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Abstract 

Background Ashbya gossypii is a filamentous fungus widely utilized for industrial riboflavin production and has a 
great potential as a microbial chassis for synthesizing other valuable metabolites such as folates, biolipids, 
and limonene. Engineered strains of A. gossypii can effectively use various waste streams, including xylose‑rich 
feedstocks. Notably, A. gossypii has been identified as a proficient biocatalyst for producing limonene from xylose‑
rich sources. This study aims to investigate the capability of engineered A. gossypii strains to produce various plant 
monoterpenes using agro‑industrial waste as carbon sources.

Results We overexpressed heterologous terpene synthases to produce acyclic, monocyclic, and bicyclic monoter‑
penes in two genetic backgrounds of A. gossypii. These backgrounds included an NPP synthase orthogonal path‑
way and a mutant erg20F95W allele with reduced FPP synthase activity. Our findings demonstrate that A. gossypii can 
synthesize linalool, limonene, pinene, and sabinene, with terpene synthases showing differential substrate selectivity 
for NPP or GPP precursors. Additionally, co‑overexpression of endogenous HMG1 and ERG12 with heterologous NPP 
synthase and terpene synthases significantly increased sabinene yields from xylose‑containing media. Using mixed 
formulations of corn‑cob lignocellulosic hydrolysates and either sugarcane or beet molasses, we achieved limonene 
and sabinene productions of 383 mg/L and 684.5 mg/L, respectively, the latter representing a significant improve‑
ment compared to other organisms in flask culture mode.

Conclusions Engineered A. gossypii strains serve as a suitable platform for assessing plant terpene synthase function‑
ality and substrate selectivity in vivo, which are crucial to understand monoterpene bioproduction. The NPP synthase 
pathway markedly enhances limonene and sabinene production in A. gossypii, achieving levels comparable to those 
of other industrial microbial producers. Furthermore, these engineered strains offer a novel approach for producing 
monoterpenes through the valorization of agro‑industrial wastes.
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Background
Terpenes represent the largest category of plant second-
ary metabolites, encompassing over 80,000 different 
structures that have been identified [1]. Terpenes uti-
lize two C5 units of isopentenyl diphosphate (IPP) and 
dimethylallyl diphosphate (DMAPP) as building blocks, 
which in archaea and eukaryotes are synthetized from 
acetyl-CoA through the mevalonate (MVA) pathway 
(Fig.  1). IPP and DMAPP can be condensed by various 
prenyltransferases to generate different prenyl diphos-
phate precursors, including geranyl diphosphate (GPP, 
trans-isomer; C10), neryl diphosphate (NPP, cis-isomer; 
C10), farnesyl diphosphate (FPP; C15), and geranylge-
ranyl diphosphate (GGPP; C20). These precursors are 
the substrates of several terpene synthases that produce 
hemiterpenes (n = 1), monoterpenes (n = 2), sesquiterpe-
nes (n = 3), diterpenes (n = 4), triterpenes (n = 5), tetrater-
penes (n = 8, C40) and polyterpenes (n > 8). (Fig.  1). 
Terpenes are also grouped according to the structural 
re-arrangement that undergo the isoprene scaffolds, thus 
including acyclic, monocyclic, bicyclic, or tetracyclic 
compounds [2].

Terpenes play significant ecological roles by mediating 
interactions among organisms [3]. In addition, terpenes 
have also important and extensive applications as phar-
maceuticals, cosmetics, food additives, pesticides and 
biofuels [4], and, thereby, there is considerable interest 
in their production. Nevertheless, conventional methods 
of agricultural production or chemical synthesis are not 

viable due to their high costs and significant environmen-
tal pollution. Consequently, these biomolecules present 
an attractive alternative for integration into microbial 
bioprocessing applications [5]. Indeed, the microbial 
production of terpenes has experienced considerable 
expansion during the last years, primarily through the 
utilization of bacterial and fungal microbial platforms [1, 
2, 6].

One of the main advantages of the microbial produc-
tion of terpenes is the use of agro-industrial wastes and 
by-products as cheap carbon sources for microbial fer-
mentation, allowing for the implementation of cost-effec-
tive and environmentally-friendly bioprocesses [7]. In 
this regard, many examples of waste valorization to pro-
duce different terpenes have been reported [8], includ-
ing the utilization of lignocellulosic hydrolysates [9–11], 
glycerol [12–14], waste cooking oil [10, 15], olive mill 
waste [16] or textile and cardboard waste [17].

