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Abstract

Rationale: Recent studies suggest that obstructive sleep apnea
(OSA) severity can vary markedly from night to night, which
may have important implications for diagnosis and
management.

Objectives: This study aimed to assess OSA prevalence from
multinight in-home recordings and the impact of night-to-night
variability in OSA severity on diagnostic classification in a large,
global, nonrandomly selected community sample from a
consumer database of people that purchased a novel, validated,
under-mattress sleep analyzer.

Methods: A total of 67,278 individuals aged between 18 and
90 years underwent in-home nightly monitoring over an
average of approximately 170 nights per participant between
July 2020 and March 2021. OSA was defined as a nightly
mean apnea–hypopnea index (AHI) of more than 15
events/h. Outcomes were multinight global prevalence

and likelihood of OSA misclassification from a single night’s
AHI value.

Measurements and Main Results: More than 11.6 million nights
of data were collected and analyzed. OSA global prevalence was 22.6%
(95% confidence interval, 20.9–24.3%). The likelihood of misdiagnosis
in people with OSA based on a single night ranged between
approximately 20% and 50%. Misdiagnosis error rates decreased with
increased monitoring nights (e.g., 1-night F1-score=0.77 vs. 0.94 for
14 nights) and remained stable after 14 nights of monitoring.

Conclusions: Multinight in-home monitoring using novel,
noninvasive under-mattress sensor technology indicates a global
prevalence of moderate to severe OSA of approximately 20%, and
that approximately 20% of people diagnosed with a single-night
study may be misclassified. These findings highlight the need to
consider night-to-night variation in OSA diagnosis and management.
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Obstructive sleep apnea (OSA) is a
common sleep-related breathing disorder,
estimated to affect nearly 1 billion people
worldwide (1). Untreated OSA is
associated with adverse health and safety
consequences, including increased risk of
cardiovascular disease (2), depression (3),
traffic accidents (4), reduced quality of life

(5), and all-cause mortality (2, 6). The
current gold standard measurement of
OSA severity is the apnea–hypopnea
index (AHI), a frequency count of the
number of 10-second or longer apneas
(complete cessation of airflow) and
hypopneas (reductions in airflow)
associated with sleep disruption (cortical
arousal) and/or hypoxemia per hour of
sleep. Current standard clinical practice to
diagnose OSA requires a single overnight
in-laboratory or in-home
polysomnography or polygraphy study in
which an AHI between 5 and 15 is
classified as mild, 15–30 moderate, and
more than 30 events/h as severe OSA (7).

However, diagnosis of OSA based
on the AHI from a single night’s sleep
study may be problematic owing to
potential night-to-night physiological
and measurement variability.
Furthermore, substantial variation in
interscorer agreement in manual scoring
of the AHI leads to uncertainty of
diagnosis in approximately 25–45% of
patients (8). The latest evidence on
night-to-night variability in AHI from a
sample of 10,000 adults who completed
three nights of in-home testing indicates
that up to 20% of people with OSA may
be misdiagnosed based on a single night
study (9). This is concordant with earlier
reports that indicate between 20% and
60% of people with OSA may be
misdiagnosed based on a single-night
study depending on the sampled
population (e.g., sleep clinic vs. general
population) (10–15). However, previous
studies were limited in sample size, and
misdiagnosis rates were only calculated
on a small (,14) number of nights,
which limits generalizability.
Furthermore, the number of nights
required to achieve a confident estimate
of the AHI and reliable diagnostic
classification remains to be determined.

Accordingly, this study sought to use
validated (16), novel noninvasive under-
mattress sensor technology in a large global
population sample to estimate OSA
prevalence frommultinight recordings and
to assess the impact of night-to-night
variability in OSA severity on diagnostic
classification.

Deidentified data that support the
findings of this study, including individual
data, are available from the corresponding
author upon request subject to ethical and
data custodian (Withings) approval.

