmax 

(weak repression at −54). The solid line represents our model curve using the inferred values 

of α and β. Based on the inferred stabilization values, we find that the activation profiles 

across the position sweep is driven by varying degrees of stabilization and acceleration. The 

inferred values for α and β of all measured positions are shown in Table 2. We find strong 

stabilization in regulation at positions −50, −60, −54, −48, and −64; Figure 6C shows the 

curvature we expected to see from strong stabilization. Several positions (−58, −56, −70, 

and −74) have regulation profiles that are approximately straight lines, implying that CpxR 

destabilizes or regulates through weak stabilization, i.e., (1 + βP) ≈ 1.

Figure 6D shows a heatmap for log(FCmax) as a function of the regulation parameters 

α and β. The dashed black lines, which denote α and β equal to 1, divide the map 

into four quadrants, each quadrant with a specific qualitative regulatory scheme. The top 

right and bottom left quadrants represent coherent regulation strategies where α and β 
contribute to activate (top right) or repress (bottom left) gene expression. On the other 

hand, the top left and bottom right quadrant are incoherent in the sense that α and β have 

opposing regulatory effects: TFs in these quadrant slow the initiation rate of transcription 

while stabilizing polymerase at the promoter (top left) or increase the initiation rate of 
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transcription while destabilizing the polymerases’ presence at the promoter (bottom right). 

The solid white contour in this plot shows where these two effects balance and the net fold 

change is 1; left of this line represents TFs that repress, and right of this line represents 

TFs that activate. Contours of constant FCmax are drawn as white dashed lines, marking 

10-fold increases/decreases in FCmax. On this plot, we also show the inferred probability 

distribution of the parameters α and β for each position in our data. The black points are 

lower probability, with lighter points representing higher probability values for the α and 

β parameters. One notable phenomenon is that, for positions with β less than roughly 10, 

the inference begins to fail for α and β. This results in inference clouds with “tails” that 

stretch across quadrants and precludes assessment of the mode of regulation (see position 

−74). The alignment between the inference clouds of these positions and the constant FCmax 

contours, however, shows that, although we make very precise estimations of FCmax, the 

values of α and β are less certain and correlated. This is an unfortunate consequence of the 

weak stabilization limit in our model resulting in parameter combinations that encompass 

coherent and incoherent regulatory regimes, which could explain the data well (Transtrum et 

al., 2015).

At some positions (−54, −50, −80, and −82), we see the incoherent behavior discussed 

above, where the TF stabilizes polymerase at the promoter and also slows the rate of 

initiation, essentially serving opposing functions in influencing gene expression. For −54, 

the net effect of these opposing mechanisms is repression, whereas at −80, −82, and −50, 

the result is activation. However, the positions with strong activation signatures (−48, −60, 

and −64) as well as some intermediate ones (−56, −58, and −70) have stabilization and 

acceleration values that impart a coherent strategy of regulation where RNAP recruitment 

and acceleration of transcription work together. Interestingly, all but one of the regulatory 

positions studied here show clear positive stabilization (β > 1), even the lone repressive 

position (−54). In our data, upstream regulation by CpxR typically involves stabilizing 

RNAP, regardless of the net regulatory function (repression or activation). However, the 

level of acceleration/deceleration varies more significantly between positions from a roughly 

20-fold deceleration, which results in overall repression of expression, up to a 25-fold 

acceleration, which results in strong activation.

Finally, combining the inferred regulatory parameters, α and β, determined through 

inference in the concentration manifold space, with the measured extrinsic features (TF copy 

number and binding affinity) of gene regulation produces model curves using the effective 

parameterization that fit our data well. The effective parameters FCmax and χ for the CpxR 

TF data (see STAR Methods for details) are used to plot the fold change as a function 

of χNTF for the 13 regulatory positions in Figure 6E. Crucially, we demonstrate that the 

two key variables, χ and FCmax, are effective in capturing the fold change position sweep 

profiles similar to the plots in Figures 4A and 4B.

DISCUSSION

To build a predictive understanding of gene regulation, we need to understand not just 

where and when TFs bind but also learn the function and magnitude of the mechanisms 

of regulation at work by each TF (Weingarten-Gabbay and Segal, 2014; Gertz et al., 
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2009; Bylino et al., 2020). Often, it is difficult to separate the contributing factors of 

regulation, such as the TF binding affinity, copy number, and interactions with other TFs, 

from the regulatory role of the TF that is characterized by its interactions with RNAP at the 

promoter (Ross and Gourse, 2009). Here we use a synthetic biology approach to measure 

the isolated regulatory effect of a TF on an otherwise constitutive promoter. These data are 

interpreted through a thermodynamic model of gene expression that treats the regulatory role 

of TFs as a combination of interactions that stabilize (or destabilize) the polymerase at the 

promoter and interactions that accelerate (or decelerate) the rate of transcription when the 

TF is cobound with polymerase. The model used here allows both modes simultaneously 

and, importantly, enables us to quantify TF regulatory function continuously rather than 

categorically as “activators” or “repressors.” Using this model, we are able to characterize 

the wide range of regulation we see from the TFs in this study, which ranges from 10,000-

fold repression up to 100-fold activation and everything in between with the same model. 

We believe that this fluid classification of TF function can be a useful tool for characterizing 

TFs for the purpose of model building and predictive design of gene regulation.

We found that, for TFs operating immediately downstream of the promoter, the regulation of 

each TF was consistent with strong repression (i.e., with FCmax ≈ 0). Despite the large range 

in magnitude of regulation at this location, the same intrinsic regulatory mechanism seems 

to be conserved; differences in the magnitude of regulation were primarily due to differences 

in TF binding affinities rather than in the fundamental regulatory mechanisms of the TFs. 

In contrast, when these same TFs bind 61 bp upstream of the promoter, the regulatory 

function of the TFs varied more substantially. We find that some TFs remained strong 

repressors (similar to their function at +1), but other TFs only weakly repress expression 

regardless of TF copy number. We attribute this to intrinsic properties of the TF, polymerase 

(de)stabilization and (de)acceleration of transcription initiation by the TF, which depend 

on TF identity. Furthermore, when profiling the regulation of CpxR at upstream binding 

locations, we find that this TF can regulate multiple steps of the transcriptional process 

and joins a growing body of evidence for TFs engaging in complex regulatory maneuvers 

at the promoter (Smith et al., 1996; Monsalve et al., 1997; Jensen et al., 2019). This 

insight into how activation is actually brought about by the independent contributions of 

acceleration and stabilization demonstrates the applicability of the model to in vivo data 

and complements previous work investigating the regulatory profile of the CRP TF (Forcier 

et al., 2018) as well as in vitro biochemical and structural considerations probing the 

kinetics of activation (Rhodius et al., 1997). We find that the contributions of these two 

mechanisms do not correlate with position; in some locations, we found stabilization and 

acceleration acting together to produce strong activation, and in other locations, deceleration 

and stabilization worked incoherently, resulting in weaker activation and repression. A 

startling feature of this incoherent regulation was its presence in the regulatory response of 

an activator (CpxR) and a repressor (AgaR) and demonstrates that this type of regulation is 

not just accessible to TFs but may be a pervasive aspect of TF-RNAP regulation.