Recently, A. gossypii, a filamentous hemiascomycete 
that is currently used for the industrial production of 
riboflavin [18], has been presented as an efficient bio-
catalyst for the production of limonene from xylose as 
the carbon source [19], which could enable the exploi-
tation of xylose-rich feedstocks such as lignocellulosic 
hydrolysates. A. gossypii has additional benefits in its 
fermentation characteristics, including the utilization 
of inexpensive carbon sources and the ease of mycelial 
harvesting through simple filtration, thus circumventing 
costly aspects of its bioprocessing [20]. This advantages, 
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together with the availability of an extensive molecular 
toolbox for its genomic manipulation [21–23] make of A. 
gossypii a very convenient biotechnological chassis with 
high capacities for the production of a variety of indus-
trially relevant metabolites such as folates, biolipids and 
monoterpenes [19, 24, 25], among others.

The present work aims at exploring the ability of engi-
neered strains of A. gossypii to produce different classes 
of plant monoterpenes using agro-industrial wastes as 
carbon sources. For this, the heterologous overexpres-
sion of monoterpene synthases from different organisms 
were carried out to examine the production of industri-
ally-relevant monoterpenes, including the acyclic linalool 
and geraniol, the monocyclic limonene and the bicyclic 
α- and β-pinene and sabinene. Beyond obtaining pre-
liminary production data for all monoterpene synthases, 
we selected the most suitable ones for the production of 
either limonene or sabinene. We found that limonene 
and sabinene can be efficiently produced in A. gossypii 
using mixed formulations of corn-cob lignocellulosic 
hydrolysates (Cch) plus either sugarcane or beet molas-
ses, thus providing a novel platform for their sustainable 
production.

Materials and methods
A. gossypii strains and growth conditions. All the A. gos-
sypii strains used in this study are described in the Addi-
tional file  1. MA2 (2% glucose as carbon source) and 
MX2 (2% xylose plus 0.5% glucose as carbon sources) 
media contained 20  g/L bactopeptone (Condalab), 
2  g/L yeast extract (Condalab) and 0.6  g/L myo-inosi-
tol (Thermo); SPA media was used for sporulation and 
contained 20  g/L corn steep liquor (Sigma), 3  g/L yeast 
extract (Condalab), 3  g/L soytone (Gibco), 3  g/L malt 
extract (Gibco) and 10 g/L glucose; SPAX media formu-
lation was the same as SPA, but contained 10 g/L xylose 
instead of glucose. The pH was adjusted to 6.8 for all cul-
ture media. A. gossypii flask liquid cultures were carried 
out at 28ºC in an orbital shaker at 200 r.p.m. The A. gos-
sypii transformation protocol as well as the sporulation 
conditions and spore isolation method were performed 
as described previously [26]. Concentrations of 250 mg/L 
for Geneticin (G418) (ChemCruz) were used for isolation 
of G418-resistant clones.

Corn cob lignocellulosic hydrolysates (Cch) prepara-
tion. Corn cob was soaked in 2.5% (w/v) diluted sulfu-
ric acid and subjected to hydrothermal treatment in an 
autoclave for 140 min at 121 °C. After cooling, the mix-
ture was neutralized with  CaCO3 and clear hydrolysate 
(Cch) recovered by vacuum filtration through cellulose 
paper. For detoxification, the Cch was treated with acti-
vated charcoal (Sigma), in proportion 1:5 (w/v), under 
constant agitation for 1  h. This step allows to remove, 

by subsequent filtration, some apolar compounds with 
antifungal effect such as furfural, hydroxymethylfurfural 
or phenols. Remaining excess of salts and ions were simi-
larly cleansed by stepwise use of both cationic—Amber-
lite IR-120 (Fisher), and anionic -Amberlite IRA-96 
(Thermo), exchange resins. Incubations of 45  min with 
ratio 1:20 (w/v) and 1:10 (w/v) to the volume of Cch, 
were respectively performed for each resin. Final solu-
tion was adjusted to neutral pH with KOH and analysed 
in a 1260 Infinity II HPLC system (Agilent Technolo-
gies, CA, USA), equipped with a REZEX ROA Organic 
Acid H + (8%) column (Phenomenex, CA, USA), upon 
isocratic gradient of 0.005N  H2SO4. Sugars concentra-
tions were determined, based on pure external standards 
calibration, averaging titers circa 30 g/L xylose and 5 g/L 
glucose.

