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Abstract

Pulmonary vascular remodeling (PVR) in utero results in the development of heart failure.

The alterations that occur in cardiac lipid and mitochondrial bioenergetics during the devel-

opment of in utero PVR was unknown. In this study, PVR was induced in pups in utero by

exposure of pregnant dams to indomethacin and hypoxia and cardiac lipids, echocardio-

graphic function and cardiomyocyte mitochondrial function were subsequently examined.

Perinatal rat pups with PVR exhibited elevated left and right cardiac ventricular internal

dimensions and reduced ejection fraction and fractional shortening compared to controls.

Cardiac myocytes from these pups exhibited increased glycolytic capacity and glycolytic

reserve compared to controls. However, respiration with glucose as substrate was unal-

tered. Fatty acid oxidation and ATP-insensitive respiration were increased in isolated car-

diac myocytes from these pups compared to controls indicating a mitochondrial dysfunction.

Although abundance of mitochondrial respiratory chain complexes was unaltered, increased

trilinoleoyl-lysocardiolipin levels in these pups was observed. A compensatory increase in

both cardiolipin and phosphatidylethanolamine content were observed due to increased

synthesis of these phospholipids. These data indicate that alterations in cardiac cardiolipin

and phospholipid metabolism in PVR rat pups is associated with the mitochondrial bioener-

getic and cardiac functional defects observed in their hearts.

Introduction

Pulmonary hypertension of the newborn is a failure of normal pulmonary vascular relaxation

after birth, with incidence of up to 6 per 1000 live births and 10–30% mortality [1–3]. It is a sig-

nificant cause of heart failure (HF) in healthy newborn infants. In healthy term infants it is
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caused by perinatal hypoxia, inflammation or direct lung injury. These infants develop the HF

rapidly within a week and HF becomes the main limiting factor for their survival. A number of

studies in human and animal models have demonstrated alterations in mitochondrial bioener-

getics during the development of HF [4]. Several of these studies have implicated alterations in

the mitochondrial phospholipid cardiolipin (CL) as a contributor to the mitochondrial dys-

function. CL, the signature phospholipid of mitochondria, is essential for mitochondrial mor-

phology, bioenergetics, dynamics, and signaling pathways [5–11]. However, limited

information exists on the changes in cardiac function and phospholipid composition that

occur during in utero pulmonary vascular remodeling (PVR). Previously we demonstrated

that newborn piglets exposed to a hypoxic environment for 3 days developed alterations in CL

and reduced mitochondrial respiratory chain dysfunction during the development of a right

ventricular hypertrophy [12].

In this study, we utilized a unique gestational rat model of PVR to examine how cardiac

phospholipid metabolism, cardiac morphology and mitochondrial function are impacted by

PVR. We show for the first time that CL and phosphatidylethanolamine (PE) levels are ele-

vated in the hearts of PVR rat pups and that this is accompanied by an accumulation of lyso-

cardiolipin (LysoCL) and mitochondrial bioenergetic and cardiac dysfunction.

Materials and methods

Animals

This study was performed with approval of the University of Manitoba Animal Policy and

Welfare Committee which adheres to the principles for biomedical research involving animals

developed by the Canadian Council on Animal Care and the Council for International Organi-

zations of Medical Sciences. This study is reported in accordance with ARRIVE guidelines. All

animals were maintained in an environmentally controlled facility (22˚C, 37% humidity, 12 h

light/dark cycle) with free access to food and water.

PVR was induced in perinatal rats by treating pregnant dams during 19–21 days of gesta-

tion with hypoxia and indomethacin (single ip dose 0.5 mg/Kg in sterile PBS pH 7.4) as

described [13, 14]. Timed pregnant rats at 18 days gestation were utilized. One set of pregnant

rats were housed normally (Control, single ip dose sterile PBS) as control animals, a second set

of pregnant rats were indomethacin-treated as above (Indo), while a third set of pregnant rats

were indomethacin-treated and then housed in a hypoxic environment (12% oxygen) (PVR).

This was accomplished by housing rats in a plexiglass chamber and the chamber was main-

tained at 12% oxygen using a nitrogen washout system. Medical grade compressed oxygen

(12% oxygen balance Nitrogen, Welder’s Supply) was used in combination with medical grade

nitrogen to adjust chamber oxygen levels to 12% using a gas analyzer (Radiometer ABL 700

series). Compressed gas flowed continuously into the chamber at a rate of 1 L/min for 3 days.

