
RESEARCH ARTICLE

Analyzing Large Gene Expression and
Methylation Data Profiles Using StatBicRM:
Statistical Biclustering-Based Rule Mining
Ujjwal Maulik1, Saurav Mallik2, Anirban Mukhopadhyay3, Sanghamitra Bandyopadhyay2*

1Department of Computer Science and Engineering, Jadavpur University, Kolkata, West Bengal, India,
2Machine Intelligence Unit, Indian Statistical Institute, Kolkata, West Bengal, India, 3Department of
Computer Science and Engineering, University of Kalyani, Kalyani, West Bengal, India

* sanghami@isical.ac.in

Abstract
Microarray and beadchip are two most efficient techniques for measuring gene expression

and methylation data in bioinformatics. Biclustering deals with the simultaneous clustering

of genes and samples. In this article, we propose a computational rule mining framework,

StatBicRM (i.e., statistical biclustering-based rule mining) to identify special type of rules

and potential biomarkers using integrated approaches of statistical and binary inclusion-

maximal biclustering techniques from the biological datasets. At first, a novel statistical

strategy has been utilized to eliminate the insignificant/low-significant/redundant genes in

such way that significance level must satisfy the data distribution property (viz., either nor-

mal distribution or non-normal distribution). The data is then discretized and post-discre-

tized, consecutively. Thereafter, the biclustering technique is applied to identify maximal

frequent closed homogeneous itemsets. Corresponding special type of rules are then ex-

tracted from the selected itemsets. Our proposed rule mining method performs better than

the other rule mining algorithms as it generates maximal frequent closed homogeneous

itemsets instead of frequent itemsets. Thus, it saves elapsed time, and can work on big

dataset. Pathway and Gene Ontology analyses are conducted on the genes of the evolved

rules using David database. Frequency analysis of the genes appearing in the evolved

rules is performed to determine potential biomarkers. Furthermore, we also classify the data

to know how much the evolved rules are able to describe accurately the remaining test (un-

known) data. Subsequently, we also compare the average classification accuracy, and

other related factors with other rule-based classifiers. Statistical significance tests are also

performed for verifying the statistical relevance of the comparative results. Here, each of the

other rule mining methods or rule-based classifiers is also starting with the same post-dis-

cretized data-matrix. Finally, we have also included the integrated analysis of gene expres-

sion and methylation for determining epigenetic effect (viz., effect of methylation) on gene

expression level.
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Introduction
Microarray technique is a useful tool for measuring gene expression data across different ex-
perimental and control samples. Similarly, beadchip is another efficient technique for generat-
ing genome-wide DNAmethylation profiling in infinium II platform. DNAmethylation is an
important epigenetic factor that refers to the addition of a methyl group (-CH3) to position 5
of the cytosine pyrimidine ring or the number 6 nitrogen of the adenine purine ring in genomic
DNA. It modifies, in general decreases, the expression levels of genes. Both the expression and
methylation data matrix [1], [2], [3], [4] are initially organized in such a way that rows and col-
umns indicate genes and samples (conditions), respectively. Statistical analysis [5], [6], [7] is an
important tool to identify differential expression/methylation (i.e., DE/DM) genes across dif-
ferent types of samples.

Association rule mining (ARM) [8], [9] is another useful tool for determining interesting
(expression/methylation) relationships among items (genes) under different conditions (sam-
ples). In this article, we propose a computational rule mining framework, StatBicRM (i.e., sta-
tistical biclustering-based rule mining) to identify special rules of genes and potential
biomarkers from the large gene expression and/or methylation data by integrating a novel sta-
tistical technique and binary inclusion-maximal biclustering technique, consecutively.

In traditional association rule mining algorithms, huge number of rules is coming out as re-
sult. Thus, it is difficult to run them on medium or large sized dataset in which the number of
genes is approximately 250 or more. To solve the problem, in our proposed method, we have
utilized the binary inclusion-maximal biclustering (i.e., BiMax) technique [10] for mining non-
redundant significant itemsets and corresponding special rules. But, the biclustering technique
can work on such dataset whose the number of genes is less than equal to 10,000 approximate-
ly. If the number is greater than 10,000, it fails to work. Thus, for such large dataset, we have to
apply a statistical strategy on the dataset before using the biclustering technique to eliminate
the redundant/insignificant/low-significant genes in such way that significance level must rely
on the data distribution property (viz., either normal distribution or non-normal distribution).
Therefore, first of all, the whole data is passed through different fundamental statistical tech-
niques (viz., removal of genes having low variance and normalization, consecutively).

Now, if there is large number of samples in a dataset, there is no need to use any normality
test on the data before using any statistical test as all statistical tests perform more or less well
for the large number of samples. But, if a dataset has small number of samples, then it has been
observed that different statistical tests perform differently [11]. It is well-known that standard
t-test, Welch’s t-test, Bayes t-test and Pearson’s correlation test are all parametric statistical
tests, and Limma, significant analysis of microarrays (SAM), Wilcoxon’s ranksum test and per-
muted t-test are considered as non-parametric tests. Some non-parametric statistical tests (like
Limma and SAM) are good performers for normally distributed data as well as non-normally
distributed data in all conditions, specially for small sample sizes. But, the performance of SAM
is found to be inconsistent as sometimes it produces good performance while at other times it
fails to work properly for small sample sizes. The performance of permuted t-test is satisfactory
in case of non-normal distributions for all types of sample sizes. But, in case of normal distribu-
tions, it works poorly especially for small sample sizes. For normally distributed data, the per-
formance of Wilcoxon’s ranksum test is much poorer than standard t-test for small sample. On
the other hand, for small sample sizes, the standard t-test produces poor performance for non-
normally distributed data where its performance is better in normally distributed data. Perfor-
mance of Welch’s t-test is poor for both the cases of data distributions for small number of
samples. To summarize, it can be stated that in case of small number of samples, it is better to
test the data distribution in advance [11]. Otherwise p-values may be misleading due to the
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assumption of incorrect distribution. Therefore, we have initially used a well-known normality
test (i.e., Jarque-Bera test [12]) for testing the distribution pattern of each data whether the
data is normally distributed or not. Depending on the patterns, the dataset is then partitioned
into two sub-datasets, where one sub-dataset has all normally distributed data, and remaining
one contains all non-normally distributed data. Now, it is noticed that the parametric tests per-
form better for normally distributed data than for non-normally distributed data on average.
On the other hand, the performance of non-parametric tests is more satisfactory for non-nor-
mally distributed data than for normally distributed data on average [11]. Therefore, after test-
ing for normality, we have run multiple parametric statistical tests (viz., t-test [11], Welch’s t-
test [11], modified Bayes’ t-test by Fox and Dimmic [13], and Pearson’s correlation test (Corr)
[11]) on the normally distributed data to identify differentially expressed/methylated genes
and taken their intersection in order to be certain that whichever genes are identified, are truly
differentially expressed/methylated. Similarly, we have applied multiple non-parametric tests
(viz., Limma [11], significant analysis of microarrays (SAM) [11], Wilcoxon’s ranksum test
(Wcox) [11], and permuted t-test (Perm) [11]) on non-normally distributed data to obtain dif-
ferentially expressed/methylated genes, and taken their intersection in order to be certain that
whichever genes are identified, are truly differentially expressed/methylated. A list is then pre-
pared containing the resulting intersected genes from both the normally distributed dataset
and the non-normally distributed dataset. These statistical methods are utilized to determine
the proper significant non-redundant subset of the differentially expressed/methylated genes
from the original large dataset. Thereafter, discretization and post-discretization are utilized
consecutively on the subset of data for converting it into corresponding boolean matrix.

Now, our next major goal is rule mining. For this purpose, the biclustering technique is di-
rectly applied on the post-discretized data-matrix for determining maximal homogeneous
biclusters of genes as maximal frequent closed homogeneous itemsets (viz.,MFCHOIs) at a
minimum support-value. Here,MFCHOImeans the maximal biclusters that have sets of all ho-
mogeneous class-labels/samples. The rules are then extracted from theMFCHOIs. Each
evolved rule is of special type, i.e., consequent of the rule consists of its class-label only. There-
fore, eachMFCHOI produces a single special rule. Our proposed methodology performs better
than state-of-the-art rule mining algorithms as it generates maximal frequent closed homoge-
neous itemsets (viz.,MFCHOIs) instead of frequent itemsets. Each of the other rule mining
methods is also starting with the same post-discretized data-matrix. Another advantage of it
that as these rules are classification rules, so we do not need to calculate any other rule-interest-
ingness measure (e.g. confidence) except support. Therefore, it saves elapsed time and can
work on big data in which number of genes is high. Pathway and Gene Ontology (GO) analysis
are conducted on the genes of the evolved rules using David database. Furthermore, frequency
analysis of the genes appearing in the evolved rules is performed to determine
potential biomarkers.

Furthermore, it is also needed to know how much the evolved rules are able to describe ac-
curately the remaining test (unknown) data. For this, we need to perform cross-validation and
classification, consecutively on the data to compute average accuracy of the proposed method.
Therefore, the earlier mentioned post-discretized data-matrix is divided into training and test
sets using 4-fold cross-validations (CVs). Thereafter, the biclustering technique is applied on
the training part of the dataset for determiningMFCHOIs at a minimum support-value. The
special rules are then extracted from theMFCHOIs. Here, eachMFCHOI generates a single
rule. We have also estimated 23 rule-interestingness measures [14], [15] of the evolved rules.
We have also added another new measure (viz., the number of satisfiable conditions/samples
of the corresponding bicluster for each evolved rule). We have estimated the rank of each rule
according each of the 24 measures individually using Fractional ranking [16–18]. The final
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ranking of each evolved rule is calculated by average ranking on the resulting fractional rank-
ings of the rule. All the rules are rearranged from best to worst case. We have then assigned
some weight on the final list of rules in such a way that the topmost rule gets the highest weight,
2nd topper gets 2nd highest weight and so on; and also the weight-interval between any two
consecutive ranked rules is same. The classification technique is applied on each test data point
using a majority voting technique through weighted-sum method. A comparative performance
study with existing popular rule-based classifiers is conducted based on the average classifica-
tion accuracy, MCC and related factors of them. Our classification method provides better per-
formance than the existing popular rule-based classifiers. Here, each of the other rule-based
classifiers is also starting with the same post-discretized data-matrix. Statistical significance
tests (viz., one-way ANOVA) [19] are also performed for verifying the statistically relevance of
the comparative results.

As we have mentioned earlier that DNAmethylation is one of the important epigenetic fac-
tors which can change (generally decrease) the expression levels of genes, therefore we have
also performed integrative analysis of gene expression dataset and methylation dataset of com-
bined dataset. As we know that the gene expression is inversely proportional to the methyla-
tion, so inversely correlated genes make sense to highlight the epigenetic effect (e.g.,
methylation) on the expression level. Therefore, we have identified these type of genes having
inverse relationship between their methylation and expression levels.