Gene overexpression. Transformation cassettes for 
genomic integration were used for the overexpres-
sion of either endogenous or heterologous genes. The 
xylose-utilizing strain comprised the overexpression of 
the endogenous XR-XDH-XK pathway (GRE3, XYL2 
and XKS1 genes) together with the heterologous PKT 
pathway (pta gene from Bacillus subtilis and xpkA gene 
from Aspergillus nidulans) [27]. The overexpression of 
endogenous genes was performed by promoter replace-
ment, using integrative overexpression cassettes that 
comprised recombinogenic flanks, loxP-kanMX-loxP 
selection marker and the constitutive strong promoter 
PGPD1 as described elsewhere [19]. The overexpression of 
heterologous genes was carried out with integrative cas-
settes that were assembled using a Golden Gate method 
as described previously [28]. The integrative cassettes for 
heterologous overexpression comprised recombinogenic 
flanks, loxP-kanMX-loxP selection marker, and the tran-
scriptional unit with the indicated promoter and termi-
nator sequences. For the overexpression of monoterpene 
synthases, synthetic codon-optimized sequences of the 
different enzymes (Additional file 2) were assembled with 
the strong promoter PGPD1 and the terminator TPGK1. The 
recombinogenic flanks targeting the AFR171W locus 
were used. For the overexpression of the synthetic codon-
optimized tNDPS1 gene from S. lycopersicum (Additional 
file  2), recombinogenic flanks targeting the ABR025C 
locus were used, and the regulatory sequences were the 
strong promoter PTSA1 and the terminator TENO1. All the 
synthetic codon-optimized sequences were obtained 
from Integrated DNA Technologies (USA).

The corresponding integrative cassettes were used 
to transform spores (germlings) of A. gossypii. Pri-
mary heterokaryon clones were isolated in G418-con-
taining medium. Homokaryon clones were selected 
after the sporulation of the primary transformants. The 
genomic integration of each overexpression cassette was 
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confirmed by analytical PCR followed by DNA sequenc-
ing (see Additional file 3 for primer sequences). The loxP 
inverted sequences of the kanMX marker enabled its 
elimination by expressing a Cre recombinase, as previ-
ously described [29].

Monoterpenes extraction and quantification. Flask cul-
tures for monoterpenes production were initiated with 
either spores  (106) or mycelium preinocula (exclusively 
for Cch-molasses cultures) in a total volume of 40 mL of 
the indicated culture media with a 5% dodecane overlay. 
The cultures were harvested at the indicated time points 
and centrifuged for 10  min at 4400 r.p.m. The upper 
dodecane phase was collected and the quantification 
of different monoterpenes was carried out by GC–MS 
analysis using 10 μL of the dodecane phase as described 
previously [19]. In brief, dodecane was diluted in ethyl 
acetate and injected in an EI-MS 220 Ion Trap spec-
trometer coupled to a 7890A GC System (Agilent Tech-
nologies, CA, USA), bearing a DB-5 column—30 m long, 
0.25 mm internal diameter, 25 μm film (Agilent Technol-
ogies, CA, USA). Separation was performed in a typical 
increasing temperature gradient with helium as carrier. 
Identification and quantification of monoterpenes was 
performed upon external calibration with linalool, geran-
iol, limonene, sabinene and α- and β-pinene standards 
(Sigma).

