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ABSTRACT 
 
Background: Tuberculosis (TB) is the archetypical chronic infection, with patients having months of symptoms before 
diagnosis. In the two years after successful therapy, survivors of TB have a three-fold increased risk of death. 
Methods: Guinea pigs were infected with Mycobacterium tuberculosis (Mtb) for 45 days, followed by RRBS DNA 
methylation analysis. In humans, network analysis of differentially expressed genes across three TB cohorts were 
visualized at the pathway-level. Serum levels of inflammation were measured by ELISA. Horvath (DNA methylation) 
and RNA-seq biological clocks were used to investigate shifts in chronological age among humans with TB. 
Results: Guinea pigs with TB demonstrated DNA hypermethylation and showed system-level similarity to 
humans with TB (p-value = 0.002). The transcriptome in TB in multiple cohorts was enriched for DNA 
methylation and cellular senescence. Senescence associated proteins CXCL9, CXCL10, and TNF were elevated in 
TB patients compared to healthy controls. Humans with TB demonstrate 12.7 years (95% CI: 7.5, 21.9) and 
14.38 years (95% CI: 10.23–18.53) of cellular aging as measured by epigenetic and gene expression based 
cellular clocks, respectively. 
Conclusions: In both guinea pigs and humans, TB perturbs epigenetic processes, promoting premature cellular 
aging and inflammation, a plausible means to explain the long-term detrimental health outcomes after TB. 

mailto:carlybobak@dartmouth.edu
mailto:coarfa@bcm.edu
mailto:andrew.dinardo@bcm.edu
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 2175 AGING 

INTRODUCTION 
 
Tuberculosis (TB), caused by Mycobacterium 
tuberculosis (Mtb), is responsible for about 1.4 million 
deaths worldwide each year [1]. TB is the archetypical 
chronic infection, with one-third of TB patients 
contending with the disease for a decade in the pre-
antimicrobial era. Currently, TB patients have a median 
of three months of symptoms before diagnosis and 
retain a three-fold increased risk of mortality in the two 
years following successful therapy [2, 3]. In the US, 
premature death after successful treatment for TB was 
associated with seven years of life lost [4]. In a recent 
meta-analysis of over forty-thousand TB cases, 
mortality during TB treatment was 7%, and mortality in 
the two years after successful TB therapy was 
16.9% [2]. 
 
Mouse models have demonstrated that in the setting of 
chronic infection, the epigenome rearranges to dampen 
host immunity and prevent host-inflicted immune 
pathology [5–7]. Specifically, the chronic antigenic 
stimulation results in histone deacetylation, histone 
methylation, and DNA hyper-methylation. Epigenetic 
modifications are a key process for the regulation of 
immune homeostasis as demonstrated in murine models 
of sepsis and chronic Lymphocytic choriomeningitis 
virus (LCMV), as well as human infections with HIV, 
TB schistosomiasis, and pneumonia [6, 8–11]. We 
recently demonstrated that TB patients develop DNA 
methylation changes similar to those seen in these 
animal models of chronic infection, with DNA hyper-
methylation of genes involved in IL2-STAT5, TNF-
NFκB, and IL12-IFNγ signaling pathways. 
Interestingly, these DNA hyper-methylation scars 
persist twelve months from initiation of antibiotics, six 
months from completion of successful TB therapy [8]. 
 
Our previous study in humans collected blood at the 
time of TB diagnosis, and therefore it is possible that 
these individuals already accumulated these detrimental 
epigenetic marks before TB. In this work using an 
established guinea pig (Cavia porcellus) model of TB, 
we clarify that TB induced DNA methylation changes 
that statistically overlapped with methylation changes 
observed in humans with TB. Thereafter, through 
untargeted network analysis of gene expression data, we 
demonstrated that TB induced gene expression changes 
that enriched for DNA methylation and other epigenetic 
processes in multiple cohorts, including people living 
with or without Human Immunodeficiency Virus (HIV), 
and in both adults and children. Network analysis of 
both gene expression and DNA methylation also 
confirmed that TB is associated with oxidative-stress 
induced senescence (OSIS) and the senescence-
associated secretory pathway (SASP). By analysis of 

proteins shown to be elevated in SASP in an 
independent cohort from Eswatini, we confirmed that 
TB patients have increased SASP-related proteins [12] 
as well as increased Epigenetic and RNA-based age, 
with a mean increase from chronological age of 12.7 
and 14.4 years respectively and a hazard ratio (HR) of 
2.89 in all-cause mortality. In combination, the guinea 
pig and human data provide evidence that TB induces 
DNA hypermethylation, premature cellular aging, and 
inflammation. 
 
RESULTS 
 
TB induced DNA hypermethylation in guinea pigs, 
recapitulating global and specific features of 
human TB 
 
Guinea pigs (Cavia porcellus) are a standardized animal 
model for TB, with many features that replicate human 
disease [13]; therefore, we evaluated the DNA 
methylation differences between TB diseased and 
control animals (n = 4). Methylation status of DNA 
isolated from spleen and lung tissue was evaluated 45 
days post-infection (Figure 1A). Compared to 
uninfected controls, guinea pigs with TB had DNA 
hypermethylation of 2339 genes (80% of differentially 
methylated genes) in the spleen and 600 genes (60% of 
differentially methylated genes) in the lung (over 10% 
methylation ratio change and p < 0.05; Figure 1B; 
Supplementary Table 1). Genes critical to mycobacterial 
immunity, such as NFKB1, TYK2, RPTOR, IL1R1 and 
TOX, were hypermethylated in either lung or spleen 
(Figure 1C, 1D). Spleen and lung shared 244 
differential hypermethylated genes (DHG) (p-value  
of overlap = 1.24 × 10−65, Figure 1D) and 256 
hypermethylated pathways (p-value of overlap = 3.84 × 
10−120, Figure 1E). The common hypermethylated 
pathways in the lungs and spleen of guinea pigs 
included cytokine signaling, calcium signaling, 
metabolism, PI3K-AKT signaling, and tyrosine kinase 
pathways (Figure 1F). 
 
We previously described DNA hypermethylation in 
humans with TB [8]. When comparing the DNA 
hypermethylation changes between humans and guinea 
pigs with TB, there was a statistically significant 
overlap with peripheral blood in human CD4, CD8 and 
CD14 cells (Figure 2A, Kolmogorov-Smirnov p-value = 
0.002). Both humans and guinea pigs with TB 
demonstrated DNA hypermethylation of genes involved 
in pathways for the immune system, MAPK, tyrosine 
kinase, mTOR, calcium signaling, metabolism, and 
chromatin modifying enzymes (Figure 2B; 
Supplementary Table 2). Similarly, both humans and 
guinea pigs shared epigenetic changes in genes targeted 
by immune-related transcription factors (TF), including 
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NFKBIA, TCF7, CIITA, MYC, NFAT and DNMT1/3A 
(Supplementary Figure 1; Supplementary Table 3). The 
TF were predicted to be regulating multiple genes 
across the groups (Supplementary Figure 1), 
establishing a systems-level overlap between human TB 
and guinea pigs. We previously demonstrated that TB-
associated DNA hypermethylation in humans 
statistically overlapped with immune exhaustion, as 
induced by chronic infection with clone 13 LCMV in 
mice [8, 10, 11]. This was further validated by the DNA 
hypermethylation changes in guinea pigs enriching for 
targets of transcription factors, such as NFAT, MYC, 
TCF7, and NFKBIA (Supplementary Figure 1; 
Supplementary Table 3), which have been shown to 
lead to an immune inhibitory phenotype [14]. Combined 
gene and pathway analysis, using Metascape [15], 
demonstrated an interaction network enriched between 
humans and guinea pigs, including pathways for MAPK 
signaling, endocytosis, antigen presentation, calcium 
transport, cell adhesion, O-glycosylation of proteins, 
and chromatin modifying enzymes (Supplementary 
Figure 2). 

Enrichment of epigenetic regulators in human TB 
gene expression 
 
To orthogonally validate the results, gene expression 
studies were also evaluated. Three datasets were 
evaluated based on their differing epidemiology. 
GSE42834 included adults with TB that excluded 
people living with HIV [16]; GSE37250 included adults 
with TB also living with HIV [17]; GSE39940 included 
children with TB [18]. The expression array datasets 
were collected from studies aiming to identify gene 
signatures that discriminated TB both from healthy 
controls as well as from other diseases, such as 
sarcoidosis, pneumonia, cancer, and other diseases that 
can mimic the clinical presentation of TB. 
 
Differentially expressed genes and pathways were 
visualized as a network of pathway-level results, with 
major pathway groups derived from an enrichment 
map (Figure 3). Subnetworks relevant to TB disease 
are shown in Figure 3A, the full network is available 
in [19]. 