The rest of the article is organized as follows. In Section Materials and Methods, literature
review and our proposed methodology have been elaborated. Section Results and Discussion
presents source and brief description about the real datasets, and the experimental results and
discussion. Finally, Section Conclusion concludes the article.

Materials and Methods

Literature Review
Association rule mining (ARM) [8], [9] is one of the useful tools for determining interesting
(expression/methylation) relationships among items (genes) under different conditions (sam-
ples). It can provide association rules based on frequent itemsets. A rule (R) can be described as
A) C, where A, C� IM and A

T
C = ϕ. Here, A and C are called as antecedent (i.e., set of

items in LHS of a rule) and consequent (i.e., set of items in RHS of a rule), respectively. The
support of the itemset (IM) is defined as number of transactions in which all items of it appear
together. IM is frequent when its support is greater than any threshold value (i.e., minimum
support). The confidence of the rule is defined as ratio of support of IM to the support of A.
Frequent closed itemset (FCI) is a condensed form of frequent itemsets. FCI is used to
avoid redundancy.

In past decades, traditional Apriori algorithm [20] was most fundamental association rule
mining technique. Apriori uses a bottom-up technique in which frequent subsets are extended
one item at a time for determining each candidate itemset. Groups of the candidate itemsets
are then tested in the data. The method terminates if no further successful extension is found.
The result of Apriori is the sets of rules which determine the occurrence of items in the dataset.
Apriori follows breadth-first search for counting the candidate itemsets. Apriori generates can-
didate itemsets having length k from the itemsets having length k − 1. It discards infrequent
candidate itemsets. The set of candidate itemsets have all frequent itemsets. After extracting all
frequent itemsets, corresponding set of rules is mined from each frequent itemset. As Apriori
generates only frequent itemsets, thus huge number of rules are produced from the itemsets.
Therefore, Apriori can not run on medium or large size of data. It can hardly work up to 100
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genes, approximately. But, if there is more than 100 genes, then it either takes a long time or
fails to run.

After further investigations, different shortcomings have been identified in the traditional
Apriori, like production of high number of frequent itemsets, high running time, problem of
multiple-scan of the dataset etc. Many other ARM techniques have been proposed (e.g.,
AprioriTid [21], Eclat [22], Tao et al. [23], H-mine [24] etc.) to reduce these shortcomings.
But, for medium or large sized dataset (i.e., whose the number of genes is greater than 250 ap-
proximately), either the methods fails to work on the dataset or they take a long time (viz., ap-
proximately 5 hours or more).

For solving the above limitation, in this article, we have used the BiMax biclustering tech-
nique [10] for extracting maximal frequent closed homogeneous itemsets (MFCHOIs) and cor-
responding special rules. It is a method for identifying groups of all-1 biclusters from a boolean
data matrix under certain conditions. The aim of the biclustering is to discover groups of genes
(i.e., all-1 biclusters) having similar behaviour under a subset of conditions (samples). The
biclustering technique extracts the maximal frequent closed homogeneous itemsets (viz.,
MFCHOIs) which are proper subsets of frequent itemsets (FIs); i.e.,MFCHOI� FI. Thus, Our
proposed method produces much less number of significant non-redundant itemsets than the
other rule mining algorithms. But, the biclustering technique can work on the dataset in which
the number of genes is less than equal to 10,000 approximately. If the number is greater than
10,000, it can not work on the dataset. Therefore, for the large dataset, we need to utilize some
statistical strategy on the dataset before applying the biclustering technique for eliminating the
redundant/insignificant/low-significant genes in such a way that significance level must satisfy
the data distribution property (viz., either normal distribution or non-normal distribution).
Hence, here, we have proposed a computational rule mining framework, StatBicRM for pro-
ducing special rules of genes, and potential biomarkers from the large gene expression and/or
methylation dataset by integrating a novel statistical technique and the biclustering
technique, consecutively.

Proposed Method
Our proposed technique, StatBicRM is basically a computational framework for rule mining
where integrated approach of statistical and binary inclusion-maximal biclustering techniques
are utilized in gene expression or methylation dataset (see Fig. 1). Besides this, we have also
performed classification using the proposed method to know how much the evolved rules are
able to describe accurately the remaining test (unknown) data (see Fig. 2).

The steps of StatBicRM is described briefly in the following steps:
Identification of differentially expressed/methylated genes using Statistical tests. Our

proposed method basically depends on statistical analysis. As we know that in case of big gene
expression/methylation dataset, there may exist 10,000 or more genes. Among them, most of
the genes are non-differentially expressed/methylated (i.e., nDE/nDM), and only some of them
are differentially expressed/methylated (i.e., DE/DM). When a rule is generated, then these two
types of genes may occur together in the rule. According to biological scenario, DE/DM genes
can only make sense in a rule relating to specific disease, where the other type of genes is irrele-
vant to the disease. Therefore, we have initially used a novel statistical strategy on the dataset to
identify the set of statistically significant non-redundant DE/DM genes in such way that signifi-
cance level must rely on the data distribution property (viz., either normal distribution or non-
normal distribution). For doing this, at first, the genes which have low variance are eliminated
from the gene expression/methylation dataset. Thereafter, we have used zero-mean normaliza-
tion on the data of these genes to adjust the values measured on different scales to a common

Analyzing Large Gene Expression and Methylation Data Using StatBicRM

PLOSONE | DOI:10.1371/journal.pone.0119448 April 1, 2015 5 / 34



Fig 1. Flowchart of the proposedmethodology (StatBicRM) for the rule mining. Here, the terms TOTALDESETN, TOTALDESETNN, TOTALDESETN+NN
are described in last paragraph of subsection “Identification of differentially expressed/methylated genes using Statistical tests”. For methylation dataset, the
above terms are replaced by TOTALDMSETN, TOTALDMSETNN, TOTALDMSETN+NN, respectively.

doi:10.1371/journal.pone.0119448.g001
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Fig 2. Flowchart of the proposedmethodology (StatBicRM) for the classification. Here, the terms TOTALDESETN, TOTALDESETNN, TOTALDESETN
+NN are described in last paragraph of subsection. For methylation dataset, the above terms are replaced by TOTALDMSETN, TOTALDMSETNN,
TOTALDMSETN+NN, respectively.

doi:10.1371/journal.pone.0119448.g002
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scale. The zero-mean normalization can be stated as:

v0ij ¼
vij � m

s
; ð1Þ

where μ and σ denote mean and standard deviation of the expression/methylation data of a
gene i before normalization respectively; and vij and v0ij refer to the value of i-th gene at j-th

condition before and after normalization, respectively.
It is well known that the parametric statistical tests [25] are appropriate for normally distrib-

uted data, and non-parametric statistical tests [25] are appropriate for non-normally distribut-
ed data, respectively. Therefore, Jarque-Bera normality test [12], [26] is utilized on the
normalized data to determine the pattern of distribution of the data whether it is normally dis-
tributed or non-normally distributed. The Jarque-Bera normality test is defined as follows:

JB ¼ d
6

S2 þ 1

4
; ðK � 3Þ2

� �
; ð2Þ

where d denotes the degree of freedom, S is the skewness of the sample, and K refers to the kur-
tosis of the sample. Hence, depending on the resulting distribution patterns, the whole normal-
ized dataset is partitioned into two sub-datasets, where one sub-dataset has all normally
distributed data, and remaining one contains all non-normally distributed data.

Thereafter, we have applied four parametric statistical tests (viz., t-test [11], Welch’s t-test
[11], modified Bayes’ t-test by Fox and Dimmic [13] in 2006 and Pearson’s correlation test
(Corr) [11]) on the normally distributed data to obtain differentially expressed genes for the
normally distributed sub-dataset. Similarly, four non-parametric tests (viz., Limma [11], Signif-
icant analysis of microarrays (SAM) [11], Wilcoxon ranksum test (Wcox) [11] and permute t-
test (Perm) [11]) are applied on the non-normally distributed data to obtain differentially ex-
pressed genes for the non-normally distributed sub-dataset.

Before further proceeding, we have shortly discussed in the followings about some of the
statistical tests mentioned above.

The “2-sample t-test”makes comparison between means of the two groups with the varia-
tion in the data. From the test statistic, we compute a measure (i.e., p-value). The p-value indi-
cates the probability of observing a t-value as large or larger than the actually observed t-value
where the null hypothesis is given true. By convention, if the p-value of a gene (item) is less
than 5%, then the gene is statistically called as differentially expressed/methylated gene. Now,
suppose, for each gene g, group 1: n1 treated samples, with mean �x1g and standard deviation s1g;

and group 2: n1 controlled samples, with mean �x2g and standard deviation s2g.

t ¼
�x1g � �x2g

� �
seg

: ð3Þ

Here, seg denotes the standard error of the groups’mean, thus,

seg ¼ sPooled �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1

þ 1

n2

r
; ð4Þ

where sPooled is the pooled estimate of the population standard deviation; i.e.,

sPooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þ � s21g þ ðn2 � 1Þ � s22g

df

s
: ð5Þ
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Here, df is degree of freedom of the test. It is stated as df = (n1 + n2 − 2). This strategy is used as-
suming that variance of two groups are equal.

For Welch’s t-test, the variance of two groups are checked whether they are equal to each
other or not. If equal, then use earlier mentioned t-statistic in Equation 3, otherwise use the fol-
lowing t-statistic:

t ¼
�x1g � �x2g

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21g
n1

þ s22g
n2

s : ð6Þ

Here we use unpooled estimates of the population standard deviations.
Pearson’s correlation coefficient (commonly denoted as ρ) between two variables is de-

scribed as the covariance of the two variables divided by the product of their standard devia-
tions, i.e.,

r ¼ covðx; yÞ
sxsy

; ð7Þ

where

covðx; yÞ ¼
Xn1
i¼1

ðxi � �xÞðyi � �yÞ; ð8Þ

where samplesize for the two groups are n1 and n2, respectively (here, n1 = n2). This test can
predict whether two variables are related or not.

The moderated t-statistic in Limma [27] can be demonstrated as:

~t g ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n1

þ 1

n2

r b̂g

~sg
; ð9Þ

where samplesize n = n1 + n2, b̂g and ~s
2
g denote the contrast estimator and posterior sample var-

iance for the gene g respectively. The statistic for calculating contrast estimator for gene g is:

b̂g js2
g � Nðbg ; s

2
gÞ; ð10Þ

where, N is normal distribution, and the statistic for estimating posterior sample variance for
the gene g is:

~s2g ¼
d0s

2
0 þ dgs

2
g

d0 þ dg
: ð11Þ

Where, d0 (<1) and s20 refer to the prior degrees of freedom and variance respectively, and dg
(> 0) and s2g denote the experimental degrees of freedom and the sample variance of a particu-

lar gene g, respectively.
SAM chooses to add a small positive constant s0 (stated as “fudge factor”) to solve small var-

iance problem. The SAM statistic by Tusher et al.(2001) is:

tsam ¼
�x1g � �x2g

� �
seg þ s0

; ð12Þ
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where seg is the standard error of the groups’mean (see Equation 4). Here, sPooled is the pooled
estimate of the population standard deviation (see Equation 5). Here, df is degree of freedom of
the test. It is stated as df = (n1 + n2 − 2).