Chamber oxygen levels, flow rates and temperatures were monitored every 24 h at a minimum.

On the fourth day all animals were administered isoflurane using a Bell jar/nose cone. Anes-

thesia was administered until the pedal withdrawal reflex was abolished at which time cervical

dislocation was performed and then this was followed by rapid caesarean section to remove

the pups. Prior to sacrifice fetal echocardiographic parameters were determined as described

below. After removal by caesarean section the pups were then weighed, measured for length

and the heart, liver and lung removed and weighed. Histology of pulmonary arteries was per-

formed as previously described [12]. In some experiments, the heart was freeze dried and

weighed. In other experiments, freshly isolated hearts were used for preparation of mitochon-

drial fractions or isolation of cardiac myocytes as outlined below.
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In vivo echocardiography

Transthoracic echocardiography was performed on dams mildly anesthetized with 1–1.5% iso-

flurane, 1L/min oxygen as previously described [15]. Each rat was placed on a heated ECG

platform to maintain body temperature and obtain fetal heart measurements. A Vevo 2100

High resolution imaging system equipped with a 30-MHz transducer (Visual Sonics, Toronto)

was used to visualize the fetal hearts. Measurements obtained included interventricular septum

diastolic (IVSd), interventricular septum systolic (IVSs), left ventricle internal dimension dia-

stolic (LVIDd), left ventricle internal dimension systolic (LVIDs), left ventricular wall diastolic

(LVWd), intraventricular septum end systole (LVSs), ejection fraction (EF), fractional shorten-

ing (FS), right ventricular wall diastolic (RVWd), right ventricular wall systolic (RVWs), right

ventricle internal dimension diastolic (RVIDd) and right ventricle internal dimension systolic

(RVIDs).

Cardiac myocyte preparation and radiolabeling experiments

Cardiac myocytes were prepared from the hearts of control and PVR pups as described [16].

The protocol allows for rat cardiomyocytes to be cultured for up to 72 h at 37˚C in 5% CO2

without significant change in phenotype [17]. Enough hearts were collected to yield approxi-

mately 15-20million cardiac myocytes sufficient to plate 15–20 x 35mm dishes (1 million/dish,

Corning PrimeriaTM). Isolated cardiac myocytes were incubated with 0.1 mM [1,3-3H]glycerol

(2 μCi/dish, Perkin Elmer) or 0.1 μM [1-14C]linoleic acid (2 μCi/dish, Perkin Elmer) bound to

albumin (1:1 molar ratio) or 0.1 μM [1-14C]oleic acid (2 μCi/dish Perkin Elmer) bound to

albumin (1:1 molar ratio) for up to 360 min (6 h) and radioactivity incorporated into phospho-

lipids determined as previously described [18].

Respiratory function analysis

The oxygen consumption rate (OCR) was measured from isolated cardiac myocytes of control

and PVR pups (1 x 105/well, coated with fibronectin) using a Seahorse XF24 Bioscience instru-

ment (18). XF assay media contained either 1 mmol/L pyruvate and 25 mmol/L glucose for

glucose metabolism or 1 mmol/L pyruvate, 2.5 mmol/L glucose, 0.5 μmol/L carnitine, and

0.175 mmol/L palmitate-BSA for fatty acid (FA) metabolism. Basal oxygen consumption was

considered to be the basal respiration sensitive to inhibition by 1 μmol/L antimycin A plus

1 μmol/L rotenone. ATP-sensitive oxygen consumption was inhibited by 1 μmol/L oligomy-

cin, and ATP-insensitive respiration (heat) was the remaining proportion of basal oxygen con-

sumption. Maximal oxygen consumption was achieved with 1 μmol/L carbonyl cyanide 4-

(trifluoromethoxy) phenylhydrazone. Fatty acid-dependent respiration was measured as the

difference in oxygen consumption measured in the presence of 40 μmol/L etomoxir and vehi-

cle (water). The XF glycolysis stress test kit (Aligent) was used for glycolysis analysis. Briefly,

cells are cultured in the absence of glucose followed by the sequential addition of glucose

(10mM), oligomycin (3μM) and 2-DG (1M). Where glycolysis is measured following glucose

addition (glucose—2-DG), glycolytic capacity measured following oligomycin addition (oligo-

mycin—2-DG), and glycolytic capacity the difference between them (glycolytic capacity-

glucose).