The concept of stabilization and acceleration working antagonistically, with the step 

carrying the larger effect size ultimately determining the status of expression (activation or 

repression), has implications for the current paradigm of viewing TF regulation, particularly 

activation in the context of class I and class II promoters. This delineation of promoter 
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class is based on the type of molecular contacts the activator makes with RNAP (Li et 

al., 1997; Niu et al., 1996; Lee et al., 2012; Zhou et al., 2014; Savery et al., 2002). For 

specific TFs, mapping between contacts and regulatory mode has been established (Li et 

al., 1997; Savery et al., 2002) However, addressing how these contacts shape the relative 

effects of α and β across a wide range of TFs would fill a vital gap in elucidating the 

molecular determinants that give rise to coherent and incoherent regulatory regimens. Such 

information would allow more complete characterization of TFs, and, in conjunction with 

methods of profiling TFs through genome-wide occupancy techniques, provides an edge 

in the challenge of uncovering an “expression code”: i.e., a set of rules that govern the 

magnitude and duration of gene expression from natural promoters (Kinkhabwala and 

Guet, 2008; Beer and Tavazoie, 2004; Ireland et al., 2020). Realizing this goal requires 

systematic characterization of position-dependent TF regulatory profiles to determine the 

spatial landscape of α and β for TFs across different families, with the aim of generating 

a “regulatory compendium” that classifies TFs according to their regulatory mode. This 

argument, however, is predicated on our ability to infer regulation driven by stabilization 

and acceleration with sufficient precision. One unfortunate feature of our experiments, as 

designed, is our inability to measure destabilization with good precision (β ≤ 1) and limits 

the characterization of TFs that engage through this mode. In these experiments, FCmax 

acts as a “stiff” parameter that completely determines the expected regulatory outcome, 

whereas the individual values of α and β are “sloppy” (Machta et al., 2013; Transtrum et 

al., 2015). One potential way to overcome this is to select a stronger promoter sequence for 

the target gene. The selected sequence we used in our synthetic circuit was an attenuated 

form of the lacUV5 promoter, which was selected to increase the dynamic range of the 

promoter. Therefore, measuring the isolated regulatory function of TFs may require a range 

of promoters to fully characterize the wide array of possible regulatory behaviors.

Here we focus entirely on the isolated regulatory role of each TF, but it is clear that one 

of the next steps is to probe how quantified TFs regulate together. Extending the simple 

thermodynamic model to incorporate regulation directed by multiple TFs will play a crucial 

role in untangling elaborate regulatory architectures (Buchler et al., 2003), especially those 

found in eukaryotes. Indeed, thermodynamic models have been employed to interrogate 

the regulatory function of eukaryotic promoters involved in key processes such as cellular 

differentiation, body patterning, and a host of other biological roles (Segal et al., 2006, 

2008; Sayal et al., 2016; Chen et al., 2008; Ay and Arnosti, 2011; Fakhouri et al., 

2010; Bashor et al., 2019). The ability to distinguish and quantify the different modes of 

regulation (stabilization and acceleration) and characterize TFs based on them is important 

for developing general theories of regulation that include multiple TFs that act on different 

kinetic steps of the transcription process (Scholes et al., 2017; Martinez-Corral et al., 2020; 

Wong and Gunawardena, 2020); predictions for the combined regulatory effect of two 

stabilizing TFs should be different than predictions for a stabilizing TF acting together 

with an accelerating TF (Scholes et al., 2017). With each characterized TF, we can develop 

an empirical baseline or null hypothesis for what a TF should do on a gene; departures 

from this expectation, because of emergence of complex regulatory phenomenon brought 

about by TF-TF interactions (Weingarten-Gabbay and Segal, 2014), allosteric interactions 
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(Rosenblum et al., 2020; Kim et al., 2013), or other effects indicate surprises that warrant 

testing in these expanded models.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—All request for information regarding datasets, materials, and reagents 

as well as questions pertaining to the manuscript should be directed to Robert Brewster 

(Robert.Brewster@umassmed.edu).

Materials availability—All E. coli strains and plasmids generated in this study are 

available on request by contacting the lead contact.

Data and code availability

• All data reported in this paper will be shared by the lead contact upon request.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Microbial strain and culture conditions—E. coli strain MG1655 was the base strain 

used for all synthetic regulatory circuit strains constructed and measured in this work. 

For a comprehensive list of engineered strains, see Tables S2 and S4. All strains were 

cultured at 37° C with 250rpm in a shaking incubator in an initial culture of LB and 

appropriate antibiotics until saturation. Cultures were then diluted 104- to 105-fold into 

1 mL of fresh M9 minimal media supplemented with 0:5 percent of glucose at different 

aTc concentrations. We then assessed when the cultures were at steady state using OD 

measurements, and performed our quantitative measurements of TF copy number and 

YFP expression on either microscopy or flow cytometry immediately. More details on 

these procedures can be found in Culture conditions and Data acquisition procedures for 

Microscopy and Flow Cytometry Data in the Method details. The comprehensize list of 

engineered strains are found in Tables S2 and S4.

METHOD DETAILS

Thermodynamic model for single TF regulation—In the work here we use the 

standard form of the thermodynamic model as derived elsewhere (Ackers et al., 1982; Bintu 

et al., 2005; Buchler et al., 2003). In our framework, we include an additional consideration 

of the TF altering the rate of transcription as detailed in Garcia et al. (2012). The partition 

function for this system is:

Z = 1 + Np/NNS e− Δεp + NTF /NNS e− ΔεTF

+ NpNTF /NNS
2 e− Δεp + ΔεTF + Δεl ,

(Equation 1)
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where each term (in order) represents the weight of the unbound, bound by polymerase, 

bound by TF and cobound state. The terms Np and NTF are the total number of polymerase 

or TF molecules, with the term NNS in the denominator scaling the respective terms with the 

total number of potential binding sites on the genome to give an effective concentration on 

the chromosome. The energy terms Δεp and ΔεTF are the binding affinities of polymerase 

or TF to their promoter or operator site. The stabilization term (β) as discussed in Figure 1 

is represented by the exponentiation of ΔεI. The probability to find polymerase bound as a 

function of TF number is then,

Pbound NTF

=
Np/NNS e− Δεp + NpNTF /NNS

2 e− Δεp + ΔεTF + Δεl

Z .
(Equation 2)

To compare with experimental measurements, we model YFP expression from our synthetic 

gene circuit as the convolution of the state specific transcription rates and the states 

enumerated in Pbound(NTF). For the state in which RNAP is solely bound, we give a rate of 

expression as r (a course-grained parameter representing the basal rate of YFP production). 

For the TF-RNAP co-bound state, we assign a scaling factor α that represents the change in 

transcription rate when the TF is bound (acceleration):

Y FPexpression = r Np/NNS e− Δεp

Z

+
α NpNTF /NNS

2 e− Δεp + ΔεTF + Δεl

Z

(Equation 3)

In practice, what we seek to model is the fold change in gene expression, which is the 

change in expression level relative to the unregulated gene. Based on the partition function 

and the state specific transcription rates, the fold change in expression then assumes the 

following form:

fold − cℎange = Y FPexpression NTF ≠ 0
Y FPexpression NTF = 0

= 1 + α NTF /NNS e− ΔεTF + Δεl

1 +
NTF /NNS e− ΔεTF 1 + Np/NNS e− Δεp + Δεl

1 + Np/NNS e− Δεp

. (Equation 4)

We then define the following terms β = e−Δεl and P = Np/NNS e−Δεp. As we have 

measured the value of P in our synthetic circuit to to be 6.6×10−2 (Brewster et al., 2012), 

we safely assume the weak promoter limit simplifies the expression 1 + Pβ
1 + P 1 + Pβ. The fold 

change is then written as:
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fold − cℎange = 1 + NTF /NNS e− ΔεTF αβ
1 + NTF /NNS e− ΔεTF (1 + Pβ)

. (Equation 5)

We now define the final term in our derivation: χ = e−ΔεTF /NNS (1 + Pβ) which represents 

the effective component that modifies the TF copy number with the product χNTF acting in 

our model as the effective TF concentration. We now re-write the fold change in terms of the 

effective TF number (χNTF), and the maximal fold FCmax = αβ
1 + Pβ  as presented in Figure 