In Wilcoxon ranksum test, a list of ranks of the gene expression values for each gene is pre-
pared in ascending for each group, and then tests for equality of means of the two ranked sam-
ples. The z-statistic of the test is:

z ¼ ðjT �meanw1j � 0:5Þffiffiffiffiffiffiffiffiffiffi
varw1

p ; ð13Þ

where

T ¼ min
P

ranksgroup1;
P

ranksgroup2
� �

; ð14Þ

meanw1 ¼ n1 � ðn1 þ n2 þ 1Þ=2; ð15Þ

and

varw1 ¼ n2 �meanw1=6: ð16Þ

A permuted t-test is a kind of t-test in which an rearrangement is conducted in the labels on
the observed data-points of each gene (item).

However, as stated earlier that the four parametric statistical tests are applied on the nor-
mally distributed dataset, thus different number of up-regulated and down-regulated genes are
coming out from the different parametric tests. Thereafter, we have performed intersection of
the up-regulated genes to identify set of common up-regulated genes (denoted by UPDESETN)
for the normally distributed sub-dataset. Similarly, we have got set of common down-regulated
genes (denoted by DOWNDESETN). We have then made a list (denoted by TOTALDESETN)
containing all the common up-regulated genes and all the common down-regulated genes; i.e.,
TOTALDESETN = UPDESETN + DOWNDESETN. Similarly, as stated earlier that the four non-
parametric statistical tests are applied on the non-normally distributed dataset, thus different
number of up-regulated and down-regulated genes are coming out from the different non-
parametric tests. Then, we have made intersection of the up-regulated genes to identify set of
common up-regulated genes (denoted by UPDESETNN) for the non-normally distributed sub-
dataset. Similarly, we have got set of common down-regulated genes (denoted by DOWNDE-
SETNN). We have then made another list (denoted by TOTALDESETNN) containing all the
common up-regulated genes and all the common down-regulated genes; i.e., TOTALDESETNN

= UPDESETNN + DOWNDESETNN.
Finally, we have produced a final list (denoted by TOTALDESET(N+NN)) containing all the

common up-regulated and down-regulated genes from the normally distributed and non-nor-
mally distributed datasets; i.e., TOTALDESET(N+NN) = TOTALDESETN + TOTALDESETNN.
Hence, the final list of genes (i.e., TOTALDESET(N+NN)) are utilized in the next step. Similar
steps are performed to obtainHYPERDMSETN, HYPODMSETN, TOTALDMSETN,
HYPERDMSETNN,HYPODMSETNN, TOTALDMSETNN and TOTALDMSET(N+NN) instead of
UPDESETN, DOWNDESETN, TOTALDESETN, UPDESETNN, DOWNDESETNN, TOTALDE-
SETNN, TOTALDESET(N+NN) respectively.

Discretization and Post-discretization. Suppose, the data matrix of the resulting list of
genes, TOTALDESET(N+NN) is denoted by I. Now, first of all, I whose rows denote genes and
columns denote samples, is transposed. Suppose, PIT is the transposed matrix. As the PIT
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matrix is already normalized by zero-mean normalization, therefore the following step is uti-
lized for binary discretization of the matrix:

IT ¼
1; if PITij > 0;

0; if PITij < 0;
ð17Þ

8<
:

where PITij denotes the expression/methylation value of i-th row and j-th column (1� i�m,
1� j� n),m and n are number of rows (samples) and number of columns (genes) of PITij ma-
trix, respectively, and IT is the resulting discretized matrix. Now, let us assume that in the dis-
cretized boolean matrix, a up-regulated gene and a down-regulated gene are denoted by DEup
and DEdown, respectively. In the matrix IT, ‘1’ and ‘0’ refer to presence of up-regulated gene
(DEup), and presence of down-regulated gene (DEdown), respectively (see part (b) of Fig. 3).
After discretization, we will apply Bimax biclustering for finding all-1 biclusters. As the Bimax
biclustering rectifies only ‘1’, not ‘0’, thus we need to do post-discretization in such way where
‘1’ will represent both DEup and DEdown properties. Therefore, after discretization, number of
columns is doubled where the first half is a domain for DEup property, and remaining half is
another domain for DEdown property (see part (c) of Fig. 3). E.g., the column denoted by g1 in
part (b) of Fig. 3 is divided into the two columns denoted by g1+ and g1− in part (c) of Fig. 3,
where for the g1+ column, ‘1’ denotes presence of up-regulated gene (DEup) and ‘0’ denotes ab-
sence of up-regulated gene (* DEup), and for the g1− column, ‘1’ denotes presence of down-
regulated gene (DEdown) and ‘0’ denotes absence of down-regulated gene (* DEdown). Hence,
for methylation data, DMhyper and DMhypo are used instead of DEup and DEdown, respectively.
Note that in this paper, ‘+’ and ‘-’ denote up-regulation/hyper-methylation and down-regula-
tion/hypo-methylation, respectively.

Dividing whole data into training and test sets. Let us assume that the post-discretized
matrix is denoted by ITb. For classification of the matrix ITb, we have applied 4-fold cross-vali-
dations (CVs) on the matrix to divide it into test and training data, where one-fold of ITb will
be used as test set and remaining three fold will be considered as training set. This procedure
will be repeated for four times as it is 4-fold CV.

Finding maximal biclusters and extracting special rules. We have transposed the train-
ing boolean dataset, and applied Bimax biclustering to identify maximal frequent closed homo-
geneous itemsets (MFCHOIs). Before further proceeding, the fundamental method of BiMax
biclustering is discussed in short.

Suppose, a boolean matrix e has size of n ×m, where n is number of genes andm is the num-
ber of samples. A cell eij is 1 if gene i expresses differentially in the sample/condition j and oth-
erwise, eij is 0. A bicluster (G, S) is a subset of genes G� {1, 2, . . ., n} which express differently
together under a subset of samples S� {1, 2, . . .,m}; i.e., the pair (G, S) refers to a subset of the
matrix e whose all elements have 1. The biclusters which are inclusion-maximal (i.e., the biclus-
ters that are not entirely part of any other bicluster), are only interesting. The pair (G, S) 2
2{1,2,. . .,n} × 2{1,2,. . .,m} can be stated as a bicluster of the type inclusion-maximal [10] if and only
if (i) eij = 1, 8i�G, j�S, and (ii) ∄ (G0, S0) 2 2{1,2,. . .,n} × 2{1,2,. . .,m} with (a) eij = 1, 8i0 2 G0, j0 2 S0

and (b) G� G0^S� S0^(G0, S0) 6¼ (G, S). When there is no proper superset of an itemset have
been found at the same support value, then the itemset is called closed itemset. Finding the set
of frequent itemsets is totally equivalent to get a set of all-1 biclusters each having at least num-
ber of conditions/samples (i.e., satisfying minimum support).

In our experiment, for the biclustering, we have set a fixed minimum cutoff of items/genes
(viz., 2), and different minimum cutoffs of sample/condition for determining itemsets at differ-
ent minimum support of each rule. The BiMax biclustering can generate all maximal biclusters.
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Fig 3. An example of generating special rules from data matrix of the differentially expressed genes.Here, up-regulation (i.e., ‘+’) and down-regulation
(‘-’) are denoted by ‘1’ and ‘0’ in (b), and red and green colors in (c), respectively. Here, str and snr denote experimental/diseased/treated and control/normal
samples respectively.

doi:10.1371/journal.pone.0119448.g003
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The items/genes of maximal biclusters represent a (maximal) closed itemset. Thus, all extracted
biclusters that are satisfying minimum support condition, produce the set of (maximal) fre-
quent closed itemsets with their class-labels (i.e., conditions/types of samples). Thereby, we
have to filter the biclusters depending on their conditions. We have selected such (maximal)
biclusters which have the group of homogeneous (non-contradictory) conditions. In other
words, we have to identify maximal frequent closed homogeneous itemsets (MFCHOIs). E.g.,
Bicluster 1 is aMFCHOI which has three genes g1+, g2− and g3+, and two homogeneous con-
ditions/samples str1 and str3 (presented in part (d) of Fig. 3). Similarly, Bicluster 2 is another
MFCHOI which has three genes g1+, g2+ and g3−, and two homogeneous conditions/samples
snr1 and snr3 (presented in part (e) of Fig. 3). Hence, we have omitted the biclusters that have
the group of heterogeneous (contradictory) conditions. E.g., Bicluster 3 is such type of hetero-
geneous (contradictory) bicluster which has three genes g1−, g2+ and g3+, and two heteroge-
neous conditions str2 and snr2 (presented in part (f) of Fig. 3).

From each selected bicluster of genes, we can extract an association rule. Each resulting rule
must be of special type, i.e., consequent of the rule consists of its class-label (i.e., either treated/
diseased/experimental class-label or normal/control class-label) only. E.g., from the Bicluster 1
(depicted in part (d) of Fig. 3), rule id 1 (i.e., {g1+, g2−, g3+}) disease) is produced. It states
that if both of gene1 and gene3 are up-regulated/hyper-methylated and gene2 is down-regulat-
ed/hypo-methylated simultaneously, then ‘disease’ occurs (see part (d) and part (g).(i) of
Fig. 3). Similarly, rule id 2 (i.e., {g1+, g2+, g3−}) normal) is generated from the Bicluster 2
(see part (e) and part (g).(ii) of Fig. 3).

Ranking of rules. We have evaluated each evolved rule based on 24 rule-interestingness
measures. Support, confidence, coverage, prevalance, sensitivity (or, recall), specificity, accura-
cy, lift (or, interest), leverage, added value, relative risk, Jaccard, Yules’ Q, klosgen, Laplace cor-
rection, Gini index, two-way support, linear correlation coefficient (or, ϕ-coefficient), cosine,
least contradiction, Zhang, liverage2 (or, Piatetsky-Shapiro) and kappa [14, 15] are already in-
cluded among the 24 measures (see S1 Text). The last and novel measure is the number of satis-
fiable conditions/samples to each evolved rule. E.g., according to part (g).(i) of Fig. 3, the value
of the measure of rule id 1 (i.e., {g1+, g2−, g3+}) disease) is 2 as its corresponding bicluster
(in part (d) of Fig. 3) has two conditions (str1 and str3). Similarly, according to part (g).(ii) of
Fig. 3, the value of the measure of rule id 2 (i.e., {g1+, g2+, g3−}) normal) is 2. The rank of the
rule is proportional to the value of the measure of it (i.e., if a rule that has higher value of the
measure than other rule, then the rank of the rule will be better than the second rule).