 

 
 

Figure 1. Guinea pigs (Cavia porcellus) with TB exhibited DNA hypermethylation. (A) Infection experimental design; guinea pigs 
were  infected with 100 CFU of Mtb CDC1551. Forty‐five days  later, spleen and  lungs were removed with DNA methylation evaluated by 
RRBS. (B) Cavia with TB have DNA hypermethylation in lung and spleen when compared to uninfected controls. The number of genes with 
hypermethylation (red) or hypomethylation (blue) are plotted for each tissue (within 10kb from DMRs). (C) Genome browser (UCSC) view 
of a few key hypermethylated genes in Cavia with TB (red bars) as compared to non‐infected “Saline” (blue bars). The bar plots represent 
methylation values  from a scale of  ‘0’ unmethylated  (black horizontal axis)  to  ‘1’  fully methylated. Overall mean values combining both 
spleen  and  lungs  are  plotted.  The  Cavia  scaffold  position  after  alignment  is  indicated  on  top  for  each  gene.  (D)  Shared  and  unique 
hypermethylated  genes  between  lung  and  spleen.  (E) Overlap of  enriched  pathways  between  Cavia  spleen  and  lung  (based on  KEGG, 
Reactome,  and Wikipathways)  using  hypermethylated  genes.  (F)  Selected  common  pathways  relevant  to  TB  disease with  their  –log10 
p‐value of enrichment. 
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Figure 2. Guinea pigs (Cavia porcellus) with TB exhibited systems-levels similarity with humans with TB. (A) Venn diagrams 
depicting the overlap between genes with DNA hypermethylation in guinea pig spleen (blue circle), lungs (pink circle) and humans with TB 
(CD4, yellow circle; CD8, blue circle; CD14, green circle). The p-value of overlap are shown on the side for ‘S’: Spleen; ’L”: Lung. (B) Pathway 
enrichment analysis (MsigDB GSEA) demonstrating overlap in hypermethylated pathways in humans (light grey bars) and guinea pigs (dark 
grey bars) with TB. The box colors demonstrate –log 10 p-value of enrichment, with darker shades of blue indicating significance, with the  
−log10 p-values written in the square. Selected TB-relevant pathways are depicted. 
 

 
 
Figure 3. Multi-cohort transcriptomic analyses corroborated a role for epigenetic regulation in TB. (A) Selected subnetworks of 
enriched pathways associated with active TB diagnosis from three transcriptomic datasets. (B) Zoom-in of the Epigenetic Regulation 
Subcluster. Each node in the network represents an annotated gene set. Each node is a pie-chart corresponding to the normalized 
enrichment score (NES) for each dataset. Only nodes with a false discovery rate (FDR) q-value <0.01 in at least one dataset are 
depicted. Edges represent the overlap of genes between gene sets, where only overlaps >0.55 are visualized. The color of each pie on 
the map indicates the NES (blue for negative NES, and red for positive NES). The size of each node is proportional to the size of the 
gene sets. 
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An abundance of genes involved in modifying the 
epigenome were differentially expressed in the 
discovery datasets, including regulators of acetylation 
such as the histone deacetylases (HDAC3, 1,5), the 
NAD-dependent deacetylases Sirtuins (SIRT1,2,4,5), 
regulators of methylation such as DNA 
methyltransferases (DNMT3A), lysine demethylases 
(KDM6B), and chromatin modifiers such as the 
polycomb repressor complex components EZH2 and 
SUZ12 (Supplementary Figure 3). Previous studies 
have demonstrated that epigenetic changes can be 
triggered by oxidative stress and senescence-associated 
pathways [20–23] which were also enriched in all three 
TB gene expression datasets (Figure 3B). 
 
Within the epigenetic regulation network, the DNA 
methylation node is a hub with 20 connections to other 
gene sets (degree = 20), including the oxidative stress-
induced senescence and senescence-associated 
phenotype (Figure 3B). Across the three datasets, gene 
set enrichment analysis (GSEA) for DNA methylation 
genes had normalized enrichment scores (NES) of 
2.10, 2.32, and 1.89 (adjusted p-value of 1.9 × 10−5, 

3.9 × 10−8, and 6.0 × 10−4) for GSE42834, GSE37250, 
and GSE39940 respectively. From healthy controls, 
there was an increase in the DNA methylation summed 
z-score (Figure 4A). The most notable differences in 
signature Z-score occurred between samples from 
patients with TB and healthy controls or people with 
asymptomatic Mtb infection (p = 1.7 × 10−11, < 
2.9 × 10−26, 3.5 × 10−14 in GSE42834, GSE37250, and 
GSE39940 respectively). We observed graded 
separation comparing TB disease to other diseases 
across the three distinct cohorts, substantiating that 
DNA methylation-associated gene changes due to TB 
disease is reflective of prior work in other chronic 
infections (Supplementary Figure 4) [5, 7]. The 
summed z-score for SASP and OSIS also was increased 
in TB patients compared to healthy controls or 
asymptomatic Mtb infected controls (p = 1.0 × 10−14, 
7.3 × 10−38, 4.4 × 10−14 in the SASP pathway, p = 
1.3 × 10−14, 6.8 × 10−32, 7.5 × 10−16 in the OSIS pathway 
for GSE42834, GSE37250, GSE39940 respectively; 
Figure 4B–4C). Correlation of DNA methylation, 
SASP, and OSIS pathway Z-scores was observed across 
all datasets (DNA methylation and OSIS r = 0.88, 0.96, 

 

 
 
Figure 4. DNA methylation and cellular senescence genes are increased and correlated in TB. A summed z-score for gene 
expression from each patient was assessed for pathways including DNA methylation (A), SASP (B), and OSIS (C), with all three studies 
demonstrating increased summed z-scores in TB patients (red box plot) as compared to controls (blue box plot). P-values from a Wilcoxon 
rank sum test are indicated by asterisks. (D) DNA methylation correlated with senescence pathways using Pearson correlation for 
GSE42834, GSE37250, and GSE39940 respectively. Abbreviations: SASP: Senescence-associated secretory phenotype; OSIS: Oxidative 
stress-induced senescence. 
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and 0.97; DNA methylation and SASP r = 0.92, 0.97, 
0.98; OSIS and SASP r = 0.95, 0.97, 0.98 for 
GSE42834, GSE32750, GSE39940 respectively; 
Figure 4D). 
 
TB induced premature epigenetic aging 
 
In both humans and guinea pigs with TB, genes 
enriching for the SASP and OSIS pathways were 
hypermethylated compared to controls (Figure 5A). TB 
patients demonstrated a statistically significant 
enrichment of hypermethylated genes previously 
identified to have closed chromatin as part of the 
normal aging process [21] (NES = 1.47, p = 2.93 × 10−9; 
Figure 5B). At the protein level, in an independent 
cohort from Eswatini, TB patients demonstrated an 
increase in CXCL9, CXCL10, and TNFα, all 
components of the SASP (Figure 5C). Considering 
these findings, and the fact that aging is associated with 
increased DNA methylation, increased circulating 
senescence associated inflammation, and oxidative 
stress, we compared the biological age against the 
chronological age using two distinct biological clocks. 
The “Horvath clock” calculates biological age based on 
DNA methylation and has previously identified that 
HIV induced premature cellular aging [24, 25]. When 
the Horvath clock was applied to TB patients, there was 
an average increase in the DNA methylation age by 
12.7 years above the chronological age (Figure 5D; 
Wilcoxon p < 0.0001, 95% CI (7.5–21.9 years)). This 
increased epigenetic age persisted at least 12 months 
from TB diagnosis (6 months after the completion of 
successful therapy; Figure 5D). To evaluate cellular 
aging using an orthogonal approach, a recently 
developed transcriptomic (RNA-sequencing based) 
clock ‘RNAAgeCalc’ was applied to an RNA-seq 
dataset (GSE107993; Figure 5E) [26]. Compared to 
healthy contacts and patients with asymptomatic Mtb 
infection (also known as latent Mtb infection; LTBI), 
the transcriptomic clock of TB patients was increased 
14.38 years (95% CI: 10.22–18.53) over the 
chronological age (p < 0.0001, ANOVA with Tukey’s 
multiple comparison); Figure 5E). Moreover, 
individuals who were initially asymptomatic, but 
progressed to active TB disease within 6 months also 
demonstrated an increased transcriptomic clock of 4.83 
years (95% CI: 0.10–9.56), which was significantly 
higher than healthy contacts and patients with 
asymptomatic Mtb infection (p = 0.0115, ANOVA with 
Tukey’s multiple comparison; Figure 5E). DNA 
methylation has been shown to be a strong predictor of 
all-cause mortality [27], including an increase in 
Horvath epigenetic age. Considering the Horvath age 
increase of 12.7 years, TB cases computed as per Zhang 
et al. [27] had an increased hazard ratio (HR) of 2.89 
(95% CI: 2.40–3.12) in all-cause mortality. 