Western blot analysis of mitochondrial respiratory subunits

Cardiac mitochondria were isolated from control or PVR hearts using the MITOISO1 Mito-

chondria Isolation Kit (Sigma) as previously described [15]. Mitochondrial protein (7.5 μg)

from was separated on the Bio-Rad mini gel electophoresis system by SDS-PAGE (12%
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acrylamide) as previously described [15]. Western blot antibody cocktail (Abcam) contained

(55 kDa, anti-ATP synthase subunit ATP5a, Complex V; 47 kDa, anti-complex III subunit

core 2 UQCRC2; 35 kDa, anti-complex IV subunit MTCO1; 30 kDa, complex II subunit

SDHB; and 20 kDa, complex I subunit NDUFB8). Adult rat mitochondrial protein was added

for comparative control and α-tubulin (Cell Signaling) was used as the loading control. Pro-

teins were visualized by chemiluminescence using the ECL Western blotting detection system

(Amersham).

Lipid analysis

The level of the major phospholipids from cardiac tissue homogenates including phosphatidyl-

choline (PC), PE and CL were determined by HPLC separation followed by lipid phosphorus

assay [19, 20]. Molecular species of CLs and lysoCLs were quantitated from tissue homoge-

nates by HPLC coupled to electrospray ionization mass spectrometry [21]. Cardiac cholesterol,

cholesterol ester and triacylglycerol were determined by HPLC as previously described [15].

Statistical analysis

The randomization of the groups for each of the experiments is outlined in S1 Fig. For body

and tissue weights, statistics were performed on n = 64–68 pups per group (from 4 different

dams). The histology was performed on the first litter of this series from the control and PVR

group (6 and 11 pups analyzed, respectively). The echocardiography was performed on an

entirely different set of dams. For the control group 6 pregnant dams were used to collect left

ventricle measurements from a total of 31 fetuses in utero. The PVR groups used 7 pregnant

dams to collect left ventricle measurements from 37 fetuses in utero. The right ventricle mea-

surements were technically difficult and as a result fewer animals were used; 21 fetuses (4

dams) from the control group and 18 fetuses (5 dams) from the PVR group. Data are expressed

as means ± standard error of the mean (SEM). Comparisons between control and PVR off-

spring were determined using 1-way analysis of variance using Tukey post-hoc analysis. For

each measurement, the offspring were derived from multiple litters. A probability p value of

<0.05 was considered significant.

Results

PVR was induced in perinatal rats by treating pregnant dams during 19–21 days of gestation

with hypoxia and indomethacin [13, 14]. Lung histology analysis of newborn rats revealed

classic PVR in pups from the hypoxic-indomethacin treated group compared to control

including increased medial thickness in the larger pulmonary arteries with no changes in their

external diameter (Fig 1A–1D). Thus, we established this model of PVR in fetal rats [13, 14].

Reduction in body weight and length of newborn PVR pups were accompanied by reductions

in both lung and liver weight compared to control (Fig 2A–2D). Dried heart weight/body

weight ratio was elevated in PVR pups compared to control (Fig 2E) and this was accompanied

alterations in cardiac structural and functional parameters (Fig 3A–3C). Specifically, in the left

ventricle elevations in IVSd, IVSs, LVWd and LVSs were accompanied by a reduction in EF

and FS. In addition, right ventricle dimensions including RVWd and RVWs were elevated in

PVR pups compared to control. Thus, the PVR rat hearts exhibited cardiac hypertrophy and

mechanical dysfunction.

We examined if substrate utilization was altered in isolated cardiac myocytes from rats in

which PVR was induced during gestation. Oxygen consumption rate (OCR) was unaltered in

PVR pups compared to control when glucose was used as substrate (S2 Fig). Interestingly, gly-

colytic capacity and glycolytic reserve were increased in PVR pups compared to control
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(Fig 4A). In addition, when palmitate was used as substrate, an increase in basal OCR was

observed which was blocked by incubation with the carnitine palmitoyltransferase-1 inhibitor

etomoxir (Fig 4B). The increase in fatty acid (FA) oxidation was accompanied an increase in

ATP-sensitive oxygen consumption (Fig 4C) and ATP-insensitive respiration (Fig 4D) in PVR

pups compared to control. Maximum OCR was unaltered in cardiac myocytes between control

and PVR pups (Fig 4E). Thus, the increase in ATP-insensitive respiration indicated a dysfunc-

tion in efficiency of mitochondrial FA oxidation in cardiac myocytes from PVR rat pups.