Determination of lipid profiles. 10  µL of interphase 
between culture and dodecane overlay were collected 
and diluted 1:100 (v/v) in MeOH for injection in an 
Orbitrap Q-Exactive Focus spectrometer hyphenated 
to liquid chromatography in a Vanquish Flex UPLC 
(Thermo Fisher Scientific, MA, USA). A C18 Poreshell 
column—4.6 × 50  mm, 2.7  µm (Agilent Technologies, 
CA, USA) was used for lipids separation upon a binary 
gradient (0.1% formic acid:acetonitrile) at 0.3  mL/min 
with increasing proportions of organic solvent. A non-
targeted lipidomics analysis was performed in switching 
positive and negative polarities relying on HRAM spec-
tra (resolution 70,000 and 1 ppm accuracy) for m/z range 
120–1500 and data dependent top intensity MS2 acquisi-
tion. The 10 most height-intense signals for each polarity 
along the full chromatogram were annotated, queried for 
identification against the LipidMaps database (https:// 
www. lipid maps. org/)—accuracy tolerance 2.5  ppm, and 
further confirmed examining fragmentation pattern in 
the corresponding MS2 spectra.

Results
Functional analysis of different plant monoterpene 
synthases in A. gossypii
The overexpression of the limonene synthase from Citrus 
limon, coupled to an NPP synthase orthogonal pathway 
(Fig. 1), enabled the efficient production of limonene in 

A. gossypii [19]. The highest limonene titer was obtained 
with a xylose-utilizing strain (see Materials and Meth-
ods for details), which also comprised the overexpres-
sion of the endogenous HMG1 and ERG12 genes. In this 
work, we aimed at exploring the functionality of differ-
ent monoterpene synthases in two different A. gossypii 
genetic backgrounds: (i) tNDPS1, an NPP synthase over-
expressing strain (using the heterologous NDPS1 gene 
from Solanum lycopersicum), and (ii) erg20mut, a mutant 
strain expressing an erg20F95W allele with a reduced FPP 
synthase activity [19]. Hence, two different approaches 
for metabolic flux redirection were assayed with each 
monoterpene synthase: tNDPS1 and erg20mut, designed 
to increase the precursors NPP and GPP, respectively 
(Fig. 1).

Additionally, both parental strains were equipped with 
a functional endogenous xylose-utilizing pathway, an 
heterologous phosphoketolase pathway, and the overex-
presion of the native HMG1 gene [19].

Six different truncated monoterpene synthases, lack-
ing the plastid targeting signal, were selected for gene 
overexpression in A. gossypii: limonene synthase from 
C. limon (tLS) used as a control, linalool synthase from 
Actinidia arguta (tLoS), geraniol synthase from Valeri-
ana officinalis (tGS), pinene synthases from Abies grandis 
(tPS-Ag) and Pinus taeda (tPS-Pt), and sabinene syn-
thase from Salvia pomifera (tSS). Integrative overexpres-
sion modules were assembled using codon-optimized 
sequences of the six terpene synthases (Additional file 2) 
and used for transformation of the two parental strains 
(tNDPS1 and erg20mut). The engineered strains were 
grown in xylose-containing media for 72 h and the pro-
duction of monoterpenes was analyzed. Our results 
revealed a great heterogeneity of the terpene synthases 
functionality (Fig. 2).

The strains expressing tLS were previously described 
and used as controls for limonene production [19]. 
Geraniol was not detected in any genetic background, 
suggesting that tGS from V. officinalis is not active in A. 
gossypii. Sabinene was produced at high levels (above 
40 mg/L) in the tNDPS1 genetic background, which also 
supported the production of linalool and pinene (only 
from tPS-Pt) (Fig.  2). In contrast, the erg20mut genetic 
background allowed the production of lower levels 
(under 10 mg/L) of linalool, limonene and pinene (from 
both tPS-Pt and tPS-Ag). However, while limonene and 
pinene (from tPS-Pt) were significantly higher in the 
tNDPS1 genetic background, the production of linalool 
was favored in the erg20mut background, thereby reflect-
ing different substrate selectivity (NPP vs GPP) among 
the terpene synthases. However, the linalool titer pro-
duced by  A. arguta  tLoS suggests the need to explore 
for additional heterologous genes that may provide 

https://www.lipidmaps.org/
https://www.lipidmaps.org/
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higher linalool synthase activity in A. gossypii. Hence, 
we next focused on the limonene and sabinene produc-
ing strains in the tNDPS1 genetic background for further 
experiments.