Methods

Participants
Data were acquired from 87,610 participants
from a consumer-user database of people
who registered to use under-mattress sleep
sensor technology (Withings Sleep Analyzer
[WSA]) to track their nightly sleep in their
homes between July 1, 2020, andMarch 30,
2021. This large nonrandomly selected
sample was composed of participants from
151 countries/regions. All participants
provided informed consent for their
deidentified data to be used for research
purposes. This study was approved by the
Flinders University Human Research Ethics
Committee (project number: 4,291).

Monitoring Equipment
TheWSA is a contactless, nonintrusive sleep
monitoring device that is positioned under
the user’s mattress. The device contains
pneumatic and sound sensors to detect body
movements, respiratory rate, heart rate,
snoring, and episodes of breathing cessation.
These signals are used to estimate sleep
macrostructure (total sleep time), sleep
timing (bedtime and wake-time), and the
AHI using automated algorithms (see the
online supplement for a more detailed
technology description). Clinical validation
shows good agreement with
polysomnography-derived AHI (16, 17) with
high predictive performance (88% sensitivity
and 88% specificity) to classify moderate to
severe OSA (>15 events/h sleep). A further
internal validation study in 32 participants
(26 men and 6 women) independently
studied at the Adelaide Institute for Sleep
Health laboratory (see the online
supplement) showed similar diagnostic
performance characteristics.

OSA Classification
Data from theWithings database were
extracted for all participants aged at least 18
years with at least 28 nights of recordings
who used their device for an average of at
least four times per week during the 9-month
assessment period. Mean and 95%
confidence intervals (CIs) for AHI were
calculated from all available nights separately
for each participant. The probability of OSA
above/below standard clinical cutoffs
(,5=no OSA,>5 and,15=mild,>15
and,30=moderate, and>30 events/
h= severe OSA) was estimated for each
participant (7). Absence versus presence of

At a Glance Commentary

Scientific Knowledge on the
Subject: Recent studies that have
assessed obstructive sleep apnea
(OSA) over several consecutive
nights indicate that OSA severity can
vary markedly from night to night,
which may have important
implications for diagnosis,
management, and prevalence
estimates. Before recent advances in
noninvasive home sleep monitoring
technology, it was not feasible to
examine night-to-night variation in
OSA severity and its potential
impact on diagnostic classification
and prevalence estimates over
extended periods in the home setting
at scale.

What This Study Adds to the
Field: Multinight in-home
assessment of OSA in a self-selected
population from a consumer
database of more than 65,000 people
with approximately 6 months of
nightly data per participant indicates
an estimated global prevalence of
moderate to severe OSA (.15
respiratory events/h sleep) of
approximately 20%. The impact of
night-to-night variation in OSA
severity means that 20% or more of
patients diagnosed based on single-
night testing (current practice) may
be misclassified. OSA diagnostic
confidence is high and stable after
14 nights of monitoring. Simple,
noninvasive multinight assessment
for OSA may be a feasible, cost-
effective approach to minimize
diagnostic misclassification to help
complement routine clinical practice
and better define OSA for
research trials.
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OSA was defined as an AHI of 15 events/h or
more, indicating OSA of at least moderate
severity (7).

Global Prevalence Estimates
Assuming an OSA prevalence in the
population of approximately 25% (95% CI,
20–30%) (18), we calculated that at least
289 individuals would be required to
estimate OSA prevalence in each country/
region. Therefore, OSA prevalence by
country/region was only calculated in
countries/regions where data from at least
300 individuals were available. Each
prevalence estimate (p) has variance equal to
pð12pÞn, where n is the total number of
participants in that country. The 95% CI of
the prevalence per country is therefore

61:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
pð12pÞn

�r
.

Global prevalence is expressed as the mean
and 95% CI across countries. Age- and
sex-stratified global OSA prevalence was
also calculated (see analysis in the online
supplement).

OSA Misclassification
The reliability to classify OSA based on
1 night, 2 nights, 7 nights, and 14 nights
was determined using receiver operator
characteristic curves, precision-recall
curves, and detection error tradeoff
curves. Briefly, true labels were
determined based on the mean AHI of all
available nights for each individual and

according to defined clinical cutoffs.
X-night diagnosis labels were determined
using the mean AHI of X randomly
selected nights for each participant. True
positive, false negative, false positive, and
true negative values were then calculated
for an X-night diagnosis, from which true
positive rates, false positive rates, positive
predictive values, false negative rates, false
positive rates, F1-score, and Matthew’s
correlation coefficients (see the online
supplement) were derived. This process of
randomly selecting nights and calculating
rates was repeated 100 times for each
X-night diagnosis, allowing the
calculation of mean and 95% CI of
predictive performance metrics.