1 and the main text.

fold − cℎange = 1 + FCmaxχNTF
1 + χNTF

. (Equation 6)

Choice of the core-promoter sequence used in the synthetic circuit—Previously 

we have found that the weak promoter approximation describes in vivo measurements of 

repression of the lacUV5 promoter by LacI (Garcia and Phillips, 2011; Brewster et al., 

2014). For this study, where we expect to find both activation and repression, we decided 

to use a weaker promoter for the target gene. This promoter was designed such that e−Δεp

is roughly 1kBT lower than that of lacUV5 (Brewster et al., 2012). We have confirmed that 

the basal expression of this promoter decreases as expected and that regulation follows the 

same quantitative response to LacI as for lacUV5 (Brewster et al., 2012). Given that we 

have previously measured the core-promoter strength used in our synthetic circuit to be at 

P = 6.6×10−2 (Brewster et al., 2012), we expect that the approximation 1 + P ≈ 1 used in 

deriving the thermodynamic predictions for the fold change in gene regulation is justified in 

our work. The choice of the promoter sequence comes with its trade-offs: a weaker promoter 

sequence, while allowing for a larger window of measurement for activation, potentially 

limits the ability to measure smaller β values for activation (the weaker the promoter, the 

larger the range of beta that is constrained to measurable dependence with α - note the 

weak stabilization limit discussed in the Main Text). Taking all points into consideration, 

we feel that our choice of the promoter sequence adequately balances competing objectives 

of detecting activation, and inferring the contributions of α and β, and allowing for strong 

enough expression to measure 100- to 1,000-fold repression at +1.

Concentration manifold derivation—As our primary motivation in this study rests on 

changing the binding location to explore the regulatory properties of a particular TF, we 

looked for a way to reformulate the thermodynamic model in such a way as to remove the 

binding affinity parameter from our consideration (under the assumption that the binding 

affinity is set primarily by the TF binding sequence which is invariant). This would allow 

us to infer the intrinsic regulatory features for a TF (the acceleration and stabilization 

parameters). To do this, consider the following reformulation of the thermodynamic model 

where the TF concentration is written as a function of the fold change (abbreviated FC 

below) for a given binding regulatory location (designated by the superscript x or y):
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NTF = 1
ε(y)K(y)

FC(y) − 1
FCmax

(y) − FC(y) = 1
ε(x)K(x)

FC(x) − 1
FCmax

(x) − FC(x) . (Equation 7)

Given that we measure TF abundance, we can essentially couple the fold change in 

regulation between two different positions by allowing the TF concentration to trace out 

a manifold that specifies the fold change at positions y as a function of the fold change at 

position x.

FC(y) =
1 + FCmax

(y) ε(y)K(y)

ε(x)K(x)
FCx − 1

FCmax
(x) − FC(x)

1 + ε(y)K(y)

ε(x)K(x)
FC(x) − 1

FCmax
(x) − FC(x)

. (Equation 8)

As in the first section of the Methods, we define P = Np/NNS e−Δεp and FCmax
p = αpβp

1 + Pβp

where the superscript p represents the regulatory position. We also introduce two new terms 

for compactness: ε = e−ΔεTF  and Kp = 1 + Pβp. Assuming the binding affinity is constant 

between the two locations (ε = εx = εy) we achieve a reduction in the manifold:

FC(y) =
1 + FCmax

y K(y)

K(x)
FCx − 1

FCmaxx − FCx

1 + K(y)

K(x)
FCx − 1

FCmaxx − FCx

. (Equation 9)

Based on this reformulation, the key parameters to consider are the acceleration parameters 

(couched in the FCmax term as described in Figure 1) and the stabilization parameters at 

positions x and y (a total of 4 parameters). In a sense, the “concentration manifold” allows 

us to remove what we consider to be the extrinsic feature of TF regulation (the binding 

affinity and TF copy number) from the intrinsic features of the TF regulatory response 

(the regulatory activity as of the TF on RNAP through stabilization and acceleration). We 

can further simplify the model by taking into account a judicious binding location for the 

position x. Taking the +1 binding location, where the assumption of steric hindrance in our 

thermodynamic model for all the TFs surveyed in this work is justified, we set βx ~ 0 (which 

makes K = 1) and FCmax
x = 0. This leads us to the final form of the concentration manifold 

for a given regulatory position (as a function of the fold change at the +1 position - FC+1):

FC(y) =
1 + FCmax

y 1 + Pβ(y) 1 − FC( + 1)

FC( + 1)

1 + 1 + Pβ(y) 1 − FC( + 1)

FC( + 1)

. (Equation 10)
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Now we see that the only parameters that remain in the model are the acceleration and 

stabilization at position y (the regulatory position under consideration).

Culture conditions and data acquisition procedures for microscopy and flow 
cytometry data—The position dependent regulatory profiles for the 6 TFs -AcrR, AgaR, 

ArsR, AscG, BetI, CpxR - evaluated at +1 and −61 positions were measured using 

fluorescence microscopy. At every microscopy session, the TF titration strains (harboring 

the integrated TF-mCherry fusions in the ybcN locus and the synthetic circuit in the galK 
locus) were cultured with companion strains. These include the TF-mCherry fusions lacking 

the galK synthetic circuit integration (necessary to derive the calibration factor to convert 

the arbitrary fluorescence signal into TF copy number) and TF-mCherry fusion strains with 

the TF binding site missing from the integrated synthetic circuit (necessary to account 

for TF titration effect on gene expression). Furthermore, constitutive strains lacking the 

TF-mCherry fusion (integration in the ybcN locus) expressing the integrated synthetic circuit 

were necessary to compute the fold change in gene expression.

Single colonies of bacterial cultures from freshly streaked LB-Agar plates with appropriate 

antibiotics are grown overnight in 1 mL of LB in a 37° C incubator shaking at 250 rpm. 

Cultures are diluted 104- to 105-fold into 1 mL of fresh M9 minimal media supplemented 

with 0.5 percent of glucose at different aTc concentrations (0, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 8, 

and 10 ng/mL) and allowed to grow at 37° C until they reach an OD600 of 0.1 to 0.2 and 

harvested for microscopy. 1 μL of cells is spotted on a 2 percent low melting agarose pad 

(Invitrogen 16520050) made with 1X PBS. An automated fluorescent microscope (Nikon 

TI-E) with a heating chamber set at 37°C is used to record multiple fields per sample 

(between 6–12 unique fields of view) resulting in roughly 100 to 500 individual cells per 

sample.

The calibration factor for the conversion of mCherry fluorescence to TF copy number is 

quantified by measuring the fluctuations in fluorescence partitioning during cell division 

(Brewster et al., 2014). Briefly, cells expressing the TF-mCherry fusion protein are grown as 

described above, and just before imaging 100 μL of cells from different aTc concentrations 

are pooled together and washed twice with M9-glucose minimal media containing no aTc. 