We next examined the pool sizes of the three major phospholipids in hearts from control

and PVR pups. Phospholipid analysis revealed that there was no alteration in the levels of

phosphatidylcholine (PC) but striking increases in both cardiolipin (CL) and phosphatidyleth-

anolamine (PE) in hearts of PVR pups compared to control (Fig 5A–5C). The observed reduc-

tion in cardiac PC/PE ratio was consistent with that seen in pressure-induced heart failure

[22]. In addition, the levels of cardiac cholesterol, cholesterol ester and triacylglycerol were

unaltered (S3 Fig). Since CL, and specifically tetralinoleoylcardiolipin (L4CL), are required for

Fig 1. Histology of PVR arteries. Masson’s trichrome staining of control (A) and PVR (B) pulmonary arteries.

Representative sections are depicted. C. Medial thickness, and D. External diameter of control and PVR pulmonary

arteries. The black bar insert represents 50 μM. Data represent the mean ± SEM, �p<0.05. N values are indicated in S1

Fig.

https://doi.org/10.1371/journal.pone.0263520.g001
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optimal cardiac mitochondrial bioenergetic function [23], we examined the molecular species

composition of CL. Elevations in 1442, 1448 and 1472 species of CL appeared to be responsible

for the observed increase in CL in PVR pups (Fig 5D). The highest being linoleate containing

L4CL (1448). In isolated cardiac myocytes from PVR pups the increase in L4CL was due to an

increase in [1-14C]linoleate incorporation into CL indicating increased synthesis from linole-

ate (Fig 6A). In contrast, de novo synthesis of CL from [1,3-3H]glycerol was unaltered in car-

diac myocytes from PVR rat pups (Fig 6B).

Fig 2. Body weight, length and organ weight of PVR rats. Whole body weight (A), length (B), Liver weight (C) and

lung weight (D) of control and PVR rat pups. E. Heart weight and dry heart weight/body weight ratio of control and

PVR rats. Data represent the mean ± SEM, �p<0.05. N values are indicated in S1 Fig.

https://doi.org/10.1371/journal.pone.0263520.g002

PLOS ONE Altered cardiolipin metabolism in pulmonary vascular remodeled rat pup hearts

PLOS ONE | https://doi.org/10.1371/journal.pone.0263520 February 10, 2022 6 / 15

https://doi.org/10.1371/journal.pone.0263520.g002
https://doi.org/10.1371/journal.pone.0263520


Since the increase in L4CL did not explain the mitochondrial dysfunction, we examined the

levels of cardiac mitochondrial respiratory complexes. No alteration in the abundance of mito-

chondrial complexes was observed in PVR pups compared to controls (S2 Fig). LysoCL accu-

mulation is known to cause mitochondrial bioenergetic dysfunction [24]. We observed

elevated trilinoleoyl-lysoCL (L3-lysoCL) species in hearts of PVR pups compared to controls

(Fig 5E). Thus, an elevation in linoleate containing L3-lysoCL species could be linked to the

observed cardiac mitochondrial bioenergetic dysfunction in PVR rat pups.

The reason for the elevation in PE was also examined. Incorporation of radioactivity into

PE from [1,3-3H]glycerol was unaltered in isolated cardiomyocytes from PVR rat pups indicat-

ing that de novo synthesis was unaltered (Fig 6B). To further confirm this, synthesis of PE

from serine and ethanolamine were examined. There was no alteration in synthesis of PE from

[3H]ethanolamine nor synthesis of PE or phosphatidylserine from [3H]serine in cardiac

Fig 3. Echocardiographic parameters of PVR hearts. Transthoracic echocardiography was performed on control and

PVR rats. A. Interventricular septum diastolic (IVSd), interventricular septum systolic (IVSs), left ventricle internal

dimension diastolic (LVIDd), left ventricle internal dimension systolic (LVIDs), left ventricular wall diastolic (LVWd),

intraventricular septum end systole (LVSs). B. Ejection fraction (EF) and fractional shortening (FS). C. Right

ventricular wall diastolic (RVWd), right ventricular wall systolic (RVWs), right ventricle internal dimension diastolic

(RVIDd) and right ventricle internal dimension systolic (RVIDs). Data represent the mean ± SEM, �p<0.05. N values

are indicated in S1 Fig.

https://doi.org/10.1371/journal.pone.0263520.g003

PLOS ONE Altered cardiolipin metabolism in pulmonary vascular remodeled rat pup hearts

PLOS ONE | https://doi.org/10.1371/journal.pone.0263520 February 10, 2022 7 / 15

https://doi.org/10.1371/journal.pone.0263520.g003
https://doi.org/10.1371/journal.pone.0263520


myocytes from PVR rat pups (S4 Fig). In contrast, the increase in PE was due to an increase in

[1-14C]oleate incorporation into PE by 6 h of incubation indicating increased synthesis from

oleate (Fig 6C).