DISCUSSION 
 
At the completion of apparently successful therapy, 
TB patients have a nearly 3-fold increased risk of 
death due to unknown reasons [2, 4]. Our previous 
work demonstrated that TB patients exhibited DNA 
hypermethylation associated with decreased immune 
responsiveness and that the DNA hypermethylation 
marks did not normalize six months after the 
completion of successful TB therapy [8]. Using a 
guinea pig model, this study corroborates that TB 
induces DNA hypermethylation marks and that the 
epigenetic perturbations in guinea pigs recapitulated 
human disease. Further, at transcriptomic and 
epigenomic levels, both guinea pigs and humans with 
TB enriched for senescence and oxidative stress 
induced senescence pathways, with humans afflicted 
with TB demonstrating more than a decade of 
premature cellular aging by both epigenetic and 
transcriptomic clocks. Increases in DNA 
hypermethylation and cellular senescence are plausible 
mechanisms for the long-term increased risk of death in 
TB patients and, as such, they need to be prospectively 
evaluated. 
 
In order to temper exuberant, pathologic immunity in 
the setting of chronic or severe infection, epigenetic 
mechanisms dampen both adaptive and innate immunity 
to prevent collateral host tissue destruction [5, 6, 28]. 
Unfortunately, these epigenetic scars are long-lived, 
thereby increasing the risk for secondary infections [7]. 
Both severe and chronic infections perturb host 
epigenetic regulation, thereby suppressing host 
immunity [29–31]. HIV also perturbs host epigenetic 
regulation, resulting in long-lasting DNA methylation 
changes in IL-2, PD1, and the regulation of IFN-γ 
[32, 33]. 
 
Previously, it was unclear if individuals with DNA 
hypermethylation were at increased risk of progressing 
to TB, or if TB itself was inducing DNA 
hypermethylation. While the options are not mutually 
exclusive, the guinea pig studies lucidly demonstrated 
that TB induces DNA hypermethylation. This is also 
supported by the orthogonal gene expression analysis, 
demonstrating an increase in genes related to DNA 
methylation among TB patients. This does not exclude 
the possibility that individuals with increased DNA 
methylation are at increased risk of progression to TB. 
In fact, the gene expression analysis suggests that 
multiple diseases induce DNA methylation 
perturbations. Both schistosomiasis and HIV induced 
DNA hypermethylation and both are associated with 
increased risk of TB disease progression [33, 34]. 
Further, compared to asymptomatic controls that stayed 
healthy, individuals that were originally asymptomatic, 
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but then progressed to overt TB disease, had an 
increase in premature aging as calculated by the RNA 
clock. Plausibly, comorbidities like air pollution, 

smoking, schistosomiasis, and HIV result in DNA 
hypermethylation, suppressing the host immune 
response, and therefore increasing the risk of TB 

 

 
 
Figure 5. TB induced cellular senescence and premature cellular aging. (A) Humans and guinea pigs with TB demonstrated 
DNA hypermethylation gene changes that enriched for the SASP and OSIS pathways (Reactome overrepresentation p-values). 
(B) Hypermethylated genes in CD8+ T cells from patients with TB statistically overlapped with old age-associated closed chromatin 
conformation changes. (C) Multiplex ELISA of senescence associated proteins in patients with TB compared to healthy controls. 
(D) Epigenetic age (using the Horvath DNA methylation clock) is increased as compared to chronological age in TB patients at baseline and 
6 months after the completion of successful anti-TB therapy. (E) Difference between chronological age and biological age using the RNA 
age calculator demonstrates an increase in TB patients compared to healthy controls (one-way ANOVA with Tukey’s multiple comparison). 
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disease progression. Future experiments will need to 
evaluate if preceding unrelated infection would further 
predispose risk for TB progression due to epigenetic 
perturbations. 
 
After successful therapy for pneumonia, sepsis, or TB, 
there remains an increased risk of mortality [4, 35–37]. 
A recent retrospective study examining 2522 TB 
patients in the United States calculated an average of 
7.0 (95% CI: 5.5–8.4) years of potential life lost despite 
apparently successful therapy [4]. Similarly, we 
calculated a nearly 3-fold risk (HR = 2.89) in all-cause 
mortality in TB patients using predictors described by 
Zhang et al. [27]. The observations that cellular 
senescence is enriched in both gene expression and 
DNA methylation datasets of patients with TB, and the 
correlation between methylation and senescence need to 
be mechanistically explored to identify if the >10 years 
of premature cellular aging is reversible. Additional 
evidence supporting TB induced “inflammaging” 
includes elevations in plasma levels of SASP markers 
such as TNFα, CXCL9, and CXCL10, providing 
additional evidence that long-term health and mortality 
is negatively impacted by the development of TB 
disease. This phenomenon has previously been 
observed in people living with HIV in a study 
conducted by Horvath et al. [24]. The increase in 
pathways of DNA methylation, oxidative stress induced 
cellular senescence, and senescence associated secretory 
phenotype summed z-scores, and correlation between 
these pathways, suggests there are common epigenetic 
perturbations that occur with chronic inflammation, 
offering optimism that there may be common pathways 
to remediate these changes. Further understanding of 
the role of accelerated aging in TB patients may be also 
elucidated by decreased telomere length and increased 
mitochondrial DNA copy number in TB patients [38]. 
 
An interesting observation was the lower number of 
changes observed in the lungs as compared to the spleen 
in the guinea pigs. Although we see a significant 
overlap between post-infection methylation changes 
between the two organs, our analysis reveals a tissue-
specific response to pathogens, which may partially be 
explained by the distinct cell type composition of the 
two tissues. 
 
While the results of the DNA methylation studies were 
limited by the small sample sizes in the guinea pigs, this 
would still allow for the observation of large effect sizes. 
Further, the findings were corroborated using orthogonal 
transcriptomic and protein analyses. We also see 
statistically significant overlap with the previous DNA 
hypermethylation findings in human studies suggesting 
that even the small size of the guinea pig model was able 
to capture major meaningful perturbations in the 

epigenome. Future examinations will need to validate 
these observations in larger numbers in both guinea pigs 
and humans, with particular focus on the commonly 
perturbed pathways like PI3K/AKT or MTOR signaling. 
Experiments suggest that immune inhibitory epigenetic 
marks were triggered by specific events (NFAT 
homodimerization, intracellular metabolic shifts) that 
resulted in histone deacetylation, DNA hypermethylation, 
and chromatin closing [39, 40]. A longitudinal approach 
should be considered to examine if increases in DNA 
methylation or premature aging are associated with 
increased risk of TB disease progression and, vice versa, 
if DNA methylation and premature aging improve after 
successful therapy. 
 
CONCLUSIONS 
 
This work, using multiple cohorts, multiple tissue types, 
and both transcriptomic and DNA methylation 
sequencing, provides evidence that TB induced 
perturbations in epigenetic regulation, specifically in 
DNA methylation that correlated with oxidative stress 
induced senescence and was associated with premature 
cellular aging, measured by both epigenomic and 
transcriptomic based clocks. These processes were 
conserved across both guinea pigs and humans, 
indicating that a guinea pig (Cavia porcellus) model 
may be appropriate for further mechanistic research. 
The TB induced premature aging is a plausible 
mechanism for increased risk of death that occurs after 
successful therapy for TB and needs to be prospectively 
evaluated. 
 
MATERIALS AND METHODS 
 
Animal aerosol challenge, determination of bacterial 
load, and DNA extraction 
 
All guinea pig experiments were reviewed and 
approved by the Institutional Care and Use Committee 
at Texas A&M University in compliance with the 
National Institute of Health guidelines, as described in 
the Guide for the Care and Use of Laboratory Animals. 
Eight pathogen-free female Harley guinea pigs (250–
300 g) were obtained from Charles River Laboratories. 
The animals were maintained with commercial diet and 
water ad libitum. The guinea pigs were divided into two 
groups of four, one group underwent aerosol infection 
with Mtb strain CDC1551, grown as described 
previously [41, 42] and washed with saline and 
suspended at an OD600 of 0.1 prior to nebulization using 
a Madison chamber, as described previously [41, 43]. 
The other group was used as a control without any 
infection procedure. Initial colony forming units (CFU) 
in the lungs were ~100 CFU. The average number of 
CFU present in the entire lungs at 45 days was 4.2 ± 



www.aging-us.com 2182 AGING 

0.7 × 106 CFU, the CFU plateaued just after 45 days 
post-infection, which was hence chosen as the time 
point at which humane euthanasia was performed with 
pentobarbital (FatalPlus). At necropsy, organs were 
collected and frozen at −80°C until use. DNA was 
isolated from organs using the DNeasy blood and tissue 
kit (Qiagen Inc.), followed by nucleic acid quantity 
determination with a Qubit fluorometer using the 
dsDNA BR assay kit (Thermo Fischer Scientific, 
Waltham, MS, USA). 
 