Cells are then spotted on 2% low melting agarose pad made with M9-glucose minimal 

media. Phase images are captured for roughly 150 to 200 fields and their positions are saved 

for later. These phase images (named as Lineage tracker) will serve as a source file for 

lineage tracking of the mother-daughter pair. After one doubling time (roughly 1 hour or 

depending on the doubling time for different TF strains), the microscope stage was returned 

to the same field of view using the saved position matrix and are imaged again (and named 

as daughter finder) using both phase and mCherry channels

To measure the regulatory profiles for the CpxR TF position sweep constructs, we used flow 

cytometry for rapid and reproducible data acquisition. The CpxR-titration strains harboring 

the position regulation plasmids (See Strains) were cultured in LB + Kanamycin media 

from single colony inoculates until saturation. A 1:10,000 dilution for each strain was then 

made in M9 minimal media supplemented with glucose along with the appropriate amount 

of aTc to titrate CpxR-mCherry levels. We found that the following aTc concentrations 0, 
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0.5, 1, 1.5, 3, 4, 6 and 8 ng/ml provided a good dynamic range of TF expression while 

maintaining viability of the CpxR strains. The aTc dilution solutions were made from a 

stock solution of 1 mg/mL suspended in ethanol and were made fresh prior to the application 

of the aTc for the M9 culture. After M9 dilution, the strains were grown in 96 well plates 

to steady state (OD600 of 0.1 – 0.2). Similar to microscopy acquisition procedure, we had 

constitutive (CpxR-KO) strains transformed with the binding position plasmids along with 

the CpxR-titration strain transformed with the plasmid having the TF binding sequence 

removed from the promoter to account for physiological effects of CpxR-mCherry titration 

to calculate the Fold-change. Cells were diluted between 1:2 to 1:3 fold in PBS media 

in a 96 well cytometer plate prior to data acquisition and cytometry was performed on a 

MacsQuant VYB. At the beginning of each run, an initial gating strategy involving the 

Forward Scatter and Side Scatter area information was used to eliminate background events 

and samples were run to achieve ~ 60,000 gated events for each position strain at a given 

aTc concentration.

Engineering the titratable TF-mCherry fusion strains—All strains used in this 

study are constructed from the parent strain E. coli MG1655. The TFs investigated in 

this study include AcrR, AgaR, ArsR, AscG, BetI, and CpxR. Each TF gene is deleted 

from its wild-type locus and expressed from the ybcN locus under the regulation of 

the Ptet promoter. The autofluorescence strain for each experiment is E. coli MG1655 

with the corresponding TF knocked out from the wild-type locus. We used the KEIO 

library (Baba et al., 2006) as the starting point for the construction of the 6 TFs with 

the titratable TF-mCherry fusion cassette. We selected the corresponding clone from the 

KEIO library with the TF-knockout (the coding and upstream regions of the TF gene 

are replaced by a constitutive promoter expressing Kanamycin), and deletion of TF gene 

from the wild-type locus was performed by P1 transduction of the corresponding knockout 

from the KEIO collection to the MG1655 E. coli strain. The kanamycin cassette was 

cured using the frt flippase expressed from pCP20 plasmid. Primers listed in Table S1 

were then used to amplify the coding sequence (without the stop codon) of the 6 TFs 

profiled from the MG1655 genome. The amplified coding regions had overhangs for the 

pTet-AEK-mcherry plasmid that contains the PTet promoter in frame with the flexible 

AEK linker sequence (GCAGAAGCAGCAGCAAAGGAAGCAGCAGCAAAGGCA) and 

mCherry, and were subsequently cloned into the pasmid via Gibson Assembly to make 

the respective pTet-TF-AEK-mCherry plasmids. The pTet-TF-AEK-mCherry fusion cassette 

were then amplified with ybcN integration primers for chromosomal insertion using lambda 

red recombineering assisted by plasmid pKM208 as described previously (Murphy and 

Campellone, 2003). We sequenced the regions surrounding the PTet promoter and the TF-

Linker-mCherry cassette to confirm the regions were free of any mutations. For the final 

step, the ybcN locus was moved using P1 transduction to the TF knockout strain harboring 

a constitutively expressed TetR integrated at the gspI locus. These strains (Table S2) allow 

for inducible control of TF copy number by titrating TetR repression with aTC (anhydrous 

tetracycline) and were used for all synthetic circuit measurements presented in the Main 

Text.
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Cloning the TF specific binding location gene circuits—The upstream promoter 

sequence in our synthetic gene circuit was derived from the PDL5 plasmid that contains 

a modified version of the lacUV5 promoter sequence as used previously (Brewster et al., 

2014). Binding sequences for AcrR, AgaR, ArsR, AscG, BetI, CpxR TFs listed in Table 

S3 were cloned at the +1 and the −61 locations (relative to the Transcription Start Site) on 

the plasmid using Gibson Assembly with primers having the TF binding sequences as 5′ 
overhangs to the priming sequences of the PDL5 vector at the respective binding locations. 

Primers harboring 40bp homology to the galK locus were then used to amplify the promoter 

region of the plasmid for intergration into the locus using the pKM208 recombination E. 
coli strains (Murphy and Campellone, 2003). The strains were then sequenced and verified 

to contain the appropriate regulatory and promoter elements before using P1 transduction to 

transfer the galK locus into the appropriate TF titration strains to make the TF inducible, 

synthetic circuit strains listed in Table S4.

To clone the synthetic target promoters for profiling the regulatory activity CpxR at multiple 

binding locations, we designed an approach to make fast and efficient cloning of any TF 

binding sequence at defined locations ranging from +1 to −112bp relative to the TSS on the 

unregulated DNA circuit (PDL5). We designed forward and reverse primers to amplify the 

PDL5 plasmid at defined locations in the promoter sequence (see Table S5). These primers 

were used to insert the ccdb cassette at the precise location upstream of the gene circuit 

and had overhangs for the typeIIs BbsI restriction site. This allowed for excision of the 

ccdB cassette and cloning of BbsI digested TF binding sequences that had complementary 

overhangs to the excised region. The PDL5 − ccdB plasmids (Table S6) were assembled 

and transformed into the Escherichia coli DB3.1 strain that harbors key mutations in DNA 

gyrase that tolerates the ccdB toxin (Bernard, 1996) for stock curation and sequencing. The 

plasmids were then incubated with double stranded oligos that had the CpxR ppiA binding 

sequence flanked with the Bbs1 restriction sites and the 4 bp complementary sequence to the 

digested plasmid. Digestion and ligation of the ppiA binding sequence to the PDL5 − ccdB 
position plasmids were done in a single incubation step. The cloned PDL5 − ppiA plasmids 

in Table S7 were then sequenced and transformed into the CpxR titration strain.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis and statistics—Information pertaining to the data plotted in Figures 2, 3, 

4, 5, and 6 including the number of replicates and meaning of the error bars can be found in 

the captions of the respective figures.

Data processing steps for microscopy and cytometry data—To process the 

regulatory data for the 6 TFs profiled at +1 and −61, we took the microscopy images 

and segmented individual cells using a modified version of the MATLAB code Schnitzcells 

(Rosenfeld et al., 2007).We use this code to segment the phase images of each sample to 

identify single cells. Mean pixel intensities of YFP and mCherry signals are extracted from 

the segmented phase mask for each cell. The autofluorescence is calculated by averaging 

the mean intensity of the autofluorescence strain in both mCherry and yfp channels and is 

subtracted from each measured YFP or mCherry value. Total fluorescence for each channel 

is obtained by multiplying the mean pixel-intensity with the area of the cell. Fold change 
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in expression for a given binding site is calculated by the ratio of total fluorescence of 

strains expressing the TF to the strains with no TF. For partitioning statistics to estimate 

the calibration factor, mother-daughter pairs are first automatically identified and verified 

manually to ensure cells made exactly one division. The mean pixel intensity and area of the 

mother-daughter pairs are obtained. The background fluorescence is estimated as described 

previously (Ali et al., 2020) using the inverse mask of individual frames. The sum and 

difference in fluorescence of the two daughters were then used to find the conversion factor, 

v, between fluorescence and number of TFs using the equation (I1 − I2)2 = v(I1 + I2), which 

stems from the assumption of binomial partitioning of TFs at cell division (Rosenfeld et al., 

2007).