A sensitivity analysis was performed
to further validate these findings in which
only data recorded in March 2021 were
included. In this sensitivity analysis, only
participants with at least 28 days of
recording during March 2021 were
included. This sensitivity analysis aimed
to reduce the potential impact of
uncontrolled confounders (e.g., weight
loss/gain) that may have resulted in
increased AHI variability measured across
the full recording period.

Statistical Analysis
Effects of available sociodemographic
variables (age, body mass index, and sex) and
AHI variability on the likelihood of
misclassification and inconclusive diagnostic
classification were studied using logistic

regression. Given that participants with a
mean AHI of less than 5 events/h were not at
risk of being misclassified, these participants
were excluded. Inconclusive diagnosis was
defined as a 1-night probability of being
misclassified higher than 10%. AHI
variability was defined using tertiles of the
average standard deviation of AHI across all
nights. Statistical analysis was performed in
the R programming language (19), using the
rmsmodeling package (20).

Results

Participant Characteristics
Of the 87,610 registered users in the
database, 10,954 (12.1%) and 8,501 (9.7%)
were excluded as they were new users with
28 or fewer days of recording or were
infrequent device users (average of less than
4 times a week), respectively. A further 745
(0.8%) participants were excluded as they
were less than18 years old. The
characteristics for the remaining 67,278
participants are summarized in Table 1. Most
participants resided in Europe (62%) and
North America (30%) (see Figure E2 in the
online supplement for the remaining
distributions globally).

Global Prevalence of OSA
Of the 20 countries with at least 300 users,
the global prevalence of OSA was 22.6%
(95% CI, 20.9–24.3%). Prevalence estimates
varied between 15% (Japan) and 29%

Table 1. Baseline Participant Characteristics

OSA Severity

Overall None Mild Moderate Severe

n 67,278 30,051 21,573 9,982 5,672
Age, yr 47 (13) 42 (11) 49 (12) 55 (12) 57 (12)
BMI, kg/m2 27 (5) 26 (5) 28 (5) 29 (5) 31 (6)
Sex Male 52,533 (78) 21,775 (72) 17,239 (80) 8,450 (85) 5,069 (89)

Female 14,745 (22) 8,276 (28) 4,334 (20) 1,532 (15) 603 (11)
Continent Europe 41,627 (62) 17,313 (58) 14,000 (65) 6,642 (67) 3,672 (65)

North America 19,907 (30) 9,459 (32) 6,099 (28) 2,721 (27) 1,628 (29)
Asia 4,242 (6) 2,598 (9) 972 (5) 424 (4) 248 (4)
Oceania 920 (2) 432 (1) 304 (2) 113 (2) 71 (2)
South America 192 (0) 71 (0) 75 (0) 32 (0) 14 (0)
Africa 152 (0) 66 (0) 58 (0) 18 (0) 10 (0)

Number of nights, n 174 (72) 171 (72) 176 (71) 176 (71) 173 (73)
Use, nights/week 6 (1) 6 (1) 6 (1) 6 (1) 6 (1)
Mean AHI, events/h 11 (13) 2 (1) 9 (3) 21 (4) 46 (15)
AHI variability*, events/h 6 (4) 3 (1) 6 (2) 10 (3) 14 (6)
Mean total sleep time, min 448 (50) 451 (43) 451 (48) 447 (54) 425 (73)

Definition of abbreviations: AHI=apnea–hypopnea index; BMI=body mass index; OSA = obstructive sleep apnea.
*Defined as SD AHI across all available nights.
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(Germany), as shown in Table 2 and
Figure E2. The United States, France,
Germany, and the UK had the highest
proportion of participants and had OSA
prevalence rates of 21.6, 23.1, 29.0, and
22.9%, respectively. OSA prevalence in men
was almost twice as high as in women (25%
vs. 13%), as shown in Table E1. OSA
prevalence for participants aged 50 years or
less was 12% (95% CI, 11–14), which was
much lower than for participants aged more
than 50 years (mean [95% CI], 39%
[36–42%]). Demographics were similar to
data previously published by theWorld
Health Organization and the United Nations,
except for the lowest proportions of women
per country (Table E2).