Quantification of DNA methylation in guinea pigs 
and humans 
 
DNA methylation from the spleen and lung of the 
control and TB guinea pigs was measured using reduced 
representation bisulfite sequencing (RRBS) as 
previously described [44, 45] to map the methylated 
cytosines in the DNA obtained from spleen and lung 
from infected and uninfected Cavia porcellus, as 
described in the previous section. Library preparation 
was performed using Ovation RRBS Methyl-Seq 
System kit (NuGEN Technologies, Inc, Redwood City, 
California). In brief, 100 ng of genomic DNA was 
digested with MspI, and Illumina-compatible cytosine-
methylated adaptors were ligated to the enzyme-
digested DNA. Size-selected fragments were bisulfite-
converted, and library preparation was done by PCR 
amplification, and subsequently sequenced in a 
HiSeq3000 instrument at the MDACC Epigenomics 
Profiling Core Facility. RRBS sequencing reads were 
aligned to Cavia reference genome and DNA 
methylation ratios at CpGs were called using Bismark 
v0.7.11 [46]. Next, differentially methylated CpG sites 
(DMCs) and differentially methylated regions (DMRs) 
between infected and uninfected Cavia were identified 
using BS-seq [47]. DMR-associated genes were 
determined using BEDTOOLS [48] and a window of 
10,000 base pairs around coding gene bodies. 
 
Peripheral blood mononuclear cells (PBMCs) from 
human subject samples, previously published, 
underwent DNA isolation using the Qiagen DNeasy kit, 
followed by bisulfite conversion [8]. DNA methylation 
was determined by the Illumina MethylEPIC array and 
was deposited in the NCBI Gene expression omnibus 
(GSE145714). The gene list was also published as a 
supplementary table, from which the information was 
obtained for the overlap analyses [8]. 
 
Functional enrichment analysis for guinea pig and 
human methylation 
 
To evaluate gene or pathway overlaps Venn  
diagrams were obtained using the online portal 
(http://bioinformatics.psb.ugent.be/webtools/Venn/). 

Gene set enrichment analysis was carried out using the 
hypergeometric distribution as implemented by the 
MsigDB online tool (http://www.gsea-msigdb.org/) 
against the following gene collections including 
hallmark, KEGG, Reactome and WikiPathways to 
compute overlaps with an FDR cut-off <0.05 for the 
significant genes from the guinea pig and human 
methylation datasets [49]. Overall system level 
similarly was compared using a two-sided Kolmogorov-
Smirnov test, where overlap p-values were compared to 
the null hypothesis that they follow a uniform 
distribution. In addition, targets of transcription factor 
(TFT) overlaps were also computed for all lists using 
the same portal. Meta-pathway analysis was used to 
find gene and simultaneous pathway level overlap 
between the human and the guinea pig datasets through 
Metascape online pathway analysis portal (https:// 
metascape.org/gp/index.html#/main/step1) [15]. Over-
representation analysis for OSIS and SASP was carried 
out using the analysis option of the Reactome database, 
where the hypermethylated genes from humans and 
guinea pigs were used as input. The protein-protein 
interaction (PPI) network was generated using MCODE 
algorithm to identify enriched clusters, represented as a 
merged network visualized using Cytoscape [50, 51]. 
The network was then annotated using gene ontology 
(GO) enrichment analysis as described by Zhou et al. 
[15] The bar graphs were plotted using GraphPad Prism 
(version 9.1.0) for macOS [52]. 
 
Quantification of the serum cytokines in a TB cohort 
 
The plasma samples were obtained from a previously 
described cohort of adults with TB symptoms and 
microbiologically confirmed pulmonary TB (by culture 
and/or GeneXpert) from Eswatini. They were compared 
to with their asymptomatic, healthy household contacts 
who remained asymptomatic for 12 months after initial 
exposure [8]. The serum was evaluated by using nine 
soluble markers of senescence associated secretory 
phenotype as defined previously [53, 54], including 
IL15 (TB = 40, HC = 39), TNFA (TB = 152, HC = 
111), IL1B (TB = 152, HC = 111), CXCL10 ( TB = 70, 
HC = 49), IL6 (TB = 70, HC = 49), CXCL9 (TB = 152, 
HC = 111), IL7 (TB = 112, HC = 72), GMCSF (TB = 
82, HC = 62), IL1A (TB = 82, HC = 62) using a 
customized bead-based multiplex assay (LEGENDplex 
kits, BioLegend), according to manufacturer’s 
instruction. Briefly, the human plasma was diluted 1:1 
and incubated with APC-conjugated capture beads, 
specific to each analyte being measured, supplied with 
the kit. Known standards for each analyte were also 
incubated in duplicate. Biotinylated detection antibodies 
were added which form capture bead-analyte-detection 
antibody sandwiches. Streptavidin-phycoerythrin 
(SA-PE) was subsequently added, providing fluorescent 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.gsea-msigdb.org/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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signal with intensities in proportion to the amount of 
bound analyte. For each bead population, the PE signal 
fluorescence intensity was quantified using a flow 
cytometer. The concentration of a particular analyte was 
determined based the known standard curve using the 
LEGENDplex data analysis software. 
 
Gene expression cohort selection 
 
Gene expression array datasets were downloaded from 
the Gene Expression Omnibus (GEO) hosted by the 
National Center for Biotechnology Information (NCBI). 
Search terms to identify datasets included ‘Tuberculosis’ 
and ‘TB’ and were limited to whole blood samples. We 
selected three datasets based on the heterogeneity of the 
epidemiology. The first cohort included only adults and 
excluded HIV positive patients [16]. The second cohort 
included adults, both people with and those without HIV 
co-infection [17]. Finally, the last cohort included 
children, with and without HIV co-infection [18]. All 
three datasets were analyzed using the Illumina 
HumanHT12v4 bead chip. A total of 1152 samples were 
used in analysis. These studies were designed to identify 
a novel TB diagnostic test, and therefore they included 
diseases that present similar to TB, including other 
pneumonias, sarcoidosis, cancer, and other infections. 
 
Analysis of expression data 
 
Analyses were conducted in R version 4.0.3. 
Normalized data were downloaded using the 
‘GEOquery’ package, and checked to ensure that values 
were mean-centered and log2 transformed [55]. 
Differential expression (DE) analysis of genes was 
conducted using the ‘limma’ package in R to calculate 
the empirical Bayes (moderated) pooled variance for 
each gene where active TB was contrasted to all the 
other disease classes as a one-vs.-rest problem. DE 
analysis identified genes that were significantly 
associated (either positively or negatively) with the 
outcome of interest, in this case active TB disease. 
 
The log2 fold change (FC) and p-values from the DE 
analysis were used to calculate scores and rank genes 
for Gene Set Enrichment Analysis (GSEA) using 
 

2 10(log ( ) ( 1) log ( ) (1)Rank sign FC p= × −  
 
as suggested in [56]. These ranks were input to GSEA 
Desktop v3.0 to identify which gene sets were enriched 
or depleted in each of the three data sets [57]. The Gene 
Ontology (GO) process collection of gene sets was 
downloaded from the Molecular Signature Database 
(MSigDB) [49]. GSEA compared gene sets and genes 
which were close to the top or the bottom of the  
ranked list to determine whether the gene set was 

over-represented. Each gene set was given a 
Normalized Enrichment Score (NES) [57]. The output 
after running GSEA was used to create an 
EnrichmentMap in Cytoscape v.3.6.0 [50, 58]. 
Subnetworks were identified using AutoAnnotate [59] 
and those related to epigenetic regulation are presented. 
 
We evaluated the DNA methylation, oxidative stress 
induced cellular senescence, and senescence associated 
secretory phenotype genes using a pathway z-score, 
calculated as the as the difference of the mean of 
upregulated and the mean of downregulated genes 
contained in each pathway and measured in each 
dataset, as suggested in [60]. We centered pathway 
scores on the median value observed in the non-
asymptomatic control group in each dataset. A 
Wilcoxon rank sum test was used to test if these 
pathway scores were significantly different between TB 
and healthy controls or other diseases [61]. We 
calculated the correlation between the observed z-scores 
of each of the epigenetic regulation pathways of interest 
within each dataset and used ‘pheatmap’ [62] to 
evaluate if correlations were being driven by 
overlapping genes contained within the pathways. 
 