Thereafter, the evolved rules are ranked according to each of the 24 rule-interestingness
measures individually using Fractional ranking [16–18]. In the fraction ranking, items which
compare equal, hold the same rank. This rank is the mean of ranking numbers that are received
in ordinal ranking. E.g., suppose, a data set is {1 2 2}. Here, only two different numbers are
available, so there should be two different ranks. If 2 and 2 are actually different numbers, then
they should hold ranks 2 and 3, respectively. As these two numbers are same, thus we should
calculate their rank by making the average of their ranks as follows: (2+3)/2 = 2.5; therefore,
the fractional ranks will be: 1 2.5 2.5.

Hence, the final ranking of each rule is determined by average ranking on the resulting frac-
tional rankings of the rule. The rules are then rearranged in ascending order (i.e., from best to
worst rank).

Assigning weights to the rules w.r.t. their final ranking. For classification, we have to
apply a majority voting technique on each test data point to identify its class-label through
weighted-sum method. Thus, we firstly assign some weight on the final list of rules in such a
way that the topmost rule gets the highest weight, 2nd topper gets 2nd highest weight and so
on. The weight of the first ranked rule is always 1. The ranges of weight lie in between 0 and 1.
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The weight of each rule (denoted by wj, 1� j� p) is estimated from a function of its final rank
of the rule (denoted by rj) and the total number of rules (viz., p) as described below:

wj ¼
1

p
� ðp� ðrj � 1ÞÞ: ð18Þ

Here, the weight-interval between any two consecutive ranked rules is same. Thus, the calculat-
ed weights of the rules are normalized using zero-mean normalization (in Equation 1).

Majority voting and classification. Consider one test data point (ts). For determining of
the predicted class-label of it, we have applied ‘majority voting’ technique. At first, we have
identified the rules whose all the items (genes) in their antecedent sides exist in ts. The weights
of the rules (i.e., trRts number of rules) which have only the class-label ‘disease’ in their conse-
quent sides are then summed up (viz.,Ws_trts). Similar summation (viz.,Ws_nrts) is performed
for the rules (i.e., nrRts number of rules) having only the class-label ‘normal’ in their conse-
quent sides. The two weighted-sum are then compared, and the class-label with higher weight-
ed-sum becomes the predicted class-label of ts (viz., PredClsts). But, if both the weighted-sum
are equal to each other, then the class-label of the top rule which satisfies ts (i.e., ClsTopRts), be-
comes the predicted class-label of it. In case, if there is no such rule which satisfies that ts, then
the class-label of the rule which satisfies maximum number of test points (i.e., ClsR0) becomes
the predicted class-label of it. An example of majority voting technique is presented in Fig. 4.
Repeat this step for other test points. This process is then repeated 4 times for 4 sub-matrices
of the test data as here 4-fold CV is used. Using this technique, we have calculated true positive
(TP), true negative (TN), false positive (FP), false negative (FN), sensitivity [7], specificity [7],
accuracy [7] and Mathews correlation coefficient (MCC) [7] for the proposed classification.
Sensitivity, specificity, accuracy and MCC are defined in the followings, respectively:

sensitivity ¼ TP
ðTP þ FNÞ ; ð19Þ

specificity ¼ TN
ðFP þ TNÞ ; ð20Þ

accuracy ¼ ðTP þ TNÞ
ðTP þ FP þ TN þ FNÞ ; ð21Þ

MCC ¼ ðTP � TNÞ � ðFP � FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp : ð22Þ

we have repeated the 4-fold CV for 10 times, and then their average sensitivity, average speci-
ficity, average accuracy, and average MCC are calculated with the standard deviations based on
the results of cross-validations. Thereafter, a comparative performance analysis has been con-
ducted between our proposed method (i.e., Prop) and other popular rule-based classifiers (i.e.,
ConjunctiveRule (CJR) [28], DecisionTable (DT) [28], JRip [28], OneR [28], PART [28] and
Ridor [28] implemented in Weka 3.6 software) based on their average sensitivity, average spec-
ificity, average accuracy, and average MCC. Note that the other rule-based classifiers are also
started with the same post-discretized matrix (i.e., ITb). We have also performed significance
test (viz., One-way Anova) on the accuracies of the classifiers pairwise to know the level of sig-
nificance (i.e., p-value) of the test for each (pairwise) comparison.

The above steps have been described the proposed methodology for the classification.
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Performance comparison with other rule mining algorithms. For the purpose of rule
mining only, the whole post-discretized data matrix (i.e., ITb) is used directly as a input of the
Bimax biclustering. In this case, we have not performed any cross-validation since there is no
need to use classification. Hence, we have compared our proposed rule mining algorithms with
the other existing popular rule mining algorithms (i.e., AprioriTid [21], Eclat [22], Tao et al.
[23] and H-mine [24]). It should be noted that same input binary matrix (i.e., ITb) is utilized
for the other rule mining algorithms.

Biological significance of evolved rules, and Biomarker identification. As all the real
datasets are microarray/beadchip (biological) datasets, so the evolved top rules should have bi-
ological significance. The information about the relation between the genes and any disease
can be determined from pathway and Gene Ontology (GO) analyses. If all the genes (except
the class-label) of a rule occur together in any pathway/GO-term and if the occurrence is statis-
tically significant (i.e., p-value is less than 0.05), then the rule becomes the (statistically) biolog-
ically significant rule. If the pathway/GO-term relates to the corresponding disease, then the
rule becomes important for diagnosing the disease. Therefore, KEGG pathway and GO analy-
ses have been performed on the genes of the evolved rules using David Database to identify top
significant rules with their involved KEGG pathways or GO-terms. The top rules occupied in a
significant number of pathways/GOs are obtained. Frequency of occurrence of the genes in the
evolved rules for experimental/treated class is performed to identify potential biomarkers.

Results and Discussion
In this section, at first, we describe the real datasets that are utilized to verify the performance
of our proposed method (i.e., StatBicRM). Thereafter, we have performed experiments on the
real datasets as well as some artificial datasets. The artificial datasets are made by taking ran-
dom boolean values. Hence, some related discussions are also included at the end of
this section.

Real Datasets
We have used three real datasets. The datasets are described in Table 1.

Fig 4. An example of classification of evolved rules by the majority voting using weighted-sum. Here, ‘r’ and ‘w’ denote rank and weight of the rule
(computed by Equation 18), respectively. Tickmark/crossmark in ‘Q’ column states that test-point (ts) is satisfied/non-satisfied by the corresponding rule.

doi:10.1371/journal.pone.0119448.g004
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Experimental Results and Discussion
As stated in section Materials and Methods, we have initially applied the statistical filtering
strategy (viz., removal of genes having low variance, normalization, normality test, different
parametric/non-parametric tests, consecutively) on the (three) real datasets. For the combined
dataset (GSE31699), we have firstly identified 13072 common genes that have both expression
data (in Dataset 2) as well as methylation data (in Dataset 3). Thereafter, we have found that
18228, 10236 and 8176 genes are following normal distribution, and 24222, 2836 and 4896
genes don’t follow normal distribution for the three datasets, respectively. For DS1, we have
identified a total of 1160 differentially expressed genes (viz., jTOTALDESET(N+NN)j = 1160) in-
cluding jUPDESETNj = 344, jUPDESETNNj = 93, jDOWNDESETNj = 403 and
jDOWNDESETNNj = 320 at 0.0001 p-value cutoff. Table 2 shows this. Similarly, for DS2, we
have determined a total of 292 differentially expressed genes (viz., jTOTALDESET(N+NN)j =
292) including jUPDESETNj = 54, jUPDESETNNj = 86, jDOWNDESETNj = 82 and
jDOWNDESETNNj = 70 at 0.05 p-value cutoff. Table 3 represents this. For DS3, we have identi-
fied a total of 536 differentially methylated genes (viz., jTOTALDMSET(N+NN)j = 536) including
jHYPERDMSETNj = 74, jHYPERDMSETNNj = 181, jHYPODMSETNj = 118 and
jHYPODMSETNNj = 163 at 0.05 p-value cutoff. Table 4 represents this. These genes (i.e.,
jTOTALDESET(N+NN)j or jTOTALDMSET(N+NN)j) are used in the next. Hence, clustergram of

Table 1. Information of used Real Datasets (DS).

DS
id

Dataset information

DS1 Expression dataset (NCBI ref. id:- GSE10245) of lung cancer subtypes [31], having 40
adenocarcinoma (AC) samples, and 18 squamous cell carcinoma (SCC) samples.

DS2 Expression dataset (NCBI ref. id:- GSE31699) of Uterine Leiomyoma [37], belonging 16 Uterine
Leiomyoma tumor (UL) samples and 16 normal myometrial (MM) samples.

DS3 Methylation dataset (NCBI ref. id:- GSE31699) of Uterine Leiomyoma having the 18 UL samples
and 18 MM samples.

doi:10.1371/journal.pone.0119448.t001

Table 2. Number of differentially expressed genes by different statistical tests for Dataset 1, where #Gup, #Gdw denote up and down-regulated
genes, respectively. Here, Pearson’s correlation test can not be used as the number of experimental samples is not equal to the number of control
samples.

parametric tests at 0.0001 p-value cutoff non-parametric tests at 0.0001 p-value cutoff

t-test Welch’s t-test Bayes’ t-test common Limma SAM Wilcoxon permute common

#Gup 616 586 376 344 115 136 188 176 93

#Gdw 619 642 481 403 325 387 615 582 320

doi:10.1371/journal.pone.0119448.t002

Table 3. Number of differentially expressed genes by different statistical tests for Dataset 2, where #Gup, #Gdw denote up and down-regulated
genes, respectively.

parametric tests at 0.05 p-value cutoff non-parametric tests at 0.05 p-value cutoff

t-test Welch’s t-test Bayes t-test Pearson’s correlation common Limma SAM Wilcoxon permute common

#Gup 391 391 329 62 54 86 86 86 86 86

#Gdw 576 576 491 97 82 70 70 70 70 70

doi:10.1371/journal.pone.0119448.t003
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the differentially expressed genes for Dataset 1 is shown in Fig. 5. A volcanoplot which is used
for identifying up-regulated genes as well as down-regulated genes using SAM for Dataset 1, is
presented in Fig. 6.