For the CpxR position cytometry data, we adapted a robust data analysis procedure (Razo-

Mejia et al., 2018) to computationally gate events to ensure reproducible Fold-change 

measurements for a given position across replicates. For a given position strain replicate 

measurement, we collected the data across all the aTC concentrations and proportionally 

binned the single flow cytometry events into 16 RFP intervals (intervals were off unequal 

size in RFP space with the number of cells in each bin more or less constant). We then took 

these binned events and gated them using the log10 values of the Forward Scatter and Side 

Scatter area profiles for each event (referred to as FSC and SSC respectively) to improve 

the likelihood that the final retained events were single cell measurements. To construct this 

gate, we computed the mean and covariance matrix for each dataset for every RFP bin and 

used these statistics to fit an ellipsoid to the full dataset according to the following formula:

FSC
SSC

T
Σ− 1

2
FSC
SSC ≤ α, (Equation 11)

witℎΣ = V ar(FSC) Cov(SSC, FSC)
Cov(FSC, SSC) V ar(SSC) . (Equation 12)

This step retains events that are within a particular distance from the center of the ellipsoid 

using an appropriate value for the cut-off (alpha). We based the value of the cut-off on 

the following rationale: As each event is essentially a vector of log10 values for the 

FSC (Forward Scatter) and SSC (Side Scatter), we assume the joint values are normally 

distributed, which translates to a distance metric that is a chi-square random variable (the 

sum of two normally distributed entities is chi-square with 2 degrees of freedom). We 

selected α as the 5th percentile of values from the cumulative distribution, and events within 

the cutoff were taken to be single cell measurements used to compute the fold change 

values presented in the results section. The resulting gated events for each of the 16 RFP 

intervals were pooled from all position strains and replicates, and we excluded events with 

RFP measurements below a certain threshold determined by visually assessing the the fold 

change profile of the “control” (DelBS) circuit. The YFP signal for these events had large 

fluctuations and we reasoned that the flow-cytometry approach probably fails in measuring 

cells at lower TF copy number. The retained events were then binned proportionally into 

22 intervals, and the median RFP and Fold change values for each interval was reported 
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as the representative measurements for that bin. The choice of intervals at this step (with 

the exception for very large bin sizes) does not seem to appreciably alter the main findings 

from our inference into the acceleration and stabilization for the CpxR binding locations (see 

Figures S5 and S6 for details).

Measurement of TF abundance in flow cytometry experiments: Converting 
the mCherry signal to TF copy number—To measure the regulatory response of the 

CpxR regulated promoter at 22 binding locations, we used flow-cytometry to measure TF 

abundance and target gene expression for cells at steady state. Our goal was to look at the 

regulatory level of the target gene as a function of TF copy number (Brewster et al., 2014), 

which required TF abundance measurements to be converted from arbitrary fluorescent 

units to copy number of the TF-mCherry fusion molecules in the cell. To convert the 

arbitrary mCherry signal from the flow cytometer to TF copy number, we took the flow 

cytometer measurements of the Fold change response curve as a function of mCherry levels 

at the +1 position and compared it to the measurements we made using microscopy (see 

Figure S1). As we show in the Main Text this regulation is consistent with steric hindrance 

(FCmax = 0, β = 0 (Bintu et al., 2005)). We then extracted the parameter, χ, from both 

the microscopy and cytometry curves using the thermodynamic model we present in the 

Main text and compared them. Details on this approach can be found in the STAR Methods 

(Quantification and statistical analysis) in the subsections Parameter fitting and inference 

for position dependent fold change regulation data and Using the concentration manifold 

parameters to generate the thermodynamic model in FC versus NTFspace.

We reasoned that the while the value inferred for the cytometry curve (χRFP) and 

microscopy curve (χ) are different, the relation χRFPRFP = χNTF will be true according 

to the thermodynamic model of simple repression:

fold − cℎange+1 = 1
1 + χRFPRFP = 1

1 + χNTF
. (Equation 13)

This leads to the following interpretation of the quantity χRFPRFP:

χRFPRFP = λRFP
1 + Pβ
1 + P RFP = λmic

1 + Pβ
1 + P μRFP = χNTF . (Equation 14)

Here the parameter λ represents the binding affinity of CpxR with the subscript denoting the 

units it was measured in. In Figure S1, we show the regulatory curves from the +1 parallel 

measurements for the cytometry (magenta curve and data points) and microscopy (black 

curve). The difference between the curves is expected as the units of χ (χRFP for cytometry 

and χmic for microscopy) are different, and the scaling factor μ (in units of TF per RFP 

signal) is required to make the curves the same. We find χRFP = 2.33×10−4 (magenta curve) 

and χ = 1.3×10−4 with the value of μ = 1.8. We used this value of μ and multiplied the RFP 

signal in the cytometry data to scale the x axis in Figures 5C and 6E.
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Parameter fitting and Inference for position dependent fold change regulation 
data—We interpret the promoter regulatory data from the 6 TFs surveyed at the +1 and −61 

binding locations through the thermodynamic model as specified in the results section. The 

fold change data for the TF-position strain (See Data processing steps for microscopy and 

cytomtery data section for details) as a function of NTF was fit to Equation 6 with the aim 

of extracting the best-fit value of the FCmax and χ (the product of the stabilization effect and 

the TF binding affinity). We used a bootstrapping procedure to generate confidence intervals 

for the both the FCmax and binding affinity parameters, and for each of the TFs surveyed 

we fit the +1 and −61 parameter sets independently. The bootstrapping procedure resampled 

the data points from the fold change versus RFP curve for a given TF-binding location 

across all replicate datasets 1000 times. For each iteration, fold change replicate data 

points from a given induction conduction were sampled to generate a possible regulatory 

response as a function of TF-copy number. Each of these resampled curves were then fit 

to the thermodynamic model outlined in Figure 1A using a non-linear least-squares fitting 

procedure to determine the optimal fit for the values of FCmax and χ parameters. As seen 

in Figures 4C and Figures 4D, we report the means and confidence intervals for these two 

parameters and plot the curve generated by taking the expected value of the thermodynamic 

model conditioned on the model parameters along with the 95% confidence interval.

For the CpxR position sweep data, we used the concentration manifold formalism to 

delineate the values of the acceleration and stabilization parameters. For positions that 

showed discernible regulation (12 out of the 22 upstream positions profiled), we assume 

that the binding affinity is constant between the regulatory positions as the only changing 

variable is the binding location (the binding sequence is the same) and recast the binned data 

from the Fold-change versus RFP replicates using the concentration manifold formalism 

as detailed in the STAR Methods (see Concentration Manifold Derivation). To sample 

the probability space of the acceleration and stabilization parameters for a given binding 

location, we started by inferring the joint posterior distribution FCmax and K = 1 + Pβ using 

a Bayesian approach that relates the parameters underlying our thermodynamic model to the 

data according to the following relation:

p FCmax, K ∣ FC = L FC ∣ FCmax, K p FCmax, K
p(FC) , (Equation 15)

where the term on the left hand side is the posterior distribution of the parameters (FCmax 

and K). The terms on the right hand side represent the likelihood of the data given the 

parameters(L(FC|FCmax,K), the prior distribution of the parameters (p(FCmax,K)), and lastly 

the distribution of the data itself p(FC). Each of the 12 regulatory positions were fit 

separately using the Bayesian inference procedure, we specified our likelihood function 

as a normal distribution of the form:

LK FCk ∣ FCmax
k , Kk = ∏

i

DataPoints
Normal

FCi
k ∣ u = FCprop

k FCi
+1; FCmax

k , Kk , sd = θk .
(Equation 16)
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The superscript k represents an upstream binding location for the CpxR TF and the subscript 

i represents the data points for a given position regulatory dataset. The proposed Fold-

change value FCprop from the model takes the form:

FCprop FCi
+1; FCmax, K =

1 + FCmaxK
1 − FCi

+1

FCi
+1

1 + K 1 − FC+1

FCi
+1

. (Equation 17)

The crux of the Bayesian approach to model inference is to simulate candidate draws of 

the joint posterior distribution of the FCmax and K parameters by proposing candidate 

values from the prior distribution, generating the thermodynamic curve, and evaluating the 

likelihood function. A transition in the jointly sampled parameter space from one set of 

parameter values to another is based on the premise that parameter sets will be sampled 

in proportion to the probability of the posterior distribution (as long as the sampling chain 

is drawing from the stationary distribution). This process is repeated until a given number 

of draws have been made from the joint posterior distribution. The results of this inference 

procedure are used to draw the model curves in Figure 5C and we use the relation between 

the sampled parameters (FCmax and K) and the acceleration and stabilization parameters 

as detailed previously in the methods section. The sampling procedure was implemented 

with the PyMC3 package that utilizes the NUTS sampler, a particular implementation of the 

Hamiltonian Monte-Carlo algorithm, to sample the joint posterior distribution (Hoffman and 

Gelman, 2014).