Fig 4. Mitochondrial dysfunction is observed in cardiomyocytes of PVR rats. A.Glycolysis, glycolytic capacity and

glycolytic reserve in control and PVR cardiomyocytes. ECAR, extracellular acidification rate (mPH/min/ug protein).

Basal oxygen consumption rate (OCR) (pmol/min/ug protein) (B), ATP-sensitive OCR (pmol/min/ug protein) (C),

ATP-insensitive OCR (pmol/min/ug protein) (D) and maximum (Max) OCR (pmol/min/ug protein) (E) in control

and PVR cardiomyocytes. V, vehicle; E, plus etomoxir; FAO, calculated fatty acid oxidation. Data represent the

mean ± SEM of N = 3, �p<0.05.

https://doi.org/10.1371/journal.pone.0263520.g004
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Discussion

In this study, we examined how altered cardiac CL and phospholipid metabolism and mito-

chondrial dysfunction are associated with the perinatal cardiac pathophysiology of PVR in

perinatal rat pups. We show that PVR in perinatal rat pups result in cardiac hypertrophy and

ventricular dysfunction, cardiac myocyte mitochondrial dysfunction with altered FA substrate

utilization and elevated CL, L3-LysoCL and PE which may contribute, in part, to the cardiac

mitochondrial dysfunction.

Fig 5. PE and CL are elevated in PVR rat hearts. The content of PC (A), CL (B) and PE (C) and CL molecular species

composition (D) and lysoCL molecular species composition (E) were determined in hearts of newborns from control,

indomethacin (Indo) or PVR rats. D. the numbers represent individual CL molecular species. E. LLL, L3-

lysocardiolipin; LLO, linoleoyl, linoloeyl, oleoyl-lysoCL; LLA, linoleoyl, linoleoyl, arachidonyl-lysoCL. In D and E:

Control, black bars; Indo, red bars; PVR, green bars. Data represent the mean ± SEM, �p<0.05. Fig 5A and C, N = 3

Normoxic, N = 4 indomethecin, N = 5 indomethecin + hypoxic. Fig 5B, N = 6 for each group. Fig 5D and E, N = 7 for

each group.

https://doi.org/10.1371/journal.pone.0263520.g005
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In this study, we have characterized for the first time the cardiac lipid alterations that occur

in pups of the in utero hypoxia and indomethacin-induced fetal PVR rat model [13, 14]. There

are several reports of indomethacin induced pulmonary hypertension in human newborns

mediated by premature constriction of the fetal ductus arteriosus [25–28]. In addition, indo-

methacin-mediated closure of the ductus arteriosus in fetal rats was shown to result in early-

onset right ventricular hypertrophy [29]. Perinatal pulmonary hypertension in rats is known

to permanently modify the pulmonary vasculature [30, 31]. Consistent with this we observed

that pulmonary arteries from our pups exhibited increased medial thickness in the larger pul-

monary arteries with no changes in their external diameter. Associated with the pulmonary

arterial modification was a cardiac hypertrophy characterized by elevation in right ventricle

dimensions including RVWd and RVWs. In addition, left ventricle elevations in IVSd, IVSs,

LVWd and LVSs, and reduction in EF and FS were observed. The elevation in right ventricular

dimensions were consistent with that previously reported in this model of PVR [32].

Alteration in substrate utilization is a hallmark of cardiac dysfunction in HF [33]. Studies in

animal models and in human pulmonary arterial hypertension suggest that there is increased

Fig 6. Synthesis of phospholipids from glycerol, linoleate and oleate in isolated PVR cardiac myocytes. Isolated

control or PVR cardiomyocytes were incubated for up to 360 min with [1-14C]linoleate (A), [1,3-3H]glycerol (B) or

[1-14C]oleate (C) and radioactivity incorporated in PC, PE and CL determined. Closed circles, control; Open circles,

PVR. Data represent the means ± SEM of N = 3, �p<0.05.

https://doi.org/10.1371/journal.pone.0263520.g006
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glycolysis and a metabolic shift from oxidative mitochondrial metabolism to the less energy

efficient glycolytic metabolism [34, 35]. Although basal OCR was unaltered in isolated cardiac

myocytes of PVR pups when glucose was used as substrate, we observed increased glycolytic

capacity and glycolytic reserve suggesting the potential for increase in glucose utilization for

ATP synthesis. When palmitate was used as substrate an increase in FA oxidation was accom-

panied by an increase in ATP-insensitive respiration in isolated cardiac myocytes of PVR

pups.