Furthermore, we have prepared an artificial large microarray dataset (denoted by “Dataset
4” or “DS4”) having large number of experimental samples as well as large number of control
samples (viz., 100 experimental samples and 100 control samples) and 30000 genes. We have
included this dataset into our experiment for validating the performance of classifiers for large
number of samples. We have applied our proposed method on the DS4 like DS1, DS2 and DS3.
For the DS4, we have obtained that 5348 genes are following normal distribution, and remain-
ing 24462 genes do not follow normal distribution. Thereafter, we have determined a total of
942 differentially expressed genes (viz., jTOTALDESET(N+NN)j = 942) including jUPDESETNj =
51, jUPDESETNNj = 532, jDOWNDESETNj = 23 and jDOWNDESETNNj = 336 at 0.05 p-value
cutoff. Table 5 shows this.

As stated in section Materials and Methods, after statistical testing analysis, we have applied
discretization, post-discretization, dividing the data into training and test sets using 4-fold
CVs, findingMFCHOIs (i.e., maximal biclusters), and extracting the special rules, consecutive-
ly. E.g., a bicluster of a few DEup genes (viz., DISP1, DNALI1, RGN, RPL13P5, FBXO2 etc.)
and DEdown genes (viz., KIF11, CENPN, CENPW, DTL, UHRF1, CDCA4 etc.) across a set of
two homogeneous conditions (i.e., AC-sample11/AC11 and AC-sample13/AC13) for DS1 is
presented in Fig. 7 graphically. After extracting rules, ranking of them, weight assigning, major-
ity voting and two-class classification are performed, consecutively (see section Materials and
Methods). In our experiment, we have run 4-fold CVs for 10 times for each dataset. Thereafter,
we have calculated average sensitivity, average specificity, average accuracy and average MCC,
and finally compared these with the existing rule-based classifiers (presented in Table 6 for
DS1, Table 7 for DS2, Table 8 for DS3, and Table 9 for DS4). For each of the four datasets, our
proposed method provides the better average accuracy and average MCC than the other six
classifiers. It provides 95%, 75.94%, 88.61% and 83.77% accuracies, and 0.88, 0.58, 0.77 and
0.64 MCCs for the four datasets, respectively. For DS1, it provides the best average sensitivity
(viz., 99.25%) and average specificity (viz., 85.55%). For DS2, it shows the best average sensitiv-
ity (i.e., 98.13%), but its average specificity (i.e., 53.75%) is less than the other classifiers. Simi-
larly, for DS3, it produces the best average sensitivity (i.e., 90.56%), but its average specificity
(i.e., 86.67%) is less than some of the four classifiers (viz., PART, JRip, ConjunctiveRule and
OneR). For DS4, it produces the best average sensitivity (i.e., 84.13%), but its average specificity
(i.e., 83.62%) is less than the “PART” classifier. Fig. 8 shows the comparison of the dataset-wise
average accuracies and average MCCs, respectively among our proposed method and the other
rule-based classifiers for the four datasets. Thereafter, a statistical significance test (viz., One-
way Anova) is performed in between our method and each of the other classifiers pairwise. We
have obtained significant p-values for all the pairwise comparisons (i.e., statistical tests) for
DS1 and DS2, whereas we have identified that five among the six comparisons are statistically

Table 4. Number of differentially methylated genes by different statistical tests for Dataset 3, where #Ghyper and #Ghypo refer to hyper and hypo-
methylated genes, respectively.

parametric tests at 0.05 p-value cutoff non-parametric tests at 0.05 p-value cutoff

t-test Welch’s t-test Bayes t-test Pearson’s correlation common Limma SAM Wilcoxon permute common

#Ghyper 652 652 507 87 74 185 185 181 186 181

#Ghypo 676 676 600 129 118 165 165 163 166 163

doi:10.1371/journal.pone.0119448.t004
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significant for DS3 as well as DS4 (see Fig. 9). The significance level (i.e., p-value) of each com-
parison is presented in Table 10.

For DS1, we have obtained a set of rules, where some of these are of cancer subtype AC, and
remaining of these are of cancer subtype SCC (i.e., these rules have ‘class = AC’/‘class = SCC’ in
their consequent parts). We have produced a list of top frequent genes occurring in the evolved
rules of each cancer subtype. We have identified ‘CENPA-’ as top frequent gene for cancer sub-
type AC. But, ‘CENPA-’ is not found in any evolved rule of cancer subtype SCC. Therefore, it is
important for cancer subtype AC. Some literature evidences have been found in [29, 30] related
to it. (According to the dataset, fold change of CENPA gene is 0.791 which indicates down-reg-
ulation of it as this value is less than 1; and p-values of it are 5.00E-05 in SAM, 2.53E-05 in

Fig 5. The clustergram of the common differentially expressed genes (by different statistical tests) for DS1. Here, red colour denotes up-regulation of
genes across the specific samples/conditions, and green colour denotes down-regulation of genes across the specific samples/conditions.

doi:10.1371/journal.pone.0119448.g005
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Limma, 7.46E-07 in permuted t-test and 8.42E-06 in Wilcoxon ranksum test which indicate
that it is a differentially expressed gene.) Besides that, we have also found literature-match of
TTK in [31]. CENPN, KIF2C, EZH2 genes are also found in literatures [32, 33] related to AC.
Similarly, ‘SHROOM3-’ is the top frequent gene for SCC. In DS2, we have identified a set of
rules, where some of them are of UL class (i.e., tumor class), and remaining rules of them are of
MM class (i.e., normal class). We have found some literature documentations about PRL in
[34], TRPC6 in [35], and IGF2 in [36]. Similarly, for DS3, we have identified some set of rules,
where some of them are of UL class (i.e., tumor class), and remaining rules of them are ofMM
class (i.e., normal class). The top 10 frequent genes for the two classes for the datasets are
shown in Table 11, respectively. Some evidence of PLP1 in forming the tumor in [37] and simi-
lar documentary support of TRPM2 in forming the tumor are found in [38]. In Fig. 10 depicts
two examples of how significant biomarkers are identified for each class-label for each
real dataset.

Fig 6. Volcanoplot for identifying differential up and down-regulated genes from Dataset 1 by SAM.

doi:10.1371/journal.pone.0119448.g006

Table 5. Number of differentially expressed genes by different statistical tests for the artificial Dataset 4, where #Gup, #Gdown denote up-regulated
and down-regulated genes, respectively.

parametric tests at 0.05 p-value cutoff non-parametric tests at 0.05 p-value cutoff

t-test Welch’s t-test Bayes’ t-test Pearson’s correlation common Limma SAM Wilcoxon permute common

#Gup 90 89 87 56 51 570 573 594 575 532

#Gdw 29 29 28 23 23 342 342 365 373 336

doi:10.1371/journal.pone.0119448.t005
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Fig 7. A graphical representation of the gene expression of a maximal homogeneous bicluster (i.e., aMFCHOI) over different samples.

doi:10.1371/journal.pone.0119448.g007

Table 6. Comparative performance analysis of the rule-based classifiers on Dataset 1, respectively (at 4-fold CVs repeating for 10 times); where
bold font denotes the highest value for each column.

Rule-based classifier Average sensitivity[%] (s.d.) Average specificity[%] (s.d.) Average accuracy[%] (s.d.) Average MCC (s.d.)

Proposed 99.25 (1.21) 85.55 (2.87) 95 (1.51) 0.88 (0.035)

ConjunctiveRule 88.25 (6.46) 78.33 (15.81) 85.18 (4.00) 0.67 (0.086)

DecisionTable 94.75 (2.19) 77.22 (12.13) 89.31 (2.27) 0.75 (0.057)

JRip 94.25 (1.21) 79.45 (6.95) 89.66(1.41) 0.75 (0.037)

OneR 92.5 (2.04) 78.33 (8.05) 88.11 (1.51) 0.72 (0.039)

PART 92 (2.58) 83.89 (4.86) 89.48 (3.19) 0.76 (0.074)

Ridor 91.75 (5.90) 79.44 (17.18) 87.93 (2.82) 0.73 (0.072)

doi:10.1371/journal.pone.0119448.t006
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Table 7. Comparative performance analysis of the rule-based classifiers on Dataset 2, respectively (at 4-fold CVs repeating for 10 times); where
bold font denotes the highest value for each column.

Rule-based classifier Average sensitivity[%] (s.d.) Average specificity[%] (s.d.) Average accuracy[%] (s.d.) Average MCC (s.d.)

Proposed 98.13 (3.02) 53.75 (3.23) 75.94 (1.51) 0.58 (0.037)

ConjunctiveRule 71.88 (8.46) 63.75 (8.23) 67.81 (3.91) 0.36 (0.081)

DecisionTable 76.88 (3.02) 62.5 (5.10) 69.69 (1.51) 0.40 (0.027)

JRip 70.63 (3.02) 62.5 (5.10) 66.56 (3.92) 0.33 (0.080)

OneR 73.13 (3.02) 58.75 (10.70) 65.93 (4.53) 0.33 (0.087)

PART 66.25 (6.04) 64.38 (7.83) 65.31 (2.74) 0.31 (0.057)

Ridor 76.88 (3.02) 58.75 (3.23) 67.81 (1.51) 0.37 (0.031)

doi:10.1371/journal.pone.0119448.t007

Table 8. Comparative performance analysis of the rule-based classifiers on Dataset 3, respectively (at 4-fold CVs repeating for 10 times); where
bold font denotes the highest value for each column.

Rule-based classifier Average sensitivity[%] (s.d.) Average specificity[%] (s.d.) Average accuracy[%] (s.d.) Average MCC (s.d.)

Proposed 90.56 (2.68) 86.67 (2.87) 88.61 (2.43) 0.77 (0.048)

ConjunctiveRule 70.56 (2.68) 90.56 (6.95) 80.56 (2.27) 0.63 (0.062)

DecisionTable 84.44 (3.51) 82.78 (4.86) 83.61 (0.88) 0.68 (0.019)

JRip 75.56 (2.87) 92.78 (2.68) 84.16 (1.34) 0.69 (0.027)

OneR 76.67 (7.31) 88.33 (4.86) 82.50 (1.33) 0.66 (0.014)

PART 76.11 (13.11) 94.44 (0.00)* 85.28 (6.55) 0.72 (0.113)

Ridor 83.33 (4.54) 80.00 (9.51) 81.67 (2.68) 0.64 (0.048)

* This standard deviation of specificity is coming to be zero. On investigation, we have identified a particular datapoint belonging to normal class in

Dataset 3 for which the “PART” classifier as well as the other classifiers including the proposed one are producing always false positive result.

doi:10.1371/journal.pone.0119448.t008

Table 9. Comparative performance analysis of the rule-based classifiers on Dataset 4, respectively (at 4-fold CVs repeating for 10 times); where
bold font denotes the highest value for each column.

Rule-based classifier Average sensitivity[%] (s.d.) Average specificity[%] (s.d.) Average accuracy[%] (s.d.) Average MCC (s.d.)