Likelihood of OSA Misclassification
The likelihood of detecting OSA in
participants with a confident classification of
OSA (according to their reference mean
value) for a single night diagnosis was 79%
(Figure E4A). Conversely, an average of 21%
of the diagnoses would have resulted in false
negatives based on a single night (detection
of no OSA rather than OSA).
Misclassification rates were dependent on the
mean AHI value and the AHI cutoffs values
selected, as shown in Figure E4B.

Multiple-night diagnosis (using the
mean across X nights) showed substantially
better predictive performance than a

one-night diagnosis (as shown in
Figures 1A, 1B, and 1C). Performance
increased from a 1-night diagnosis to a
14-night diagnosis, with increased area under
the receiver operator characteristic curve
(Figure 1A), better precision-recall score
(Figure 1B) and a decrease in both false
negative and false positive rates (Figure 1C).
Using 10% as the maximally acceptable
error rate, false positive rates of 16.8% (0.2),
8.5% (0.2), 2.0% (0.1), and 1.0% (0)
occurred for a 1-, 2-, 7- and 14-night
diagnostic assessment period, respectively.
Furthermore, the F1-score (a measure of
overall predictive performance [see the
online supplement]) was 0.77, 0.83, 0.91,
and 0.94 for a 1-, 2-, 7-, and 14-night
diagnosis, respectively. Predictive
performance tended to saturate after 14
days (Figure E5). A similar predictive
performance was observed in sensitivity
analyses (Figures E6 and E7).

Misclassification of OSA severity
(mild, moderate, and severe) based on a
one-night diagnosis was high for participants
who hadmild and/or moderate OSA
according to the reference values (Figure 2).
Mild andmoderate OSA were only
characterized correctly on 54% and 52% of
the nights respectively, whereas no-OSA
(AHI, 5 events/h) and severe OSA
(AHI> 30 events/h) were correctly classified
in 85% and 77% of cases, respectively.

Associations between inconclusive
diagnostic status and AHI variability,
independently of demographic factors, are
presented in Table E3. Age, sex, and body
mass index effects were observed but were
considered likely to be negligible compared
with AHI variability (Table E3).

Discussion

Data from novel, noninvasive under-
mattress sensor technology acquired across
an average of 8 months of in-home nightly
monitoring in a large, nonrandomly selected
population sample from 20 countries/regions
indicates a global prevalence of moderate to
severe OSA of approximately 20%.
Misdiagnosis probability based on a single
night of testing, as is current standard clinical
practice, was high at approximately 20% in
the current selected population sample and
increased to approximately 50% in people
with mild to moderate OSA.

The main strengths of this study
approach include the simplicity of objective
monitoring in the real-world home sleeping
environment rather than an in-laboratory
setting, andmany months rather than one
night of recording. Thus, estimates of OSA
prevalence and impacts of night-to-night
variability were based on a very large volume
of physiological and clinical information

Table 2. Prevalence of Obstructive Sleep Apnea (AHI>15 events/h) for Countries with More than 300 Participants