Horvath methylation age prediction 
 
The CpGs required for estimating the Horvath DNA 
methylation age [63] were derived from the published 
dataset and used in an R pipeline containing a modified 
version of Steve Horvath’s code 
(https://dnamage.genetics.ucla.edu) to perform 
normalization and estimate the biological age in human 
TB published data [8]. The statistical tests were run using 
GraphPad Prism (version 9.1.0) for macOS. All-cause 
mortality was derived based on Horvath age estimates as 
described [27]; briefly they estimated that for every 5-year 
increase in Horvath age the Hazard increases by 1.14. 
Increased risk was estimated by the formula: Increased 
Risk = ((Horvath age estimate)/5) × 1.14. The CI were 
multiplied by the same factor as the increased risk. 
 
RNA age prediction 
 
We sought publicly available RNA Sequencing data on 
the GEO. To be eligible for analysis, the data needed to 
contain whole blood samples from participants with 
active TB samples collected from time of diagnosis, 
prior to treatment, as well as patient level chronological 
age. We selected the largest such dataset for the RNA 
Age prediction, GSE107993 [26]. We removed 
outliners, patients missing chronological age, and only 
used baseline samples across all disease categories. 
RNA age was calculated using the ‘RNAAgeCalc’ 
package in R [64]. We calculated RNA age using the 
raw sequencing counts, specified that our tissue was 

https://dnamage.genetics.ucla.edu/
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blood, our signature type was ‘all’, and used the Peter’s 
age signature. Considering the increase in biological age 
above chronological age as measured by DNA 
methylation, we calculated the difference between RNA 
and chronological age and used a one-way ANOVA 
with Tukey’s multiple comparison to evaluate if the age 
difference was significantly increased with TB disease 
compared to household contacts, LTBI, and future 
LTBI progressors. 
 
Abbreviations 
 
DE: Differential expression; DHG: Differential 
hypermethylated genes; DMCs: Differentially 
methylated CpG sites; DMRs: Differentially methylated 
regions; DNA: Deoxyribonucleic acid; FC: Fold 
change; FDR: False discovery rate; GEO: Gene 
Expression Omnibus; GO: Gene Ontology; GSEA: 
Gene set enrichment analysis; HR: Hazard Ratio; HIV: 
Human Immuno-deficiency virus; LCMV: Lymphocytic 
choriomeningitis virus; LTBI: Latent Tuberculosis 
Infection; MSigDB: Molecular Signature Database; 
Mtb: Mycobacterium Tuberculosis; NCBI: National 
Center for Biotechnology Information; NES: 
Normalized enrichment scores; OS: Oxidative-stress; 
OSIS: Oxidative-stress induced senescence; PBMCs: 
Peripheral blood mononuclear cells; PCR: Polymerase 
chain reaction; RNA: Ribonucleic acid; RRBS: 
Representation bisulfite sequencing; SA-PE: 
Streptavidin-phycoerythrin; SASP: Senescence 
associated secretory pathway; TF: Transcription factors. 
 
AUTHOR CONTRIBUTIONS 
 
A.R.D and C.C. outlined the study design. K.K., T.N., 
and J.D.C. implemented the Cavia experiments. A., 
T.G., S.L.G., and C.C. implemented bioinformatic 
analysis of RRBS data. G.M., Q.D., J.K., S.C.L., T.N. 
and A. collected, implemented, and analyzed the 
multiplex ELISA experiments. A.R.D, T.G., S.L.G., 
T.N., and C.C. implemented the CD4, CD8, and CD14 
human DNA methylation experiments. C.A.B. curated 
the gene expression array and RNA-seq datasets. 
C.A.B. and J.H. designed the gene expression analysis 
and C.A.B. conduced the gene expression analyses. 
C.A.B., H.N., J.H., and J.O. created and analyzed the 
enrichment map. C.A.B., A., S.L.G, C.C. and J.O. 
designed and conducted the statistical analyses. C.A.B., 
A., and S.L.G. prepared all manuscript figures. C.A.B., 
A., and A.R.D. completed the manuscript writing and 
all authors edited, revised, and approved the manuscript. 
 
CONFLICTS OF INTEREST 
 
The authors declare that they have no conflicts of 
interest. 

FUNDING 
 
ARD is supported by NIAID K23 AI141681-02. TG, 
SLG, and CC are partially supported by the Cancer 
Prevention Institute of Texas (CPRIT) RP170005, 
RP210227, and RP200504, NIH P30 shared resource 
grant CA125123, and NIEHS grants 1P30ES030285 
and 1P42ES027725. JDC is funded in part from funds 
provided by the Texas A&M University System and 
National Institutes of Health grants AI104960 and 
AI149383. JEH is supported by NHLBI R01 
HL146228-01, the Cystic Fibrosis Foundation 
Hill18A0-CI, the National Science and Engineering 
Research Council, Canada, AWD-01777,3 and the 
National Health and Medical Research Council, 
Australia GNT1182929. CAB was supported by the 
Burroughs Wellcome Fund institutional program grant 
unifying population and laboratory-based sciences to 
Dartmouth College (Grant#1014106). 
 
REFERENCES 
 
1. World Health Organization. Global Tuberculosis Report 

2020. 2020; Geneva: World Health Organization. 

2. Romanowski K, Baumann B, Basham CA, Ahmad Khan F, 
Fox GJ, Johnston JC. Long-term all-cause mortality in 
people treated for tuberculosis: a systematic review 
and meta-analysis. Lancet Infect Dis. 2019; 19:1129–37. 
https://doi.org/10.1016/S1473-3099(19)30309-3 
PMID:31324519 

3. Bello S, Afolabi RF, Ajayi DT, Sharma T, Owoeye DO, 
Oduyoye O, Jasanya J. Empirical evidence of delays in 
diagnosis and treatment of pulmonary tuberculosis: 
systematic review and meta-regression analysis. BMC 
Public Health. 2019; 19:820. 
https://doi.org/10.1186/s12889-019-7026-4 
PMID:31238906 

4. Lee-Rodriguez C, Wada PY, Hung YY, Skarbinski J. 
Association of Mortality and Years of Potential Life 
Lost With Active Tuberculosis in the United States. 
JAMA Netw Open. 2020; 3:e2014481. 
https://doi.org/10.1001/jamanetworkopen.2020.14481 
PMID:32965497 

5. Abhimanyu, Ontiveros CO, Guerra-Resendez RS, 
Nishiguchi T, Ladki M, Hilton IB, Schlesinger LS, 
DiNardo AR. Reversing Post-Infectious Epigenetic-
Mediated Immune Suppression. Front Immunol. 
2021; 12:688132. 
https://doi.org/10.3389/fimmu.2021.688132 
PMID:34163486 

6. Vachharajani VT, Liu T, Brown CM, Wang X, Buechler 
NL, Wells JD, Yoza BK, McCall CE. SIRT1 inhibition 
during the hypoinflammatory phenotype of sepsis 

https://doi.org/10.1016/S1473-3099(19)30309-3
https://pubmed.ncbi.nlm.nih.gov/31324519
https://doi.org/10.1186/s12889-019-7026-4
https://pubmed.ncbi.nlm.nih.gov/31238906
https://doi.org/10.1001/jamanetworkopen.2020.14481
https://pubmed.ncbi.nlm.nih.gov/32965497
https://doi.org/10.3389/fimmu.2021.688132
https://pubmed.ncbi.nlm.nih.gov/34163486


www.aging-us.com 2185 AGING 

enhances immunity and improves outcome. J Leukoc 
Biol. 2014; 96:785–96. 
https://doi.org/10.1189/jlb.3MA0114-034RR 
PMID:25001863 

 7. DiNardo AR, Netea MG, Musher DM. Postinfectious 
Epigenetic Immune Modifications - A Double-Edged 
Sword. N Engl J Med. 2021; 384:261–70. 
https://doi.org/10.1056/NEJMra2028358 
PMID:33471978 

 8. DiNardo AR, Rajapakshe K, Nishiguchi T, Grimm SL, 
Mtetwa G, Dlamini Q, Kahari J, Mahapatra S, Kay A, 
Maphalala G, Mace EM, Makedonas G, Cirillo JD, et al. 
DNA hypermethylation during tuberculosis dampens host 
immune responsiveness. J Clin Invest. 2020; 130:3113–23. 
https://doi.org/10.1172/JCI134622 
PMID:32125282 

 9. Roquilly A, Jacqueline C, Davieau M, Mollé A, Sadek A, 
Fourgeux C, Rooze P, Broquet A, Misme-Aucouturier 
B, Chaumette T, Vourc'h M, Cinotti R, Marec N, et al. 
Alveolar macrophages are epigenetically altered after 
inflammation, leading to long-term lung 
immunoparalysis. Nat Immunol. 2020; 21:636–48. 
https://doi.org/10.1038/s41590-020-0673-x 
PMID:32424365 

10. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, 
Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas 
PG, Youngblood B. De Novo Epigenetic Programs 
Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation. 
Cell. 2017; 170:142–57.e19. 
https://doi.org/10.1016/j.cell.2017.06.007 
PMID:28648661 

11. Sen DR, Kaminski J, Barnitz RA, Kurachi M, 
Gerdemann U, Yates KB, Tsao HW, Godec J, LaFleur 
MW, Brown FD, Tonnerre P, Chung RT, Tully DC, et al. 
The epigenetic landscape of T cell exhaustion. 
Science. 2016; 354:1165–9. 
https://doi.org/10.1126/science.aae0491 
PMID:27789799 

12. Torres KCL, Rezende VB, Lima-Silva ML, Santos LJS, 
Costa CG, Mambrini JVM, Peixoto SV, Tarazona-
Santos E, Martins Filho OA, Lima-Costa MF, Teixeira-
Carvalho A. Immune senescence and biomarkers 
profile of Bambuí aged population-based cohort. Exp 
Gerontol. 2018; 103:47–56. 
https://doi.org/10.1016/j.exger.2017.12.006 
PMID:29247791 

13. McMurray DN. Disease model: pulmonary 
tuberculosis. Trends Mol Med. 2001; 7:135–7. 
https://doi.org/10.1016/s1471-4914(00)01901-8 
PMID:11286786 

14. Pereira RM, Hogan PG, Rao A, Martinez GJ. 
Transcriptional and epigenetic regulation of T cell 
hyporesponsiveness. J Leukoc Biol. 2017; 102:601–15. 

https://doi.org/10.1189/jlb.2RI0317-097R 
PMID:28606939 

15. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, 
Tanaseichuk O, Benner C, Chanda SK. Metascape 
provides a biologist-oriented resource for the analysis 
of systems-level datasets. Nat Commun. 2019; 
10:1523. 
https://doi.org/10.1038/s41467-019-09234-6 
PMID:30944313 

16. Bloom CI, Graham CM, Berry MP, Rozakeas F, Redford 
PS, Wang Y, Xu Z, Wilkinson KA, Wilkinson RJ, 
Kendrick Y, Devouassoux G, Ferry T, Miyara M, et al. 
Transcriptional blood signatures distinguish 
pulmonary tuberculosis, pulmonary sarcoidosis, 
pneumonias and lung cancers. PLoS One. 2013; 
8:e70630. 
https://doi.org/10.1371/journal.pone.0070630 
PMID:23940611 

17. Kaforou M, Wright VJ, Oni T, French N, Anderson ST, 
Bangani N, Banwell CM, Brent AJ, Crampin AC, 
Dockrell HM, Eley B, Heyderman RS, Hibberd ML, et 
al. Detection of tuberculosis in HIV-infected and -
uninfected African adults using whole blood RNA 
expression signatures: a case-control study. PLoS 
Med. 2013; 10:e1001538. 
https://doi.org/10.1371/journal.pmed.1001538 
PMID:24167453 

18. Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell 
CM, Chagaluka G, Crampin AC, Dockrell HM, French 
N, Hamilton MS, Hibberd ML, Kern F, Langford PR, et 
al. Diagnosis of childhood tuberculosis and host RNA 
expression in Africa. N Engl J Med. 2014; 370:1712–
23. 
https://doi.org/10.1056/NEJMoa1303657 
PMID:24785206 

19. Bobak CA, Abbolish TB. Analysis of Blood and Breath’ 
Omics to Lend Insights and Strategies for Hindering 
Tuberculosis. 2021. 

20. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, 
Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, 
Assimes TL, Ferrucci L, Horvath S. DNA methylation 
GrimAge strongly predicts lifespan and healthspan. 
Aging (Albany NY). 2019; 11:303–27. 
https://doi.org/10.18632/aging.101684 
PMID:30669119 

21. Ucar D, Márquez EJ, Chung CH, Marches R, Rossi RJ, 
Uyar A, Wu TC, George J, Stitzel ML, Palucka AK, 
Kuchel GA, Banchereau J. The chromatin accessibility 
signature of human immune aging stems from CD8+ T 
cells. J Exp Med. 2017; 214:3123–44. 
https://doi.org/10.1084/jem.20170416 
PMID:28904110 

https://doi.org/10.1189/jlb.3MA0114-034RR
https://pubmed.ncbi.nlm.nih.gov/25001863
https://doi.org/10.1056/NEJMra2028358
https://pubmed.ncbi.nlm.nih.gov/33471978
https://doi.org/10.1172/JCI134622
https://pubmed.ncbi.nlm.nih.gov/32125282
https://doi.org/10.1038/s41590-020-0673-x
https://pubmed.ncbi.nlm.nih.gov/32424365
https://doi.org/10.1016/j.cell.2017.06.007
https://pubmed.ncbi.nlm.nih.gov/28648661
https://doi.org/10.1126/science.aae0491
https://pubmed.ncbi.nlm.nih.gov/27789799
https://doi.org/10.1016/j.exger.2017.12.006
https://pubmed.ncbi.nlm.nih.gov/29247791
https://doi.org/10.1016/s1471-4914(00)01901-8
https://pubmed.ncbi.nlm.nih.gov/11286786
https://doi.org/10.1189/jlb.2RI0317-097R
https://pubmed.ncbi.nlm.nih.gov/28606939
https://doi.org/10.1038/s41467-019-09234-6
https://pubmed.ncbi.nlm.nih.gov/30944313
https://doi.org/10.1371/journal.pone.0070630
https://pubmed.ncbi.nlm.nih.gov/23940611
https://doi.org/10.1371/journal.pmed.1001538
https://pubmed.ncbi.nlm.nih.gov/24167453
https://doi.org/10.1056/NEJMoa1303657
https://pubmed.ncbi.nlm.nih.gov/24785206
https://doi.org/10.18632/aging.101684
https://pubmed.ncbi.nlm.nih.gov/30669119
https://doi.org/10.1084/jem.20170416
https://pubmed.ncbi.nlm.nih.gov/28904110


www.aging-us.com 2186 AGING 

22. Mahalingaiah PK, Ponnusamy L, Singh KP. Oxidative 
stress-induced epigenetic changes associated with 
malignant transformation of human kidney epithelial 
cells. Oncotarget. 2017; 8:11127–43. 
https://doi.org/10.18632/oncotarget.12091 
PMID:27655674 

23. Vrtačnik P, Zupan J, Mlakar V, Kranjc T, Marc J, Kern B, 
Ostanek B. Epigenetic enzymes influenced by oxidative 
stress and hypoxia mimetic in osteoblasts are 
differentially expressed in patients with osteoporosis 
and osteoarthritis. Sci Rep. 2018; 8:16215. 
https://doi.org/10.1038/s41598-018-34255-4 
PMID:30385847 

24. Horvath S, Levine AJ. HIV-1 Infection Accelerates Age 
According to the Epigenetic Clock. J Infect Dis. 2015; 
212:1563–73. 
https://doi.org/10.1093/infdis/jiv277 
PMID:25969563 

25. Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, 
Khosroheidari M, Morsey BM, Swindells S, Shen H, Ng 
CT, Flagg K, Chen D, Zhang K, et al. Methylome-wide 
Analysis of Chronic HIV Infection Reveals Five-Year 
Increase in Biological Age and Epigenetic Targeting of 
HLA. Mol Cell. 2016; 62:157–68. 
https://doi.org/10.1016/j.molcel.2016.03.019 
PMID:27105112 

26. Singhania A, Verma R, Graham CM, Lee J, Tran T, 
Richardson M, Lecine P, Leissner P, Berry MPR, 
Wilkinson RJ, Kaiser K, Rodrigue M, Woltmann G, et 
al. A modular transcriptional signature identifies 
phenotypic heterogeneity of human tuberculosis 
infection. Nat Commun. 2018; 9:2308. 
https://doi.org/10.1038/s41467-018-04579-w 
PMID:29921861 

27. Zhang Y, Wilson R, Heiss J, Breitling LP, Saum KU, 
Schöttker B, Holleczek B, Waldenberger M, Peters A, 
Brenner H. DNA methylation signatures in peripheral 
blood strongly predict all-cause mortality. Nat 
Commun. 2017; 8:14617. 
https://doi.org/10.1038/ncomms14617 
PMID:28303888 

28. Wen H, Dou Y, Hogaboam CM, Kunkel SL. Epigenetic 
regulation of dendritic cell-derived interleukin-12 
facilitates immunosuppression after a severe innate 
immune response. Blood. 2008; 111:1797–804. 
https://doi.org/10.1182/blood-2007-08-106443 
PMID:18055863 