Proposed 84.13 (2.37) 83.62 (0.37) 83.77 (0.67) 0.64 (0.02)

ConjunctiveRule 83.47 (2.32) 82.12 (0.98) 82.56 (1.22) 0.62 (0.04)

DecisionTable 84.06 (3.82) 81.32 (0.78) 82.78 (0.87) 0.63 (0.02)

JRip 79.12 (2.89) 83.37 (0.97) 81.55 (1.37) 0.59 (0.04)

OneR 79.63 (3.48) 81.75 (1.48) 81.10 (1.78) 0.57 (0.06)

PART 80.95 (2.96) 83.97 (0.93) 81.86 (1.27) 0.60 (0.04)

Ridor 84.07 (2.57) 82.56 (1.05) 83.17 (1.42) 0.63 (0.05)

doi:10.1371/journal.pone.0119448.t009
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Besides that, KEGG pathway and GO analysis have been performed on the genes of the
evolved rules for the three real datasets using David Database. The significant KEGG pathways,
GO:BP, GO:CC and GO:MF terms are presented in Table 12. Some top important rules w.r.t.
their existing KEGG pathways, GO:BPs, GO:CCs and GO:MFs, individually are shown in
Table 13, Table 14 and Table 15 for the three real datasets (i.e., DS1, DS2 and DS3), respective-
ly. Here, an important rule w.r.t. their existing pathways/GO-terms refers to such a rule whose
all the genes (i.e., all genes of consequent part) involve together in maximum number of path-
ways/GO-terms. The details about the significant KEGG pathways, GO:BPs, GO:CCs and GO:
MFs are presented in S1 File, S2 File and S3 File for the three datasets, respectively. S2 Text
shows the top 15 rules from the three real datasets.

Furthermore, we have compared our proposed rule mining algorithm with the existing
ARM algorithms (viz., Traditional Apriori, AprioriTid, Eclat, Tao et al. and H-mine). But,
since the number of genes of the datasets are high (i.e., greater than 250), and the other tech-
niques generate frequent itemsets, therefore those methods fails to work on DS1 and DS4, and
take long time to execute on DS2 and DS3 (i.e., nearly 5 hours or more) whereas our method
can work efficiently on them as our method extracts maximal frequent closed homogeneous
itemsets (MFCHOIs) using the biclustering technique. Therefore, we have made two artificial
binary datasets which are prepared by taking random binary digits (namely 1 or 0). One dataset
(denoted by ArDS5) among them has 100 genes and 60 samples (i.e., a total of 30 experimental
samples and 30 control samples), and other dataset (denoted by ArDS6) includes 200 genes
and 60 samples (i.e., a total of 30 experimental samples and 30 control samples). Thereafter, we
have applied the binary matrix as input of the BiMax biclustering. For each of ArDS5 and

Fig 8. Barcharts: (a) comparison of dataset-wise average accuracies, and (b) comparison of dataset-wise average MCCs, among our proposed
and other existing rule-based classifiers for the four datasets.

doi:10.1371/journal.pone.0119448.g008
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ArDS6, we have observed that our proposed method produces much less number of significant
non-redundant itemsets than the other rule mining algorithms as our proposed method deter-
mines the maximal frequent closed homogeneous itemsets (MFCHOIs) which are proper sub-
sets of frequent itemsets (FIs); i.e.,MFCHOI� FI. Furthermore, as a single rule is extracted
from a single significant itemset (i.e.,MFCHOI) in our method, thus the number of evolved
rules are same with the number of significant itemsets (i.e.,MFCHOIs). Therefore, the evolved
rules in our method are much less in number than the other methods. Thus, elapsed time of
our method is much less than the other methods; and it can work on big/medium data (i.e., the
data having more than nearly 250 genes). Fig. 11 presents the comparison of the number of

Fig 9. Boxplots of significance tests (i.e., one-way Anova) for identifying level of significances (i.e., p-values) of accuracies between the proposed
and other rule-based classifiers (pairwise) for Dataset 1 [in (a).(i-vi)], Dataset 2 [in (b).(i-vi)], Dataset 3 [in (c).(i-vi)] and Dataset 4 [in (d).(i-vi)]; where
(i) proposed vs ConjunctiveRule, (ii) proposed vs DecisionTable, (iii) proposed vs JRip, (iv) proposed vs OneR, (v) proposed vs PART and (vi)
proposed vs Ridor; (here vertical axis denotes the accuracy of the classifier).

doi:10.1371/journal.pone.0119448.g009
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significant non-redundant itemsets among our proposed method (i.e., StatBicRM) and the
other methods for details. S3 Text shows the comparative study about the number of evolved
rules as well as total elapsed time among our proposed rule mining method and the other rule
mining methods for the two artificial binary datasets (i.e., ArDS5 and ArDS6).

Integrative analysis of Gene Expression dataset and Methylation dataset
For integrative analysis of gene expression dataset and methylation dataset, we have to consider
only matched samples and matched genes from both the datasets (having same dataset Refer-
ence ID). Dataset 2 (NCBI Ref. ID:- GSE31699, gene expression dataset) and Dataset 3 (NCBI
Ref. ID:- GSE31699, methylation dataset) have 13072 common genes (i.e., combined dataset).
For integrative analysis of the combined dataset, at first we have identified 16 matched samples
from the combined dataset. Thereafter, we have used the normality test on the matched expres-
sion dataset as well as matched methylation dataset individually. For the matched expression

Table 10. p-value of Anova 1 between the avg. accuracies of the proposed and other classifiers (pairwise) in DS1, DS2, DS3 and DS4 (where ‘S’ and
‘NS’ refer to significant (p-value� 0.05) and non-significant (p-value> 0.05) p-values respectively).

Group p-value in DS1 p-value in DS2 p-value in DS3 p-value in DS4

Proposed vs ConjunctiveRule 2.41e-06 (S) 8.68e-06 (S) 4.53e-07 (S) 0.0139(S)

Proposed vs DecisionTable 3.40e-06 (S) 2.88e-08 (S) 8.93e-06 (S) 0.0106(S)

Proposed vs JRip 1.78e-07 (S) 1.36e-06 (S) 8.16e-05 (S) 0.0002(S)

Proposed vs OneR 6.53e-09 (S) 3.22e-06 (S) 1.68e-06 (S) 0.0003(S)

Proposed vs PART 0.0001 (S) 2.89e-09 (S) 0.1491 (NS) 0.0005(S)

Proposed vs Ridor 1.57e-06 (S) 4.81e-10 (S) 9.83e-06 (S) 0.2497(NS)

doi:10.1371/journal.pone.0119448.t010

Table 11. Top 10 frequent genes in evolved rules of the two class-labels for DS1, DS2 and DS3, respectively. Ruleexperimental and Rulecontrol denote the
set of the evolved rules of experimental class-label, and the set of the evolved rules of control class-label, respectively.

DS1 DS2 DS3

For Ruleexperimental CENPA- MCM4+ GZMH-

TTK- PRL+ TRPM2-

CENPN- FBXO33- LHCGR+

KIF2C- NUAK1- IQCF2-

EZH2- JAG1- BSG+

CA12- EGFL6+ SCN4B+

RGN+ CDC34+ HCG9+

NCAPG- TRPC6+ C1orf158-

RNASEH2A- IGF2+ PLP1-

RPL13P5+ PSCD1- SMPD2-

For Rulecontrol SHROOM3- MEIS3- PRSS8-

CMTM8- AOX1+ NAV1+

ZNF226- ZNF217+ LYZL2-

UGT1A8+/UGT1A9+ GFOD1+ FYB+

MRAP2+ PRRG1+ EML4-

SOX2OT+ MTMR4- LHPP+

CXXC5- SERPINB1+ CCDC13-

XKR8- FHL5+ TEK-

C10orf99+ ACSL5+ INHBE-

FAM83C+ LIFR+ S100A16+

doi:10.1371/journal.pone.0119448.t011
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dataset, we have identified that 10236 of the matched genes are normally distributed, and rest
of them (i.e., 2836 genes) are not normally distributed. For the matched methylation dataset,
we have found 8173 genes which are following normal distribution, and remaining 4899 genes
that do not following normal distribution. Then, the four parametric tests are applied on the
normally distributed genes, and the four non-parametric tests are applied on the non-normally
distributed genes, both at 0.05 p-value threshold for the matched expression dataset as well as
the matched methylation dataset. We have found 54 common up-regulated genes and 82 com-
mon down-regulated genes from the parametric tests, and 86 common up-regulated genes and
70 common down-regulated genes from the non-parametric tests for the expression dataset
(viz., jUPDESETNj = 54, jUPDESETNNj = 86, jDOWNDESETNj = 82 and jDOWNDESETNNj =
70). Thereafter, we merge the common up-regulated and common down-regulated genes col-
lected from the results of the parametric and nonparametric tests for the matched expression
dataset (viz., jTOTALDESET(N+NN)j = 292). Similar statistical analyses are performed for the
matched methylation dataset (viz., jHYPERDMSETNj = 89, jHYPERDMSETNNj = 174,
jHYPODMSETNj = 95, jHYPODMSETNNj = 165, and jTOTALDMSET(N+NN)j = 523). Thereaf-
ter, our proposed method is applied on the TOTALDESET(N+NN) genes as well as the
TOTALDMSET(N+NN) genes, individually (see S4 Text).

Furthermore, we have concentrated on the internal relationship between the gene expres-
sion and methylation. As we know that the gene expression is inversely proportional to the
methylation, therefore inversely correlated genes make sense to highlight the effect of methyla-
tion (i.e., epigenetic effect) on the expression level. For the combined dataset, six common

Fig 10. Two examples of how significant biomarkers are identified from themaximal homogeneous
biclusters (i.e.,MFCHOI) for each class-label for each dataset.Here, we are shown intersection of only
four maximal homogeneous biclusters for (a) the class-label AC and (b) the class-label SCC, individually (for
Dataset 1). For the class AC, CENPA-, TTK-, KIF11-, KIF18B- and ZNF367- are the top frequent genes as
they exist in the four biclusters (see (a)); similarly, for the class SCC, SHROOM3- is top frequent gene as it
exists in the four biclusters (see (b)).

doi:10.1371/journal.pone.0119448.g010
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Table 12. KEGG pathway, GO:BP, GO:CC and GO:MF analysis of corresponding genes of the evolved rules from the three datasets. Here, ‘satisfi-
able rule’ or SRule by some KEGG-pathway(i.e., Path)/GO:BP/GO:CC/GO:MFmeans that all the genes (i.e., antecedent) of the rule are occurred together in
the pathway/Go-term.

DS Pathway/GO-BP/GO-CC/
GO-MF

p-
value

#Gene Genes #SRule SRule ids

DS1 Path hsa04120:Ubiquitin
mediated proteolysis

0.0386 7 MGRN1, FBXO2, KLHL13, DDB2, RHOBTB2,
MID1, UBE2S

1 rule id 5233

GO:
BP

GO:0022402 cell cycle
process

8.69E-
10

34 PRC1, BLM, TTK, PKMYT1, CEP55, AURKB,
RHOU, GTSE1, SPC24, KIF2C, CDCA8, NCAPH,
NCAPG, CENPA, SKA1, ZWILCH, TXNL4B, CDK1
etc.