Sabinene is efficiently produced in A. gossypii from xylose 
as the carbon source
Our previous work showed that the overexpression of 
the endogenous ERG12, encoding mevalonate kinase 
(Fig. 1), provided a significant increase in the production 
of limonene in A. gossypii [19]. Consequently, the overex-
pression of ERG12 in the sabinene producing strain was 
conducted using the strong constitutive promoter PSED1 
[23]. This was done to evaluate the impact of mevalonate 
kinase overproduction on both the growth and sabinene 
production capacities of the sabinene producing strain 
(A1554), using the limonene producing strain (A1308) as 
a control.

Liquid cultures of both strains were grown for 240 h 
using MX2 media (containing 0.5% glucose plus 2% 
xylose as the carbon sources). Aliquots were taken at 
the indicated time points to evaluate the biomass pro-
duction (Fig.  3). An exponential growth phase was 
observed from 24  h to 96–120  h, depending on the 
strain. Both strains initiated the exponential growth 
after 24 h of culture; however, the sabinene producing 
strain (A1554) showed a higher xylose consumption 
rate, a more extended exponential growth phase, and 

the ability to generate more biomass than the limonene 
producing strain (A1308) (Fig. 3).

The production of monoterpenes was quantified 
from 48 to 120 h in both strains using MX2, as a sim-
ple defined medium; and SPAX, a complex medium 
containing a higher (not defined) sugar content from 
soytone, malt extract and corn steep liquor (see Mate-
rial and Methods for details). Increasing concentra-
tions of limonene (Fig.  4A) and sabinene (Fig.  4B) 
were obtained in both culture media. In MX2 media 
at 120 h, the production of limonene was 325 ± 2 mg/L 
(yield = 13  mg/g of carbon source), and the sabinene 
titer reached 407 ± 25  mg/L (yield = 16.3  mg/g). How-
ever, the highest titers of limonene and sabinene were 
obtained at 120  h in SPAX media. Specifically, the 
A1308 strain produced 367 ± 10.5  mg/L of limonene, 
while the A1554 strain produced 470.5 ± 25.5  mg/L of 
sabinene, thus demonstrating that both terpenes can be 
efficiently produced in the xylose-utilizing engineered 
strains of A. gossypii and that a higher sugar concentra-
tion in the culture media helps to increase the produc-
tion of both limonene and sabinene. Interestingly, the 
A1308 cultures showed a lipidic interphase (between 
the aqueous culture media and the dodecane over-
lay), that was particularly visible at 48 h in MX2 media 
(Additional file 4A), and was mostly composed by free 
fatty acids (FAs) and phospholipids (PLs) (Additional 
file 4B-F).
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Valorization of xylose‑rich wastes to produce limonene 
and sabinene in A. gossypii
We have previously described that the utilization of 
mixed formulations of Cch plus either sugarcane or 

beet molasses represents an excellent strategy for 
the production of microbial lipids in A. gossypii [25]. 
Prompted by these results, we decided to analyze the 
production of monoterpenes using these xylose-rich 
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waste streams. The sugar composition of these waste 
by-products was analyzed to calculate an adequate 
dilution of sugars in the culture media for flask fer-
mentations (Table  1). Hence, culture media was pre-
pared using 25% Cch plus 4% of either sugarcane or 
beet molasses, to use a final concentration of 10 g/L of 
xylose and approximately 25 g/L of sucrose.

Flask liquid cultures were grown using 25% Cch plus 
4% of either sugarcane (SM) or beet molasses (BM) as 
the carbon sources. Cultures were grown for 120 h and 
the concentration of monoterpenes in the dodecane 
layer was analyzed. The A1308 strain showed almost 
identical titers of limonene among the two culture 
media, reaching near 400  mg/L of limonene (Fig.  5A). 
The conversion yields were, in this case, 9.6  mg/g and 
10.9  mg/g for Cch + SM and Cch + BM, respectively. 
In contrast, the A1554 strain displayed large dif-
ferences in sabinene production among the culture 
media: while Cch + BM produced a sabinene titer of 
398.5 ± 28.5 mg/L (yield = 11.3 mg/g), the utilization of 
Cch + SM provided a significantly higher titer of sabi-
nene reaching 684.5 ± 19.5 mg/L (yield = 17.1 mg/g).

Discussion
Our results showed that A. gossypii can afford the func-
tional expression of different terpene synthases lead-
ing to the production of acyclic (linalool), monocyclic 
(limonene) and bicyclic (pinene and sabinene) monoter-
penes, thus supporting the versatility of A. gossypii as an 
efficient microbial factory.