We used a uniform distribution as the priors for both the FCmax and K model parameters 

with appropriate bounds for each parameter. For K, we ensured that the lowest potential 

value is 1, in line with the assumptions from the derivation of the concentration manifold 

formalism. We checked the inferences from each position to ensure that the bounds we 

enforced on both parameters were appropriate and that the sampled values were not tending 

toward the edge of the sample space. Furthermore, we cast the σ parameter (the standard 

deviation) of the position specific likelihood function as a hyper-parameter in our sampling 

procedure and set the prior distribution as uniform over a defined interval with the lower 

bound = 0. Overall, our inference approach allowed us to ensure precise inference of α and 

β and for 11 out of the 12 regulatory positions (See Table 2).

To get the stabilization values from this inference procedure, we simply used the following 

relation between the K and β and the fact that the polymerase occupancy has a measured 

value of 6.65×10−2 in our synthetic promoter,

β = K − 1
P . (Equation 18)

Given the stabilization value for a draw in the chain, we then find the corresponding 

acceleration value using the jointly sampled FCmax value and the relation:
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α = FCmax
β 1 + P

1 + P (β − 1) . (Equation 19)

Table 2 lists the inferred acceleration and stabilization parameters. We report the median 

values of the inference chain along with the bounds that encompass the 68%th percent 

Bayesian credible interval of the parameters. For position −74, the inference estimates are 

not precise due to the phenomenon of the “weak stabilization” limit as discussed in the Main 

text. Examining the posterior distribution of the FCmax and K parameters, we find the values 

of the 68% credible interval for this positions (both α and β) to encompass both coherent 

and incoherent regimes.

Inference plots for CpxR position sweep data - posterior distributions for the 
FCmax and K—As detailed in the Methods section, we used a particular formulation of the 

thermodynamic model (Forcier et al., 2018) that used the TF abundance measurements from 

cytometry to rewrite the fold change data for a given regulatory position as a function of the 

fold change at the +1 position (see the STAR Methodssection on the Concentration Manifold 

Derivative). The benefit of this re-formulation was the ability to remove the binding affinity 

parameter and find the “intrinsic” regulatory parameters of the TF (α and β).

To extract α and β for a given regulatory position, we began by inferring the FCmax and the 

K = 1 + Pβ parameters using a Bayesian Sampling approach ((Hoffman and Gelman, 2014)) 

as detailed in the inference procedure (see STAR Methods Section for details). Figure S2 

shows the result of the inference of the posterior distribution for the two parameters for each 

of the 12 regulatory positions. The first and third column shows the outcome of the Bayesian 

approach to sampling the posterior distribution for FCmax and K parameters, and the second 

and fourth column presents the resulting transformation into the α and β joint distribution 

space. The plots are arranged in order from highest β at the top left of the figure to smallest 

β at the bottom right. As seen, there is tight coupling for the joint distributions between 

the FCmax and the K with an inverse dependence between the two parameters for activation 

(high values of FCmax are sampled jointly with low values of K and vice versa) and opposite 

for the single repressing position −54 (low values of FCmax are sampled jointly with high 

values of K and vice versa). Arranging them in order of decreasing β serves to demonstrate 

an important point: the correlation between inference of α and β becomes stronger as β 
gets smaller (i.e., as K approaches 1). In all cases, we can infer FCmax effectively but the 

individual value of one regulatory parameter depends strongly on the other because when βP 
is small, FCmax ≈ αβ and K ≈ 1, and thus β and α have a strong inverse relationship. When 

plotted on log axis this appears as a straight line (of slope −1) and the domain of β from the 

inference sampling becomes less constrained. For one of the 12 regulatory positions (−74), 

we are unable to separate α and β with any certainty and the inferred values encompass both 

incoherent and coherent regulatory outcomes for the appropriate FCmax (Transtrum et al., 

2015).

Using the concentration manifold parameters to generate the thermodynamic 
model in fold change versus NTF space—The parameters inferred using the 
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concentration manifold approach were used to construct the thermodynamic model curves in 

Figures 5C and 6E. To accomplish this, we used the K = 1 + Pβ and FCmax values inferred 

for each of the 12 regulatory positions (see STAR Methods: Parameter fitting and Inference 

for position dependent fold change regulation data). To transform the Markov chain of K 
values to the χ for the main thermodynamic model (Figure 1, and STAR Methods) requires 

the binding affinity of the TF (the final remaining term in χ), and we inferred the binding 

affinity from the datasets encompassing all 13 regulatory positions for the CpxR TF (the 

12 upstream regulatory positions and the one immediate downstream positions − the +1 

position). The binding affinity was treated as a global parameter in our Bayesian inference 

scheme and was inferred according to the following model:

∏k
Position ∏j

DatapointsNormal FCj
k ∣ u = FCTℎemodynamic(j)

(k) (λ), sd
= σ(k) (Equation 20)

with the mean of the likelihood function specified by the thermodynamic model outlined in 

the STAR Methods section Thermodynamic model for single TF regulation and takes the 

following form:

FCTℎermodynamic(j)
k = 1 + FCmax

k χkNTF(j)
k

1 + χkNTF(j)
k , (Equation 21)

where χk = λ(1/1 + P)Kk.The parameter λ, is the global parameter representing the scaled 

binding affinity of the CpxR TF λ = 1/NNS e−ΔεTF  and is assumed to be constant across 

the regulatory positions assessed in this work. FCk is the general thermodynamic model 

specified in Equation 6 with the object of our inference to infer λ. For the 12 upstream 

regulatory positions, as the chains of FCmax and K were available from the inference of 

the concentration manifold dataset, we inferred the global λ parameter to the datasets for 

each of those positions with the values of these two parameters determined from the mean 

of their respective Markov chains. For the +1 dataset, the parameter FCmax was set to 0 as 

determined in Figure 4A, and the K was set to 1 in keeping with the assumption of steric 

hindrance. The mean value of the Markov chain λ inferred from this model, along with the 

scaling factor (see SI section - Converting the mCherry signal to TF copy number) was used 

to generate the thermodynamic model curves (mean ± 2σ) as seen in Figures 5C and 6E.

Robustness of the concentration manifold results—To analyze the fold change 

data of our experiments we bin the single-cell fluorescence measurements to find the 

average fold change of cells with similar TF concentrations (mCherry levels). To accomplish 

this we divided the data into a specified number of bins based on the proportion of the total 

data points and calculated the ensemble fold change from the cells in each bin. In Figures S5 

and S6 we show how the determination of the parameters β and α depends on this choice. 