Number of
Participants Age, Median (IQR) Sex, Female, %

OSA Prevalence,
Mean (95% CI), %

OSA Prevalence
in Benjafield
et al. (1), %

Japan 2,885 43 (34–51) 10.6 15.3 (14.0–16.6) 14.0
China 388 41 (32–49) 17.0 17.5 (13.7–21.0) 8.8
Netherlands 1,533 46 (37–53) 18.9 19.0 (17.0–21.0) 28.5
Australia 1,530 43 (36–52) 18.8 19.3 (16.5–22.2) 4.8
Canada 794 48 (36–56) 25.3 19.3 (17.2–22.2) 4.8
Norway 503 45 (36–52) 17.4 19.8 (16.4–23.4) 13.1
Finland 1,183 46 (37–54) 21.7 20.0 (17.7–22.3) 29.5
United States 18,061 46 (36–55) 25.9 22.0 (21.4–22.6) 14.5
Poland 392 44 (37–52) 16.1 22.4 (18.3–26.6) 17.8
Sweden 4,864 47 (37–57) 20.0 23.0 (21.8–24.1) 12.7
UK 1,239 46 (37–54) 21.0 23.0 (21.8–24.2) 4.8
France 10,300 48 (37–57) 23.4 23.3 (22.5–24.1) 36.3
Portugal 302 49 (39–57) 25.6 23.5 (18.7–28.3) 12.5
Belgium 1,067 47 (38–55) 23.1 23.5 (20.9–26.0) 15.7
Switzerland 2,725 48 (39–56) 21.0 23.6 (21.9–25.1) 36.6
Denmark 575 47 (39–56) 18.3 24.7 (21.1–28.2) 28.5
Spain 782 48 (40–57) 20.1 26.4 (23.4–29.6) 16.2
Austria 791 48 (38–57) 18.1 28.3 (25.1–31.4) 28.4
Italy 1,147 50 (38–57) 16.8 28.4 (25.8–31.0) 12.0
Germany 12,252 50 (41–58) 20.4 29.0 (28.1–29.8) 32.9

Definition of abbreviations: AHI=apnea–hypopnea index; CI =confidence interval; IQR= interquartile range; OSA = obstructive sleep apnea.
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collected per night, including nearly
12 million nights of data collected over an
average of more than 8 months. As such, this
dataset is the largest standardized, objective
assessment of OSA collected to date. Data
were also acquired across diverse
geographical locations, with large datasets
available in 20 countries to provide the first
multinight, objective global estimates of OSA
prevalence. Finally, the lengthy recording
duration (between 1 and 8 mo) allowed for
muchmore precise quantification of
misdiagnosis probability owing to AHI
variability than has previously been possible.
This provides a clear advantage over other

recent studies that have derived misdiagnosis
probability from a smaller number of nights
(,14 nights) and smaller number of
participants.

Both biological and measurement/
technical factors may importantly
contribute to night-to-night variation in
AHI. Sources of potential biological
variation in AHI include body position,
environmental effects, alcohol, and
medication use. A key contributor to
measurement/technical AHI variability
with conventional in-laboratory
polysomnography is high manual
interscorer variability (8), particularly

problematic for arousal and hypopnea
quantification. Polysomnography versus
under-mattress sensor data have different
strengths/weaknesses with respect to AHI
detection. For example, AHI derived from
the under-mattress sensor includes fewer
input variables in which to detect
respiratory events than the more extensive
and direct but also more invasive
monitoring approaches of conventional
polysomnography. Thus, the ability to
accurately identify respiratory events and
differentiate between different types of
respiratory events may be more
challenging with under-mattress sensor
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technology. There may also be currently
unknown technical reasons that cause
higher night-to-night variation with the
new under mattress device compared with
polysomnography and other sleep study
systems. However, an advantage of under-
mattress sensor technology is that scoring
decisions are made automatically
according to objective preset criteria based
on the acquired physiological signals and
thus are not prone to human scoring
variability. These differences may explain,
at least in part, individual differences in
AHI values on any given night between
measurement approaches. This requires
further investigation. Nonetheless,
recognizing these potential caveats,
published validation data (16) and our
own validation assessment (see the online
supplement) show reasonably good
agreement in AHI quantified via the
under-mattress device compared with
in-laboratory polysomnography.

Most of the participants in the
current study were male, and likely from
moderate to high socioeconomic
backgrounds, self-selected by the
voluntary purchase of this relatively
recently released consumer device.
Therefore, this study sample may not be
representative of the wider general
population and does not resolve the long-
standing issue in sleep research of
underrepresentation of women in such
analyses, and the underlying assumption
that thresholds derived from studies
primarily of men will be valid when
generalized to women. Nonetheless,
overall demographics data for the cohort
were comparable to World Health
Organization and United Nations data. In
addition, OSA prevalence in this study
was calculated from a nonrandomly
selected population that voluntarily
purchased the device, possibly owing to
concerns of snoring or sleep apnea. If so,
reported OSA prevalence may have been
overestimated.