The utilization of two different genetic backgrounds 
revealed significant differences of substrate selectivity 
and functionality among the assayed terpene synthases, 
which might be critical for the engineering of new bio-
catalysts. In agreement, diverse substrate selectivity of 
terpene synthases has been previously described and it 
can largely determine the productivity of monoterpenes 
in heterologous hosts such as A. gossypii [30]. Hence, our 
model could serve to discriminate the substrate selectiv-
ity of different monoterpene synthases in  vivo as a first 
approach for the development of optimized engineering 
bioprocesses. The present study identified the sabinene 
synthase from S. pomifera as a promising candidate for 
sabinene production in A. gossypii. In contrast, other 
monoterpene synthases did not exhibit comparable 
activity, underscoring the importance of our model in 
assessing both substrate selectivity and functionality. 
For example, the production of high levels of linalool 
in eukaryotic cell factories has not been reported [31], 
including the use of tLoS from A. rugosa in A. gossypii 
(this study). This suggests that further exploration is 
needed to identify suitable candidates among other lin-
alool synthases from different organisms.

The growth kinetics of the limonene (A1308) and sabi-
nene (A1554) producing strains showed remarkable dif-
ferences that can reflect a dissimilar utilization of xylose 
and, consequently, explain the differences observed in 

Table 1 Sugar composition of waste by‑products used in this 
work

Sugar composition (g/L)

Sucrose Glucose Fructose Xylose

Cch – 3.8 – 40

Sugarcane molasses 680.6 23.2 21.3 –

Beet molasses 597.9 1.3 9.1 –
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Fig. 5 Monoterpene production of engineered A. gossypii strains using wastes as carbon sources. Mixed formulations of Cch plus sugarcane 
molasses (Cch + SM) and Cch plus beet molasses (Cch + BM) were used as the sole carbon sources for flask cultures. Limonene (A) and sabinene (B) 
were quantified from A1308 and A1554 cultures, respectively. Data are the means of two independent experiments performed in duplicate. Error 
bars represent the standard deviation. The Student’s t test was performed to determine significant differences (P < 0.05)
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biomass and production of monoterpenes. Apparently, 
the production of both limonene and sabinene are cou-
pled to the mycelial growth in A. gossypii. In microor-
ganisms, isoprenoids are essential for cell growth and, 
therefore, their volumetric concentration correlates 
with microbial growth due to growth-coupled biosyn-
thesis [32]. However, a growth-uncoupled production 
would be an advantageous option since the less biomass 
is generated, the more substrate would be available for 
the synthesis of bioproducts, as previously described 
for isoprenoid biosynthesis in Rhodobacter sphaeroides 
[33]. This approach is especially suited to produce non-
native compounds, which are not required for growth. 
In this regard, the production of limonene in the A1308 
strain correlated with an enhanced accumulation of lipids 
(mostly free FAs and PLs), which can compete with the 
production of limonene for the utilization of acetyl-CoA 
as the immediate precursor. An alternative hypothesis 
is that increased lipid production may facilitate the dis-
solution of limonene, sequestering it from the host and 
thereby enhancing its overall productivity. Why this cor-
relation is not observed in the A1544 sabinene producing 
strain remains however unknown.

The utilization of SPAX culture media provided a 
higher titer of both limonene and sabinene at 120  h of 
culture, showing that a higher concentration of carbon 
and nitrogen sources (from corn steep liquor, soytone 
and malt extract) correlates with an enhanced production 
of monoterpenes. In addition, the higher level of myce-
lial lysis that occurred in SPAX media at 120 h of culture 
(Additional file 5) can also help to increase the accumu-
lation of monoterpenes in the dodecane phase. In fact, 

the autolysis of the A. gossypii mycelium at later stages 
of the growth culture represents a significant advantage 
in terms of bioproduct recovery, thereby contributing to 
save downstream costs.