21 rule id 327, 2231, 2232, 2914,
7360 etc.

GO:0000278 mitotic cell
cycle

1.02E-
11

30 PRC1, BLM, TTK, PKMYT1, SPC24, KIF15, BIRC5,
CENPE, NDC80, SMC2, CDK2, MAD2L1,
TIMELESS, PLK1, BUB1B, SETD8 etc.

19 rule id 327, 2231, 2232, 2914,
7360 etc.

GO:0022403 cell cycle
phase

6.04E-
12

32 PRC1, BLM, TTK, PKMYT1, CEP55, AURKB,
RHOU, GTSE1, BIRC5, CENPE, NDC80, SMC2,
CDK2, MAD2L1, TIMELESS, PLK1, BUB1B,
RAD54B etc.

18 rule id 327, 2231, 2232, 2914,
7360 etc.

GO:0007017 microtubule-
based process

4.86E-
04

14 KIF11, PRC1, KIF15, KIF18B, TTK, NDC80,
CENPE, MID1, MARK1, GTSE1, KIF2C, CENPA,
BUB1B, KIF13B

17 rule id 327, 2232, 7360 etc.

GO:
CC

GO:0043228 non-
membrane-bounded
organelle

5.43E-
05

70 MTSS1, FOSL2, PRC1, CEP78, TTK, AURKB,
SENP5, RHOU, GTSE1, SLC1A4, KIF2C, CDCA8,
FRMD6, PBXIP1, FANCI, SNTB1, KIF13B, CDK1,
MYO6, KIF11 etc.

85 rule id 151, 253, 298, 327, 415,
888, 1261, 1462, 1970, 2232 etc.

GO:0043232 intracellular
non-membrane-bounded
organelle

5.43E-
05

70 MTSS1, FOSL2, PRC1, CEP78, TTK, AURKB,
SENP5, RHOU, GTSE1, SLC1A4, KIF2C, CDCA8,
FRMD6 etc.

85 rule id 151, 253, 298, 327, 415,
888, 1261, 1462, 1970, 2232 etc.

GO:0044459 plasma
membrane part

0.0128 52 DLC1, IL27RA, TSPAN4, RHOU, SLC1A4, FRMD6,
CD44, LTB4R, SNTB1, CEACAM6, SLC22A3,
RAB27A, ARHGEF4, ICAM1, PLD1, MYO6, LIFR
etc.

36 rule id 212, 625, 1876, 6051 etc.

GO:
MF

GO:0000166 nucleotide
binding

0.0015 56 ACOX2, CTPS, PKMYT1, TTK, AURKB, RHOU,
KIF2C, MCM8, LTB4R, ACAD8, RAB27B, ACAD9,
RAB27A, KIF13B, NMNAT3, CDK1, MYO6, KIF11,
LIMK2, KIF15, MCM4, MBD1, MCM5, CDK2, etc.

51 rule id 254, 327, 339, 344, 494,
639, 643 etc.

GO:0001883 purine
nucleoside binding

4.95E-
04

45 ACOX2, FGFR2, BLM, CTPS, TTK, PKMYT1,
AURKB, ADA, KIF2C, IGF1R, MCM8, STK32A,
ACAD8, ACAD9, KIF13B, MYO5C, NMNAT3,
CDK1, MYO6, KIF11, MKI67, LIMK2, KIF15,
ATP11B etc.

39 rule id 254, 327, 339, 344, 494,
639, 643 etc.

GO:0001882 nucleoside
binding

5.72E-
04

45 ACOX2, FGFR2, BLM, CTPS, TTK, PKMYT1,
AURKB, ADA, KIF2C, IGF1R, MCM8, STK32A,
ACAD8, ACAD9, KIF13B, MYO5C, NMNAT3,
CDK1, MYO6, KIF11, MKI67, LIMK2, IPPK, UBE2S,
ABCC5 etc.

39 rule id 254, 327, 339, 344, 494,
639, 643 etc.

DS2 Path hsa00982:Drug
metabolism

9.79E-
04

5 GSTA4, FMO2, AOX1, GSTO2, MGST1 1 rule id 12

BP GO:0042127 regulation of
cell proliferation

0.0341 9 CEBPA, TNFSF4, BAX, SERPINE1, LIFR, IGF2,
JAG1, CD24, PRL

4 rule id 78, 95, 145, 390

GO:0032583 regulation of
gene-specific
transcription

0.0039 5 CEBPA, TNFSF4, SMARCB1, PSRC1, IGF2 3 rule id 52, 78, 225

CC GO:0005576 extracellular
region

0.0015 20 TNFSF4, EGFL6, MMP9, APOC1, LIFR, GGH,
IGF2, JAG1, MMP2, CHRDL1, PRRG1, PTGDS,
C1QTNF4, SERPINE1, PECAM1, SERPINA3,
C1QL1, GDF15, GFOD1, PRL

6 rule id 50,81,82,87,95,246
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Table 12. (Continued)

DS Pathway/GO-BP/GO-CC/
GO-MF

p-
value

#Gene Genes #SRule SRule ids

DS3 Path hsa04060:Cytokine-
cytokine receptor
interaction

1.69E-
04

12 EGFR, IFNA21, CCR1, TNFSF12, IFNA1, IL23A,
IL20RA, CCL3L1, INHBE, TNFRSF18, TNFSF12-
TNFSF13, IFNGR2, IFNA17

1 rule id 177

GO:
BP

GO:0006952 defense
response

1.88E-
09

29 IFNA21, S100A8, CCR1, BNIP3, HTN3, CD74,
CFHR1, APOA4, REG3A, IFNA1, IL23A, SAA2,
CCL3L1, SAA1, REG3G, CFHR5, IL1RL1,
DEFB103A, SCUBE1, RNASE6 etc.

12 rule id 7, 144, 613, 617, 653,
654, 784, 822, 1067, 1182, 2293,
2342

GO:0006955 immune
response

8.71E-
04

20 FYB, IL1RL1, SLA2, CCR1, IGJ, CD300E, BNIP3,
TNFSF12, C4BPA, CD74, CLEC4M, APOA4,
CFHR1, CYBA, IL23A, CCL3L1, LYST, DEFA1,
TNFSF12-TNFSF13, TREM1, CFHR5

12 rule id 7, 349, 350, 351, 387,
654, 784, 1182, 1674, 2293,
2342, 2361

GO:0003012 muscle
system process

0.0048 8 CYBA, CALD1, MYH3, SLMAP, MYH4, ACTN2,
SCN5A, CASQ2

4 rule id 47, 138, 333, 2296

GO:0006936 muscle
contraction

0.0118 7 CALD1, MYH3, SLMAP, MYH4, ACTN2, SCN5A,
CASQ2

4 rule id 47, 138, 333, 2296

GO:
CC

GO:0005886 plasma
membrane

0.0090 67 TEX101, STEAP4, NEURL, LHCGR, F2RL1,
FCRL2, TNFSF12, KCNIP4, CALB2, FCRL3,
APOB, SLMAP, ERAS, CALCRL, IFNGR2, EGFR,
BSG, SLA2, SCUBE1, ACTN2, CACNG3, OR1D2,
FLNA, TRPM2 etc.

91 rule id 126, 144, 155, 272, 321,
338, 339, 351, 385, 416 etc.

GO:0044459 plasma
membrane part

0.0112 43 PKHD1, CCR1, LHCGR, F2RL1, TRHR, PANX3,
CLDN11, TNFSF12, CD74, CALB2, SORBS3,
SLMAP, TEK, ERAS, CALCRL, IFNGR2, SCN5A,
EGFR, TRPM2, KCNK3, CLEC4M etc.

43 rule id 27, 28, 126, 144, 301,
339, 351, 385, 513, 514 etc.

GO:0005576 extracellular
region

4.55E-
09

59 IFNA21, LHCGR, MMP27, TNFSF12, HTN3,
APOA4, CFHR1, CFHR2, REG3A, APOB, OLFML3,
SAA2, SERPINE2, SAA1, CCL3L1, CREG1,
ANGPT1, REG3G, CFHR5, EGFR, NODAL, DEFA1
etc.

40 rule id 151, 180, 191, 346, 349,
350, 351, 486, 515, 517 etc.

GO:
MF

GO:0046983 protein
dimerization activity

0.0029 16 EGFR, S100A16, SCUBE1, TRHR, LHCGR, NFS1,
BNIP3, DSCAML1, ACTN2, FLNA, APOA4, CYBA,
APOB, BOK, TFAP2E, CRYBB2

3 rules 1040, 1176, 2358

GO:0019955 cytokine
binding

0.0112 6 IL1RL1, IL20RA, CCR1, TNFRSF18, IFNGR2,
CD74

2 rule id 177, 2342

doi:10.1371/journal.pone.0119448.t012

Table 13. Some top important rules w.r.t. their existing KEGG pathways/GO:BPs/GO:CCs/GO:CCs/
GO:MFs in Dataset 1.

Rule #Pathway Pathways

{FBXO2+, DDB2-)
class = AC}

1 hsa04120:Ubiquitin mediated proteolysis

Rule #GO:BP GO:BPs

{KIF11-, BUB1B- )
class = AC }

14 GO:0000279 M phase, GO:0000280 nuclear division,
GO:0007067 mitosis, GO:0022403 cell cycle phase,
GO:0000087 M phase of mitotic cell cycle, GO:0007049 cell
cycle, GO:0000278 mitotic cell cycle, GO:0048285 organelle
fission, GO:0051301 cell division, GO:0022402 cell cycle
process, GO:0007010 cytoskeleton organization,
GO:0007017 microtubule-based process, GO:0000226
microtubule cytoskeleton organization, GO:0007051 spindle
organization

(Continued)
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Table 13. (Continued)

Rule #Pathway Pathways

{KIF11-, TTK- ) class = AC } 10 GO:0000279 M phase, GO:0022403 cell cycle phase,
GO:0007049 cell cycle, GO:0000278 mitotic cell cycle,
GO:0022402 cell cycle process, GO:0007010 cytoskeleton
organization, GO:0007017 microtubule-based process,
GO:0007052 mitotic spindle organization, GO:0000226
microtubule cytoskeleton organization, GO:0007051 spindle
organization

{KIF11-, TIMELESS- )
class = AC }

10 GO:0000279 M phase, GO:0000280 nuclear division,
GO:0007067 mitosis, GO:0022403 cell cycle phase,
GO:0000087 M phase of mitotic cell cycle, GO:0007049 cell
cycle, GO:0000278 mitotic cell cycle, GO:0048285 organelle
fission, GO:0051301 cell division, GO:0022402 cell cycle
process