Pressure induced cardiac failure in rodents is known to result in increased PE levels and

cardiac dysfunction [22]. In addition, right ventricular pressure overload in adult rats induced

by 12 weeks pulmonary arterial banding resulted in elevations in PE [34]. We observed ele-

vated cardiac PE levels, with no changes in PC, in hearts of perinatal PVR rat pups. The

observed reduction in cardiac PC/PE ratio is consistent with that seen in pressure-induced

heart failure [22]. The increase in PE was not due to increased de novo synthesis or decarboxyl-

ation from phosphatidylserine since PE synthesis from radiolabeled glycerol, ethanolamine or

serine was unaltered. In contrast, pulse-labeling with [1–14]oleate revealed increased synthesis

of PE from oleate was responsible for the accumulation of PE in isolated cardiac myocytes

from PVR rat pups.

A key question is whether alteration in CL levels actually contribute to the development of

pediatric HF [36]. A number of adult animal and human studies have indicated that reduced

CL and L4CL accompany the development of HF [4, 37, 38]. The reduction in cardiac CL in

many early studies of adult HF in rodents can be attributed to the feeding of defined diets

which may subject these animals to accelerated HF [39]. The animals used in our study were

harvested by caesarean section and were not subjected to maternal feeding. It was recently

demonstrated that the relative percentage of L4-CL was preserved in pediatric human congeni-

tal single ventricle heart disease samples relative to biventricular controls [40]. In addition, dif-

ferences in CL content were not observed in induced pluripotent stem cell cardiac myocytes

prepared from control and pediatric dilated cardiomyopathy with ataxia syndrome patients

[41]. Another study observed that the CL profiles in pediatric HF were unique from those in

adults and the authors of this study hypothesized that end-stage pediatric heart failure adaptive

mechanisms to preserve L4CL content may be intact to a greater degree than that seen in adult

heart failure [42]. Our results support the above hypothesis as we observed increased CL and

L4CL levels in the hearts of caesarean section harvested perinatal PVR rat pups. Although de
novo synthesis of CL from glycerol was unaltered in cardiac myocytes of perinatal PVR rat

pups, an increase in [1-14C]linoleate incorporation into CL was observed which would explain

the accumulation of CL and L3-lysoCL. The elevation in L4CL might contribute to the

observed increase in FA oxidation in isolated cardiac myocytes from these animals. However,

the apparent compensatory increase in FA oxidation in isolated cardiac myocytes from PVR

rat pups was accompanied by an increased state 4 (oligomycin-inhibited) respiration indica-

tive of an elevated proton leak which likely contributes to the mitochondrial dysfunction.

Accumulation of lysoCL is known to result in mitochondrial bioeneregtic dysfunction by

compromising the stability of the protein-dense mitochondrial inner membrane leading to a

decrease in optimal respiration [24]. Although we observed no alteration in the abundance of

individual mitochondrial complexes subunits, the significant accumulation of L3-lysoCL

observed in the hearts of perinatal PVR rat pups might contribute to the mitochondrial bioe-

nergetic dysfunction through a morphological disturbance of cristae membrane structure.

This will form the basis of a future study examining the mitochondrial morphology of cardiac

myocytes from PVR animals.

A limitation of the use of this hypoxia-induced model of PVR is whether the observed

effects on metabolism may simply be due to the hypoxia itself. However, while hypoxia may
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cause a global change in cardiac homeostasis, the perinatal rats used in our study exhibited the

cumulative effects of pressure, and the additional increase in cardiac weight was due to the

effect of increased afterload. In addition, it is possible that the metabolic effects we observed

may be more prominent in the right ventricle than the left ventricle. However, metabolism is

also abnormal in the left ventricle in pulmonary arterial hypertension [43].

In summary, our data show for the first time that a perturbed CL and PE metabolism is

associated with and may contribute, in part, to the mitochondrial bioenergetic and cardiac

functional defects observed in the heart of the hypoxia and indomethacin-induced gestational

model of perinatal PVR in rats.
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