The highest limonene and sabinene titers were 
obtained using mixed formulations of waste streams, i. 
e. Cch plus molasses. This was particularly evident for 
the production of sabinene by the strain A1554. In this 
regard, the production of limonene was almost identical 
in Cch + SM and Cch + BM, despite the higher sugar con-
centration in the Cch + SM medium (Table 1). However, 
the titer of sabinene was significantly enhanced in the 
Cch + SM medium. These differences can be attributed 
to the superior growth and sugar consumption abilities of 
the sabinene producing strain (Fig. 3). Alternatively, the 
increased accumulation of lipids in the strain A1304 may 
also influence the biosynthesis of monoterpenes. Over-
all, these results underpin the idea that the utilization of 
mixed formulations of xylose-rich hydrolysates together 
with molasses is a suitable approach for the valoriza-
tion of waste by-products using A. gossypii, as previously 
reported for the production of biolipids [25]. A similar 
strategy using paddy straw hydrolysate as a diluent of 
molasses was recently described to increase ethanol pro-
duction in S. cerevisiae [34].

Gram-scale titers for limonene and sabinene have been 
obtained with the biotechnological workhorses E. coli 
and S. cerevisiae (Table 2). Li et al. have recently reviewed 
the state of the art of terpene production using differ-
ent microbial chassis, showing that the carbon source, 
the extraction phase and the fermentation mode and 
scale strongly influence the process performance [31]. 

Table 2 Limonene and sabinene titers in different microbial cell factories

a fb fed‑batch mode

Organism Fermentation mode Titer (mg/L) Carbon source Extraction phase Ref

Limonene E. coli Flask 605 Glucose Dodecane [43]

Flask (fb)a 1290 Glucose Isopropyl myristate [40]

Bioreactor (fb) 3630 Glycerol Diisononyl phthalate [41]

S. cerevisiae Flask (fb) 2580 Galactose/raffinose Isopropyl myristate [39]

Flask (fb) 2230 Glucose/ethanol Isopropyl myristate [42]

Bioreactor (fb) 2630 Soytone/sucrose/glu‑
cose/glycerol

Dodecane [44]

Rodosporidium toruloides Flask 358.1 Glucose Dodecane [45]

Yarrowia lipolytica Flask 23.56 Glucose/pyruvate Dodecane [46]

Bioreactor (fb) 165.3 Glycerol/citrate Dodecane [14]

A. gossypii Flask 383 Cch/BM Dodecane This study

Sabinene E. coli Flask 150 Glucose/citrate None [47]

Bioreactor (fb) 2650 Glycerol None [13]

S. cerevisiae Flask 17.5 Galactose/raffinose Dodecane [48]

A. gossypii Flask 684.5 Cch/SM Dodecane This study
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The A1554 strain presented in this work reached about 
700  mg/L of sabinene using agro-industrial wastes in 
flask cultures, which represents a significant improve-
ment compared to other organisms in flask culture mode 
[13, 31, 35]. In any case, further optimization of fermen-
tation parameters is expected to increase the sabinene 
titers up to the gram-scale in A. gossypii. These param-
eters might include the organellar compartmentalization 
of the enzymatic machinery that has been successfully 
employed to significantly increase the production of 
limonene, squalene and other terpenes in yeast [36–39]. 
Also, the use of organic solvents, different from dode-
cane, to extract these volatile bioproducts might increase 
monoterpene titers (Table 2) [40–42]. Finally, the imple-
mentation of optimized bioreactor conditions for A. gos-
sypii cultures could also benefit the productivity of the 
bioprocess, as previously demonstrated for other micro-
bial cell factories [1, 31].

Altogether, this work represents a proof of concept for 
sabinene production near to the gram-scale in A. gos-
sypii through agro-industrial waste valorization, a finding 
with obvious industrial relevance that deserves further 
investigation.

Conclusions
The development of novel microbial biocatalysts for 
monoterpene production is a valuable strategy in indus-
trial biotechnology. In this study, we report engineered 
strains of A. gossypii that serve as an ideal platform to 
investigate the substrate selectivity and functionality of 
plant terpene synthases in  vivo. Furthermore, we dem-
onstrate that the filamentous fungus A. gossypii, tradi-
tionally used for industrial riboflavin production, can be 
effectively repurposed as a novel microbial factory for 
monoterpene biosynthesis. Although further optimiza-
tion of metabolic and fermentative parameters may be 
required to increase limonene and sabinene titers beyond 
the gram-scale, A. gossypii offers a promising alternative 
for the valorization of agro-industrial wastes such as corn 
cobs and molasses.
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