However, despite these potential
limitations, our multinight moderate to
severe OSA prevalence estimates are
consistent with recent single-night
population study estimates of between
20% and 40% (1, 18). The current
multicountry estimates are, however,
more consistent than the previously
reported findings by Benjafield and
colleagues, which ranged from 3% to 40%

(1). This is likely owing to the standardized
approach to data collection in the current
study compared with the global OSA
prevalence estimates derived by Benjafield
and colleagues (1), which relied on a
literature search of 16 population-based
studies and extrapolation to the remaining
countries based on matched demographics
and the associated limitations of single-
night testing.

Misclassification probabilities derived
in this study are also in accordance with
published data, where misclassification
probabilities of a one-night diagnosis
range between 10% and 60% (9–14). The
wide range of misclassification probability
in the literature likely relates, at least in
part, to differences in the selected
populations which vary depending on the
mean AHI, as shown in the current study.
For example, participants with an AHI
close to 15 events per hour showed a
misdiagnosis probability of approximately
50–60%. Overall, most participants with
an AHI between 5 and 35 events/
h demonstrated a misdiagnosis probability
of more than 10%. However, confidence of
AHI probability, even with single-night
testing, increases in people with an AHI of
more than 35 events/h. This knowledge
has immediate implications for current
clinical decision-making.

The current findings highlight the
important new information acquired from
multinight monitoring of sleep and OSA.
This includes increased confidence of
OSA diagnosis, particularly in those with
mild or moderate to severe OSA. These
findings also pave the way for future
prospective large-scale investigations to
gain knowledge of the effects of different
sleep patterns and night-to-night
variability in OSA severity on key health
consequences such as altered mood,
mental health, sleepiness, workplace and
traffic accident, cognitive impairment, and
cardiometabolic risks. Indeed, recent
preliminary findings indicate high
internight variability in OSA severity in
people with atrial fibrillation whereby
nights of increased OSA severity are
associated with increased risk of next-day
atrial fibrillation events (21).

Multinight testing approaches could
also be invaluable for clinical trials both in
terms of assessing eligibility criteria and for
long-termmonitoring of therapeutic
interventions. Determining the potential

differential effects of responses to therapies
in people with versus without major
internight variability in OSA severity may
also be informative. Indeed, standard one-
size-fits-all treatment approaches may not be
appropriate and may explain, at least in part,
the heterogeneity of results from prior
treatment trials (22, 23). Furthermore, the
study findings directly challenge the use of
AHI cutoffs from single-night assessments to
diagnose andmanage OSA given the large
misdiagnosis probability around clinical
thresholds. Several studies have clearly
shown that OSA is multifaceted and that
specific traits and clinical subtypes (e.g.,
co-occurrence of insomnia, sleepiness, sleep
fragmentation, and heart rate surges to
apneic events) can help to identify people at
greater risk of adverse health outcomes
(24–29). Similar to another recent study (9),
this study assumed that the average AHI
across multiple nights is a reliable marker
of OSA severity. However, other metrics
may be more useful to better characterize
OSA severity and its consequences. Thus,
well-designed studies that compare the
predictive performance of multinight
versus single-night metrics of OSA
severity to detect and track key health
outcomes and disease consequences are
required.

The current findings also highlight
the potential utility for noninvasive
multinight assessments of sleep and OSA
in the home to support current clinical
diagnosis and management practices,
which may provide benefits in terms of
cost-effectiveness and greater access to
care over current routine practice.
Nonetheless, our findings do not preclude
the need for gold-standard
polysomnography, particularly in more
complex cases or in people with major or
multiple comorbidities for whom
additional information on hypoxemia and
OSA endotypes may be clinically
indicated and informative (30–32).
Further prospective work in randomly
selected populations is required to
investigate the generalizability of the
current findings.�
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