In these plots the inferred value of alpha and beta for each of the 12 positions are shown 

for 14 different bin numbers (6, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 30, 32, 36) number of 

bins and plotted against the value found with 22 bins (used in the main text). The quatity 

on the y axis is a measurement of the degree to which the values of β (or α) differ from 
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the reference bin across all regulatory positions, and is computed by taking the mean of the 

log10 ratios between the reference bin and the bin under consideration for each of the 12 

regulatory positions. In Figure S5, we see that the inferred value of β for other bin sizes is 

tight across most of the regulatory positions with more substantial deviations from 1 as the 

number of bins becomes very small (<12). This phenomenon is an indication to the degree 

the larger bin sizes (smaller bin numbers) inadequately convey the curvature inherent in the 

data, pushing more of the regulatory positions to overstimate the degree of curvature for 

certain regulatory positions. Figure S6 shows this same measure for the inferred values of α, 

where we we once again see consistency in the inferred value across most of the regulatory 

positions except for the small number of bins as seen in Figure S5. Crucially, the inference 

of α and β is not critically sensitive to the choice of bin size above 12 bins.

Testing alternative models of transcriptional regulation for the CpxR position 
sweep data—In this section, we present an alternate interpretation of the CpxR position 

sweep data. Specifically we explore if the data can be explained by a simpler model 

with only one unique regulatory parameter for a given concentration manifold dataset. 

Specifically, the models we will evaluate in this section will assume the TF operates only 

through (de)stabilization of RNAP (α = 1).

For the model inference runs, we set the energy of the promoter used in our synthetic 

circuit (DL5 promoter sequence (Brewster et al., 2012)) as a global parameter across the 12 

regulatory positions and allowed each position to infer its own stabilization (β) value, with 

FCmax and the K terms as defined in the concentration manifold section:

FCy =
1 + FCmax

(y) K 1 − FC( + 1)
FC( + 1)

1 + K 1 − FC( + 1)
FC( + 1)

, (Equation 22)

FCmax
(y) = β(y)

1 + P
1 + P β(y) − 1

, (Equation 23)

K = 1 + Pβ(y), 24

where FC(y) and FCmax
(y)  represent the fold change and FCmax effective parameter when the 

binding site is introduced at position y on the promoter. Note that FCmax no longer has 

the acceleration parameter. For the Bayesian inference scheme, we set the prior of the DL5 

promoter sequence energy as a uniform distribution between the values −10 kBT and −2 

kBT. The sequence energetics have been measured in prior work as −6.5 kBT, as such we 

believed this was a reasonable interval for the chain to sample. For the position dependent 

stabilization parameters, we used a uniform distribution with acceptable bounds for all 

activation positions. We modeled the likelihood function as product of normal distributions 

(assuming the global likelihood function is a product of the individual position specific 

likelihood functions) with the mean of these position specific distributions as the theoretical 
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fold change value generated from the thermodynamic model conditioned on the parameters. 

To ensure that differences in the fold change profiles between strong activation positions and 

weak activation positions was adequately conveyed in the likelihood function, we made the 

standard deviation for the respective position specific normal distributions a hyperparameter 

in our model, with the final form of the likelihood function as follows:

∏
i

Position
∏

j

Data Points
Normal FCj

i ∣ u = FCstabilization (j)
(i) P, βi , sd = σ(i) , (Equation 25)

and:

FCstabilization (j)
(i) =

1 + FCmax
(i) P, β(i) K P, β(i) 1 − FCj

( + 1)

FCj
( + 1)

1 + K P, β(i) 1 − FCj
( + 1)

FCj
( + 1)

. (Equation 26)

We initialized the inference procedure as sampling from a global vector, θ, that contained 

the global and position specific parameters in our model,

θ = P energy , β−48, β−50, β−54…, β−80, β−82 . (Equation 27)

The inference procedure was run for 50000 runs initialized on 4 different chains to ensure 

adequate sampling of the joint parameter space. The fits for the “stabilization only” model 

are shown in Figure S3 with the values of the 68%th percent Bayesian credible interval 

reported in Table S8. In this figure, we plot the results of the thermodynamic model from the 

inference sampling. It is clear that the stabilization only model fails in capturing the highest 

activation position (−64) and the curvature seen in some positions (−50, −54). This failure 

to explain strong activation is expected, as in a model without acceleration (α = 1) the 

maximum possible fold change is constrained by the individual occupancy of the promoter 

by RNAP (the maximal possible fold change is roughly 1/P for weak promoters or more 

precisely (1 + P)/P if the weak promoter assumption is lifted (Phillips and Milo, 2009)); 

intuitively, in this model without acceleration if the constitutive promoter has polymerase 

occupancy 10% of the time, the largest fold change possible is 10 (corresponding to 100% 

occupancy). To reach the fold change values obtained in the CpxR position sweep data, the 

inferred value of P needs to be at least ~ 10 fold lower than the value of P measured in 

previous work (Brewster et al., 2012). As such, we feel confident that this model can not 

sufficiently describe our data.

It is worth noting that even if this assumption is incorrect and in reality P is much smaller 

than we expect from previous measurements, the model without acceleration still does not 

describe the data well; the theory does not match the curvature of the data seen in some 

positions such as −50, −54, and −60 (Figure S3). This feature highlights the importance of 

acceleration (α) in explaining these positions and the regulation data at large.
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Physiological effects of TF titration on synthetic circuit expression—One 

concern for the gene expression measurements was separating the fundamental regulatory 

role of a TF from the apparent expression changes due to potential physiological effects 

such as slowing growth rates from, for instance, high inducer concentrations or changing TF 

concentration in the cell (Berthoumieux et al., 2013; Klumpp and Hwa, 2014; Keren et al., 

2016) brought about by inducing the TFs to different levels. Increasing concentrations of the 

TF in the cell could potentially alter YFP expression by turning on or off genes involved in 

global regulation of translation or through a host of post-transcriptional events. In Figure S4, 

we do not see a major perturbation in synthetic circuit expression for most of the TF titration 

strains where YFP expression hovers at the FC=1 line as the TF concentration increases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Synthetic biology approach to dissect the fundamental role of TFs

• Model infers the role of two regulatory mechanisms: acceleration and 

stabilization

• TFs use different degrees of each mechanism based on binding location
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Figure 1. Thermodynamic modeling for measuring TF regulatory features
(A) The thermodynamic model for the target gene allows for four states: unbound by TF or 

RNAP, bound by RNAP, bound by TF, or bound by both. The probability of each of these 

states occurring is listed in the center column. The rightmost column shows the transcription 

rates in these states.

(B) Fold change versus TF copy number (NTF) for a gene regulated by an activator (top set 

of curves) or a repressor (bottom set of curves). The blue and green curves have the same 

FCmax as the red curve but with increased stability (β, green curve) or TF binding affinity 

(ΔεTF, blue curve).

(C) Replotting the curves in (B) as a function of effective TF concentration (χNTF) 

demonstrates that each of the curves now falls onto a single “collapsed” curve defined 

by the effective parameters FCmax and χNTF.

(D) Data collapse curve for a range of different FCmax values.

(E) The relationship between theoretical parameters of the model and in vivo molecular 

details of the regulation.
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Figure 2. Experimental setup for measuring the TF position-dependent regulatory profile
(A) The inducible TF expression strains consist of a set of base strains where the 

endogenous copy of any one of our 6 TFs is knocked out and reintroduced as a TF-mCherry 

fusion at the ybcN locus expressed from an inducible tet promoter.

(B) Regulation by the controlled TF is measured using a synthetic target promoter driving 

YFP expression integrated to the galK locus. The target promoter is designed to be 

unregulated except by a single binding site for the controlled TF. The sequence and location 

of this binding site can be controlled systematically.

(C) The quantitative regulation is measured as the fold change in YFP expression as a 

function of mCherry signal.