{NCAPH+, AURKB+, KIF15+
) class = SCC }

9 GO:0000279 M phase, GO:0000280 nuclear division,
GO:0007067 mitosis, GO:0022403 cell cycle phase,
GO:0000087 M phase of mitotic cell cycle, GO:0007049 cell
cycle, GO:0000278 mitotic cell cycle, GO:0048285 organelle
fission, GO:0022402 cell cycle process

Rule #GO:CC GO:CCs

{CENPN-, ZWILCH- )
class = AC}

9 GO:0000793 condensed chromosome, GO:0000779
condensed chromosome and centromeric region,
GO:0000775 chromosome and centromeric region,
GO:0000777 condensed chromosome kinetochore,
GO:0000776 kinetochore, GO:0044427 chromosomal part,
GO:0005694 chromosome, GO:0043228 non-membrane-
bounded organelle, GO:0043232 intracellular non-
membrane-bounded organelle

{CENPN-, CENPA- )
class = AC}

9 GO:0000793 condensed chromosome, GO:0000779
condensed chromosome and centromeric region,
GO:0000775 chromosome and centromeric region,
GO:0000777 condensed chromosome kinetochore,
GO:0000776 kinetochore, GO:0044427 chromosomal part,
GO:0005694 chromosome, GO:0043228 non-membrane-
bounded organelle, GO:0043232 intracellular non-
membrane-bounded organelle

{CENPN-, CENPM- )
class = AC}

9 GO:0000793 condensed chromosome, GO:0000779
condensed chromosome and centromeric region,
GO:0000775 chromosome and centromeric region,
GO:0000777 condensed chromosome kinetochore,
GO:0000776 kinetochore, GO:0044427 chromosomal part,
GO:0005694 chromosome, GO:0043228 non-membrane-
bounded organelle, GO:0043232 intracellular non-
membrane-bounded organelle

Rule #GO:MF GO:MFs

{SMC2-, TTK- ) class = AC} 9 GO:0001883 purine nucleoside binding, GO:0001882
nucleoside binding GO:0030554 adenyl nucleotide binding,
GO:0000166 nucleotide binding GO:0017076 purine
nucleotide binding, GO:0005524 ATP binding GO:0032559
adenyl ribonucleotide binding, GO:0032555 purine
ribonucleotide binding, GO:0032553 ribonucleotide binding

{TTK-, KIF2C- ) class = AC} 9 GO:0001883 purine nucleoside binding, GO:0001882
nucleoside binding GO:0030554 adenyl nucleotide binding,
GO:0000166 nucleotide binding GO:0017076 purine
nucleotide binding, GO:0005524 ATP binding GO:0032559
adenyl ribonucleotide binding, GO:0032555 purine
ribonucleotide binding, GO:0032553 ribonucleotide binding

(Continued)
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Table 13. (Continued)

Rule #Pathway Pathways

{KIF2C-, IGF1R- )
class = AC}

9 GO:0001883 purine nucleoside binding, GO:0001882
nucleoside binding GO:0030554 adenyl nucleotide binding,
GO:0000166 nucleotide binding GO:0017076 purine
nucleotide binding, GO:0005524 ATP binding GO:0032559
adenyl ribonucleotide binding, GO:0032555 purine
ribonucleotide binding, GO:0032553 ribonucleotide binding

{SMC2-, TTK-, KIF2C- )
class = AC}

9 GO:0001883 purine nucleoside binding, GO:0001882
nucleoside binding GO:0030554 adenyl nucleotide binding,
GO:0000166 nucleotide binding GO:0017076 purine
nucleotide binding, GO:0005524 ATP binding GO:0032559
adenyl ribonucleotide binding, GO:0032555 purine
ribonucleotide binding, GO:0032553 ribonucleotide binding

{TTK-, SMC2-, CTPS- )
class = AC}

9 GO:0001883 purine nucleoside binding, GO:0001882
nucleoside binding GO:0030554 adenyl nucleotide binding,
GO:0000166 nucleotide binding GO:0017076 purine
nucleotide binding, GO:0005524 ATP binding GO:0032559
adenyl ribonucleotide binding, GO:0032555 purine
ribonucleotide binding, GO:0032553 ribonucleotide binding

doi:10.1371/journal.pone.0119448.t013

Table 14. Some top important rules w.r.t. their existing KEGG pathways/GO:BPs/GO:CCs in Dataset 2.
Here, we have got no such significant rule w.r.t. their existing GO:MFs for the dataset.

Rule #Pathway Pathways

{AOX1+, GSTA4- )
class = normal}

1 hsa00982:Drug metabolism

Rule #GO:BP GO:BPs

{AOX1+, GSTA4- )
class = normal}

2 GO:0032583 regulation of gene-specific transcription,
GO:0042127 regulation of cell proliferation

{IGF2+, PRL+ )
class = tumor}

1 GO:0042127 regulation of cell proliferation

{IGF2+, PRL+ )
class = tumor}

1 GO:0042127 regulation of cell proliferation

{IGF2+, PRL+ )
class = tumor}

1 GO:0032583 regulation of gene-specific transcription

{IGF2+, PRL+ )
class = tumor}

1 GO:0042127 regulation of cell proliferation

{IGF2+, PRL+ )
class = tumor}

1 GO:0032583 regulation of gene-specific transcription

Rule #GO:CC GO:CCs

{IGF2+, PTGDS- )
class = tumor}

3 GO:0005576 extracellular region, GO:0031090 organelle
membrane, GO:0005783 endoplasmic reticulum

{IGF2+, EGFL6+ )
class = tumor}

2 GO:0005576 extracellular region, GO:0005615 extracellular
space

{PRRG1+, SERPINE1+ )
class = normal}

1 GO:0005576 extracellular region

{CHRDL1+, JAG1- )
class = tumor}

1 GO:0005576 extracellular region

{IGF2+, PRL+ )
class = tumor}

1 GO:0005576 extracellular region

{SERPINE1+, GFOD1+ )
class = normal}

1 GO:0005576 extracellular region

{JAG1-, PECAM1- )
class = tumor}

1 GO:0005576 extracellular region

doi:10.1371/journal.pone.0119448.t014
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Table 15. Top important rules w.r.t. their existing KEGG pathways/GO:BPs/GO:CCs/GO:MFs in Data-
set 3.

Rule #Pathway Pathways

{IL20RA+, CCR1+ )
class = tumor}

1 hsa04060:Cytokine-cytokine receptor interaction

Rule #GO:BP GO:BPs

{CYBA+, C4BPA- )
class = tumor}

5 GO:0006952 defense response, GO:0006954
inflammatory response, GO:0009611 response to
wounding, GO:0006955 immune response,
GO:0045087 innate immune response

{LYST+, BNIP3+ ) class = tumor} 4 GO:0006952 defense response, GO:0009615 response
to virus, GO:0006955 immune response, GO:0002252
immune effector process

{CFHR5-, REG3A- )
class = tumor}

4 GO:0006952 defense response, GO:0006954
inflammatory response, GO:0009611 response to
wounding, GO:0002526 acute inflammatory response

{CCR1+, CFHR5- )
class = tumor}

4 GO:0006952 defense response, GO:0006954
inflammatory response, GO:0009611 response to
wounding, GO:0006955 immune response

Rule #GO:CC GO:CCs

{MST1R+, TNFSF12/TNFSF13+
) class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

{MST1R+, CCR1+, TNFSF12/
TNFSF13+ ) class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

{LHCGR+, SLMAP+ )
class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

{CYBA+, MST1R+ )
class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

{TRPM2-, SMPD2- )
class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

{SCN4B+, TRPM2- )
class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

{MST1R+, CALCRL+ )
class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

{S100A16+, MTNR1A-, NODAL- )
class = normal}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

{TRPM2-, SMPD2-, UGT1A10-)
class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

(Continued)
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genes have been identified which are up-regulated as well as hypo-methylated. These genes are
SEMA7A, FSD1, TUBB3, GLIS1, TDO2 and SHOX2. Subsequently, nine common genes are
also detected that are both down-regulated and hyper-methylated. These genes are HOXB8,
SLC25A18, CALCRL, TMEM71, C1orf115, EDG1, CCDC68, NUAK1 and CMTM8. These
two types of genes are important for highlighting the effect of methylation (i.e., epigenetic ef-
fect) on the gene expression. However, the supplementary materials are available at: https://
www.dropbox.com/sh/gsvgty85jdlp2b6/13fOZxJV8n.

Conclusion
In this article, we have proposed a computational rule mining framework to determine special
type of association rules and potential biomarkers using integrated approaches of statistical

Table 15. (Continued)

Rule #Pathway Pathways

{SLMAP+, CCR1+ )
class = tumor}

4 GO:0031226 intrinsic to plasma membrane,
GO:0005886 plasma membrane, GO:0005887 integral
to plasma membrane, GO:0044459 plasma membrane
part

Rule #GO:MF GO:MFs

{BSG+, CLEC4M- )
class = tumor}

2 GO:0005529 sugar binding, GO:0030246 carbohydrate
binding

doi:10.1371/journal.pone.0119448.t015

Fig 11. Comparison of number of significant itemsets between StatBicRM and other existing ARMmethods at different minimum support for the
two artificial datasets (viz., ArDS5 and ArDS6). “Significant itemset” refers toMFCHOI for StatBicRM, and FI for the other methods.

doi:10.1371/journal.pone.0119448.g011
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and the BiMax biclustering techniques from the gene expression as well as methylation data.
At first, different statistical techniques (viz., removal of genes having low variance, normaliza-
tion, normality test, different parametric and non-parametric tests) are utilized on the the
whole dataset to obtain proper non-redundant/high-significant subset of differentially express-
ed/methylated genes. The resulting subset of genes are used in next step. Thereafter, the data is
discretized and post-discretized, consecutively. The biclustering technique is then utilized to
determineMFCHOIs. Thereafter, the special rules are generated from theMFCHOIs. Our pro-
posed rule mining method performs much better than the state-of-the-art rule mining algo-
rithms as it generatesMFCHOIs instead of FIs. Therefore, it saves running time, and it can able
to work on the big dataset. Pathway and GO analyses have been performed on the genes of the
evolved rules by David software. Occurrence of each gene in the evolved rules of each class-
label is determined for identifying the potential biomarkers. Furthermore, we have also made
classification the data to know how much the evolved rules are able to describe accurately the
remaining test (unknown) data. Subsequently, we have also compared the average classification
accuracy, and other related factors of our proposed method with the other existing rule-based
classifiers. Statistical significance tests are also utilized for checking the statistical relevance of
the comparisons. Here, each of the other rule mining methods or rule-based classifiers is also
starting with the same post-discretized data-matrix. At the end, we have also performed the in-
tegrated analysis of the gene expression data and the methylation data for highlighting the epi-
genetic effect (viz., the effect of methylation) on the gene expression level.
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