(D) The range of TF concentrations explored for each TF is shown. Data points for each TF 

represent the mean number of TFs across 3 replicate measurements (n = 3), with the error 

bars representing the standard error of the mean. Here we converted the arbitrary mCherry 

fluorescence signal into number of TFs using a fluctuation counting method detailed further 

in the STAR Methods.
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Figure 3. Regulatory curves for individual TFs
(A–F) Each curve shows the response of a gene regulated only by the controlled TF to a 

measured level of TF. In all cases, the average number of TFs from each induction condition 

is found by converting the arbitrary fluorescence signal of each TF-mCherry fusion to TF 

number through a fluctuation counting method. For the “no binding site” control data (blue 

points), the fold change is typically 1 for all TF concentrations; in other words, there is no 

regulatory response to the TF in the absence of a binding site. The empty data points on the 

plots represent the sample means of TF number and fold change in each of three replicates. 

The filled data points represent the mean of the 3 replicates, and the error bars represent 

the standard error of the mean. When the binding site is inserted just downstream at +1 

(red points), the observed regulatory function is always repression. However, at −61 (green 

points), the response can vary between repression that is as strong as +1 (i.e., AgaR in B), 

repressive but weaker than at +1 (i.e., AcrR or BetI in A and E), or it can have the opposite 

role and activate (i.e., CpxR in F). The fits represent least-square optimization of the theory 

presented in Figure 1, with dashed lines representing the 95% confidence interval generated 

by bootstrap sampling.
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Figure 4. Fold change for a given regulatory location versus Neff
(A and B) The regulatory curve for all TFs when acting at (A) +1 and (B) −61 plotted 

against Neff = χNTF. Filled data points for each TF along with the error bars represent the 

mean and standard error of the sampling mean as in Figure 3. In all cases, the binding 

energy and FCmax are determined from fitting the equation in Figure 1A to the +1 and 

−61 data independently. Although the data for +1 are well described by a single regulatory 

behavior for every TF (pure repression; i.e., FCmax ≈ 0), the same TFs at −61 have a 

spectrum of quantitatively distinct regulatory behaviors.

(C) There is no correlation for the overall regulatory role of the TF between +1 and −61, 

indicating position dependence for the regulatory role of these TFs.

(D) The inferred TF binding affinity is consistent between +1 and −61 for all but two TFs 

corresponding to AgaR and CpxR, possibly indicating a contribution from TF stabilization 

(Pβ > 1).
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Figure 5. Position-specific regulatory profiles of the CpxR TF
(A) The distribution of CpxR binding sites across all naturally occurring genes in E. coli. 
The length of the rectangles represents the span of the binding sequence, and the border 

color represents activation (blue) or repression (red). The majority of the binding sites are 

centered between the −40 to −80 positions.

(B) Schematic of the strategy for constructing and measuring CpxR acting at a specified 

binding site (the ppiA binding sequence) inserted at 21 upstream positions and 1 

downstream position on the promoter.

(C) The mean of the inferred maximal fold change (FCmax) for each of the 21 upstream 

binding locations as a function of the binding location at the promoter. The centers of the 

red and green shaded areas denote the presumed locations for the minima and maxima of the 

regulatory response (anchored on −48) based on the 10.5-bp periodicity of B-form DNA.

(D) The regulatory profile of CpxR as a function of TF copy number for the 22 binding 

locations. Each panel shows the TF copy number on the x axis and the fold change in YFP 

on the y axis of individual replicates (colored points). For all positions that show regulation 

(plots with the model curves), n ≥ 3, with n as the number of replicates. The black points 

represent the mean and standard error of these replicates. For convenience, this is not shown 

for every TF number in the plot. The dashed line running though the data points is the 

theory prediction based on inference of the model parameters detailed in Figure 6. The 
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shaded regions represent ± 2 standard deviations of the thermodynamic model (Figure 1A) 

conditioned on the inferred model parameters.
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Figure 6. CpxR binding location determines the mode of TF-RNAP regulation
(A) Tracing out the position regulatory manifold using TF abundance from two different 

binding locations.

(B) The concentration manifold curves are predicted to be straight lines when β is small but 

curved for larger values of β.

(C) Concentration manifold plots for the 12 upstream regulatory positions as a function 

of the fold change at +1. The solid red line represents the mean of the model regulatory 

profile (thermodynamic model) generated from the inferred acceleration and stabilization 

parameters, and the shaded regions represent ± 2 standard deviations from the mean. Data 

points represent the mean and standard error of the fold change as seen in the plot of Figure 

5D for each respective position.

(D) Phase plot of FCmax as a function of α and β parameters. The horizontal black line 

marks β = 1 (no stabilization or destabilization), and the vertical black dashed line marks α 
= 1 (no acceleration or deceleration). The white lines represent contours of constant FCmax. 

The colored points represent the parameter inference of α and β for each of the regulatory 

positions. The median as well as the 68% credible intervals of the inferred parameters for 

each position are reported in Table 2.

(E) Plot of fold change against the effective TF concentration χNTF for the 13 regulatory 

positions (12 upstream and 1 downstream) using parameters derived from the concentration 

manifold plots in (C).
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Table 1.

Channel settings used for the cytometry acquisition

Emission filter Channel Voltage

525/50 nm B1 510 V

615/20 nm Y2 524 V

561/4 nm FSC 405 V

561/4 nm SSC 315 V

All cytometry measurements were done on a MacsQuant VYB with the listed channel settings. A threshold using the forward scatter (FSC) 
and side scatter (SSC) area measurements was used initially to gate the event data. Subsequent data processing steps to convert these cytometry 
measurements to the fold change plots in Figures 5 and 6 can be found in the STAR Methods.

Cell Rep. Author manuscript; available in PMC 2021 December 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guharajan et al. Page 45

Table 2.

Inferred acceleration and stabilization parameters

Binding position α (alpha) β (beta)

−48 3.5062.898
4.008 116.25766.453

150.131

−50 0.6750.612
0.736 161.766108.281

199.140

−54 0.0490.047
0.051 34.49623.154

43.447

−56 3.381.745
4.496 14.7235.304

21.647

−58 3.1071.635
4.127 10.5193.796

15.386

−60 2.1611.974
2.33 219.757151.499

270.481

−64 24.91114.911
31.849 29.54512.984

44.169

−70 6.9953.101
9.748 6.2241.776

9.316

−72 0.8130.451
1.053 20.9057.678

30.744

−74
2.3290.467

3.944 2.9824.789 × 10−6
4.685

−80 0.2890.197
0.355 27.02510.944

37.948

−82 0.2710.182
0.334 24.8119.835

35.501

Shown are median values of the inference chain along with the bounds that encompass the 68% Bayesian credible interval of the parameters α and 
β inferred from the data presented in Figure 6C. The “weak stabilization limit” limits the precision estimates for position −74.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Escherichia coli, strain BW135112 KEIO collection NZ_CP037857

Chemicals, peptides, and recombinant proteins

M9 minimal media BDDiagnostics DF0485–17

Critical commercial assays

ZR Plasmid Miniprep Zymogen Cat#D4015

Experimental models: Organisms/strains

Escherichia coli, strain MG1655 – Complete list of modified E. coli strains 
can be found in Tables S2 and S4

This Paper CGSC#6300

Oligonucleotides

Position Sweep Primers for ccdB cassette insertion into pZS25LongUPDL5-
delbs-YFP (see Table S5 – Supplement Section)

Primer design using custom-made python 
script, synthesized by Genewiz

N/A

Primers for amplifying the TF gene cassettes from the MG1655 genome – See 
Table S1

Genewiz N/A

Recombinant DNA

pDONR P4-P1r Thermo Fisher (Invitrogen-Life 
Technologies)

N/A

ccdB Position cloning strains (Table S6) This Paper N/A

Software and algorithms

MATLAB https://www.mathworks.com/products/
matlab.html

N/A

Python https://www.python.org/downloads/ N/A

PyMC3 https://docs.pymc.io/en/stable/about.html N/A
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