29. Kathirvel M, Mahadevan S. The role of epigenetics in 
tuberculosis infection. Epigenomics. 2016; 8:537–49. 
https://doi.org/10.2217/epi.16.1 
PMID:27035266 

30. Pennini ME, Pai RK, Schultz DC, Boom WH, Harding 
CV. Mycobacterium tuberculosis 19-kDa lipoprotein 

inhibits IFN-gamma-induced chromatin remodeling of 
MHC2TA by TLR2 and MAPK signaling. J Immunol. 
2006; 176:4323–30. 
https://doi.org/10.4049/jimmunol.176.7.4323 
PMID:16547269 

31. Yaseen I, Kaur P, Nandicoori VK, Khosla S. 
Mycobacteria modulate host epigenetic machinery by 
Rv1988 methylation of a non-tail arginine of histone 
H3. Nat Commun. 2015; 6:8922. 
https://doi.org/10.1038/ncomms9922 
PMID:26568365 

32. Mikovits JA, Young HA, Vertino P, Issa JP, Pitha PM, 
Turcoski-Corrales S, Taub DD, Petrow CL, Baylin SB, 
Ruscetti FW. Infection with human immunodeficiency 
virus type 1 upregulates DNA methyltransferase, 
resulting in de novo methylation of the gamma 
interferon (IFN-gamma) promoter and subsequent 
downregulation of IFN-gamma production. Mol Cell 
Biol. 1998; 18:5166–77. 
https://doi.org/10.1128/MCB.18.9.5166 
PMID:9710601 

33. Youngblood B, Noto A, Porichis F, Akondy RS, Ndhlovu 
ZM, Austin JW, Bordi R, Procopio FA, Miura T, Allen 
TM, Sidney J, Sette A, Walker BD, et al. Cutting edge: 
Prolonged exposure to HIV reinforces a poised 
epigenetic program for PD-1 expression in virus-
specific CD8 T cells. J Immunol. 2013; 191:540–4. 
https://doi.org/10.4049/jimmunol.1203161 
PMID:23772031 

34. DiNardo AR, Nishiguchi T, Mace EM, Rajapakshe K, 
Mtetwa G, Kay A, Maphalala G, Secor WE, Mejia R, 
Orange JS, Coarfa C, Bhalla KN, Graviss EA, et al. 
Schistosomiasis Induces Persistent DNA Methylation 
and Tuberculosis-Specific Immune Changes. J 
Immunol. 2018; 201:124–33. 
https://doi.org/10.4049/jimmunol.1800101 
PMID:29752313 

35. Prescott HC, Osterholzer JJ, Langa KM, Angus DC, 
Iwashyna TJ. Late mortality after sepsis: propensity 
matched cohort study. BMJ. 2016; 353:i2375. 
https://doi.org/doi:10.1136/bmj.i2375 
PMID:27189000 

36. Sandvall B, Rueda AM, Musher DM. Long-term 
survival following pneumococcal pneumonia. Clin 
Infect Dis. 2013; 56:1145–6. 
https://doi.org/10.1093/cid/cis1207 
PMID:23300240 

37. de Perio MA, Tsevat J, Roselle GA, Kralovic SM, 
Eckman MH. Cost-effectiveness of interferon gamma 
release assays vs tuberculin skin tests in health care 
workers. Arch Intern Med. 2009; 169:179–87. 
https://doi.org/10.1001/archinternmed.2008.524 
PMID:19171815 

https://doi.org/10.18632/oncotarget.12091
https://pubmed.ncbi.nlm.nih.gov/27655674
https://doi.org/10.1038/s41598-018-34255-4
https://pubmed.ncbi.nlm.nih.gov/30385847
https://doi.org/10.1093/infdis/jiv277
https://pubmed.ncbi.nlm.nih.gov/25969563
https://doi.org/10.1016/j.molcel.2016.03.019
https://pubmed.ncbi.nlm.nih.gov/27105112
https://doi.org/10.1038/s41467-018-04579-w
https://pubmed.ncbi.nlm.nih.gov/29921861
https://doi.org/10.1038/ncomms14617
https://pubmed.ncbi.nlm.nih.gov/28303888
https://doi.org/10.1182/blood-2007-08-106443
https://pubmed.ncbi.nlm.nih.gov/18055863
https://doi.org/10.2217/epi.16.1
https://pubmed.ncbi.nlm.nih.gov/27035266
https://doi.org/10.4049/jimmunol.176.7.4323
https://pubmed.ncbi.nlm.nih.gov/16547269
https://doi.org/10.1038/ncomms9922
https://pubmed.ncbi.nlm.nih.gov/26568365
https://doi.org/10.1128/MCB.18.9.5166
https://pubmed.ncbi.nlm.nih.gov/9710601
https://doi.org/10.4049/jimmunol.1203161
https://pubmed.ncbi.nlm.nih.gov/23772031
https://doi.org/10.4049/jimmunol.1800101
https://pubmed.ncbi.nlm.nih.gov/29752313
https://doi.org/doi:10.1136/bmj.i2375
https://pubmed.ncbi.nlm.nih.gov/27189000
https://doi.org/10.1093/cid/cis1207
https://pubmed.ncbi.nlm.nih.gov/23300240
https://doi.org/10.1001/archinternmed.2008.524
https://pubmed.ncbi.nlm.nih.gov/19171815


www.aging-us.com 2187 AGING 

38. Freimane L, Barkane L, Igumnova V, Kivrane A, Zole E, 
Ranka R. Telomere length and mitochondrial DNA 
copy number in multidrug-resistant tuberculosis. 
Tuberculosis (Edinb). 2021; 131:102144. 
https://doi.org/10.1016/j.tube.2021.102144 
PMID:34781086 

39. Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, 
Pipkin ME, Togher S, Heissmeyer V, Zhang YC, Crotty 
S, Lamperti ED, Ansel KM, Mempel TR, et al. The 
transcription factor NFAT promotes exhaustion of 
activated CD8⁺ T cells. Immunity. 2015; 42:265–78. 
https://doi.org/10.1016/j.immuni.2015.01.006 
PMID:25680272 

40. Scott-Browne JP, López-Moyado IF, Trifari S, Wong V, 
Chavez L, Rao A, Pereira RM. Dynamic Changes in 
Chromatin Accessibility Occur in CD8+ T Cells Responding 
to Viral Infection. Immunity. 2016; 45:1327–40. 
https://doi.org/10.1016/j.immuni.2016.10.028 
PMID:27939672 

41. Yang HJ, Kong Y, Cheng Y, Janagama H, Hassounah H, 
Xie H, Rao J, Cirillo JD. Real-time Imaging of 
Mycobacterium tuberculosis, Using a Novel Near-
Infrared Fluorescent Substrate. J Infect Dis. 2017; 
215:405–14. 
https://doi.org/10.1093/infdis/jiw298 
PMID:27421748 

42. Sule P, Tilvawala R, Mustapha T, Hassounah H, 
Noormohamed A, Kundu S, Graviss EA, Walkup GK, 
Kong Y, Cirillo JD. Rapid Tuberculosis Diagnosis Using 
Reporter Enzyme Fluorescence. J Clin Microbiol. 
2019; 57:e01462–19. 
https://doi.org/10.1128/JCM.01462-19 
PMID:31511338 

43. Christensen LM, Sule P, Cirillo SLG, Strain M, Plumlee 
Q, Adams LG, Cirillo JD. Legionnaires' Disease 
Mortality in Guinea Pigs Involves the p45 Mobile 
Genomic Element. J Infect Dis. 2019; 220:1700–10. 
https://doi.org/10.1093/infdis/jiz340 
PMID:31268152 

44. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner 
A. Preparation of reduced representation bisulfite 
sequencing libraries for genome-scale DNA 
methylation profiling. Nat Protoc. 2011; 6:468–81. 
https://doi.org/10.1038/nprot.2010.190 
PMID:21412275 

45. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, 
Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, 
Jaffe DB, Gnirke A, Jaenisch R, Lander ES. Genome-
scale DNA methylation maps of pluripotent and 
differentiated cells. Nature. 2008; 454:766–70. 
https://doi.org/10.1038/nature07107 
PMID:18600261 

46. Krueger F, Andrews SR. Bismark: a flexible aligner and 
methylation caller for Bisulfite-Seq applications. 
Bioinformatics. 2011; 27:1571–2. 
https://doi.org/10.1093/bioinformatics/btr167 
PMID:21493656 

47. Park Y, Wu H. Differential methylation analysis for BS-
seq data under general experimental design. 
Bioinformatics. 2016; 32:1446–53. 
https://doi.org/10.1093/bioinformatics/btw026 
PMID:26819470 

48. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities 
for comparing genomic features. Bioinformatics. 2010; 
26:841–2. 
https://doi.org/10.1093/bioinformatics/btq033 
PMID:20110278 

49. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, 
Mesirov JP, Tamayo P. The Molecular Signatures 
Database (MSigDB) hallmark gene set collection. Cell 
Syst. 2015; 1:417–25. 
https://doi.org/10.1016/j.cels.2015.12.004 
PMID:26771021 

50. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, 
Ramage D, Amin N, Schwikowski B, Ideker T. 
Cytoscape: a software environment for integrated 
models of biomolecular interaction networks. 
Genome Res. 2003; 13:2498–504. 
https://doi.org/10.1101/gr.1239303 
PMID:14597658 

51. Bader GD, Hogue CW. An automated method for 
finding molecular complexes in large protein 
interaction networks. BMC Bioinformatics. 2003; 4:2. 
https://doi.org/10.1186/1471-2105-4-2 
PMID:12525261 

52. Swift ML. GraphPad Prism, Data Analysis, and Scientific 
Graphing. J Chem Inf Comput Sci. 1997; 37:411–2. 

53. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, 
Goldstein J, Nelson PS, Desprez PY, Campisi J. 
Senescence-associated secretory phenotypes reveal 
cell-nonautonomous functions of oncogenic RAS and 
the p53 tumor suppressor. PLoS Biol. 2008; 6:2853–68. 
https://doi.org/10.1371/journal.pbio.0060301 
PMID:19053174 

54. Lasry A, Ben-Neriah Y. Senescence-associated 
inflammatory responses: aging and cancer 
perspectives. Trends Immunol. 2015; 36:217–28. 
https://doi.org/10.1016/j.it.2015.02.009 
PMID:25801910 

55. Davis S, Meltzer PS. GEOquery: a bridge between the 
Gene Expression Omnibus (GEO) and BioConductor. 
Bioinformatics. 2007; 23:1846–7. 
https://doi.org/10.1093/bioinformatics/btm254 
PMID:17496320 

https://doi.org/10.1016/j.tube.2021.102144
https://pubmed.ncbi.nlm.nih.gov/34781086
https://doi.org/10.1016/j.immuni.2015.01.006
https://pubmed.ncbi.nlm.nih.gov/25680272
https://doi.org/10.1016/j.immuni.2016.10.028
https://pubmed.ncbi.nlm.nih.gov/27939672
https://doi.org/10.1093/infdis/jiw298
https://pubmed.ncbi.nlm.nih.gov/27421748
https://doi.org/10.1128/JCM.01462-19
https://pubmed.ncbi.nlm.nih.gov/31511338
https://doi.org/10.1093/infdis/jiz340
https://pubmed.ncbi.nlm.nih.gov/31268152
https://doi.org/10.1038/nprot.2010.190
https://pubmed.ncbi.nlm.nih.gov/21412275
https://doi.org/10.1038/nature07107
https://pubmed.ncbi.nlm.nih.gov/18600261
https://doi.org/10.1093/bioinformatics/btr167
https://pubmed.ncbi.nlm.nih.gov/21493656
https://doi.org/10.1093/bioinformatics/btw026
https://pubmed.ncbi.nlm.nih.gov/26819470
https://doi.org/10.1093/bioinformatics/btq033
https://pubmed.ncbi.nlm.nih.gov/20110278
https://doi.org/10.1016/j.cels.2015.12.004
https://pubmed.ncbi.nlm.nih.gov/26771021
https://doi.org/10.1101/gr.1239303
https://pubmed.ncbi.nlm.nih.gov/14597658
https://doi.org/10.1186/1471-2105-4-2
https://pubmed.ncbi.nlm.nih.gov/12525261
https://doi.org/10.1371/journal.pbio.0060301
https://pubmed.ncbi.nlm.nih.gov/19053174
https://doi.org/10.1016/j.it.2015.02.009
https://pubmed.ncbi.nlm.nih.gov/25801910
https://doi.org/10.1093/bioinformatics/btm254
https://pubmed.ncbi.nlm.nih.gov/17496320


www.aging-us.com 2188 AGING 

56. Plaisier SB, Taschereau R, Wong JA, Graeber TG. 
Rank-rank hypergeometric overlap: identification of 
statistically significant overlap between gene-
expression signatures. Nucleic Acids Res. 2010; 
38:e169. 
https://doi.org/10.1093/nar/gkq636 
PMID:20660011 

57. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR, Lander ES, Mesirov JP. Gene set enrichment 
analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc 
Natl Acad Sci U S A. 2005; 102:15545–50. 
https://doi.org/10.1073/pnas.0506580102 
PMID:16199517 

58. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. 
Enrichment map: a network-based method for gene-
set enrichment visualization and interpretation. PLoS 
One. 2010; 5:e13984. 
https://doi.org/10.1371/journal.pone.0013984 
PMID:21085593 

59. Kucera M, Isserlin R, Arkhangorodsky A, Bader GD. 
AutoAnnotate: A Cytoscape app for summarizing 
networks with semantic annotations. F1000Res. 
2016; 5:1717. 
https://doi.org/10.12688/f1000research.9090.1 
PMID:27830058 

60. Sweeney TE, Braviak L, Tato CM, Khatri P. Genome-
wide expression for diagnosis of pulmonary 
tuberculosis: a multicohort analysis. Lancet Respir 
Med. 2016; 4:213–24. 
https://doi.org/10.1016/S2213-2600(16)00048-5 
PMID:26907218 

61. Wilcoxon F. Individual Comparisons by Ranking 
Methods. Biometrics Bulletin. 1945; 1:80–3.  

 https://doi.org/10.2307/3001968" 

62. Kolde R. Pretty Heatmaps. 2018. 

63. Horvath S. DNA methylation age of human tissues 
and cell types. Genome Biol. 2013; 14:R115. 
https://doi.org/10.1186/gb-2013-14-10-r115 
PMID:24138928 

64. Ren X, Kuan PF. RNAAgeCalc: A multi-tissue 
transcriptional age calculator. PLoS One. 2020; 
15:e0237006. 
https://doi.org/10.1371/journal.pone.0237006 
PMID:32750074 

 
 

https://doi.org/10.1093/nar/gkq636
https://pubmed.ncbi.nlm.nih.gov/20660011
https://doi.org/10.1073/pnas.0506580102
https://pubmed.ncbi.nlm.nih.gov/16199517
https://doi.org/10.1371/journal.pone.0013984
https://pubmed.ncbi.nlm.nih.gov/21085593
https://doi.org/10.12688/f1000research.9090.1
https://pubmed.ncbi.nlm.nih.gov/27830058
https://doi.org/10.1016/S2213-2600(16)00048-5
https://pubmed.ncbi.nlm.nih.gov/26907218
https://doi.org/10.2307/3001968
https://doi.org/10.1186/gb-2013-14-10-r115
https://pubmed.ncbi.nlm.nih.gov/24138928
https://doi.org/10.1371/journal.pone.0237006
https://pubmed.ncbi.nlm.nih.gov/32750074


www.aging-us.com 2189 AGING 

SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. TF overlap between guinea pigs and humans. MsigDB Gene set enrichment analysis shows considerable 
overlap in TF targets between humans (light grey bars) and guinea pigs (dark grey bars) with TB. The box colors show –log 10 p-value of 
enrichment, with darker shades of blue indicating significance. The numbers in the squares indicate the predicted gene count. Only a 
subset of TB-relevant TF targets are shown, for the full list refer to Supplementary Table 3. 
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Supplementary Figure 2. Shared genes and pathway between guinea pigs and humans. Enrichment network generated in 
Metascape [15] from five gene lists, three from human data [8] and two from Cavia generated in this study. Top 1000 differentially 
hypermethylated genes from all merged gene list was used for analysis. The nodes represent pie charts, where the color represents the 
identity in the input gene list. Cluster labels are derived from functional enriched gene term for that cluster. If the same gene is shared 
between multiple lists, the color appears in the pie. 
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Supplementary Figure 3. Volcano plots showing the differential gene expression of canonical genes associated with epigenetic 
regulation in (A) GSE42834, (B) GSE37250, and (C) GSE39940. Differential expression (DE) analysis of genes was conducted using the 
‘limma’ package in R to calculate the log2FC and p-value of each gene where active TB was contrasted to all the other disease classes as a 
one-vs.-rest problem. 
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Supplementary Figure 4. DNA methylation and cellular senescence genes are increased TB and other chronic infections. 
(A–C) A summed z-score for gene expression from each patient was assessed for pathways including DNA methylation, SASP, and OSIS 
pathways, with all three studies demonstrating increased summed z-scores in TB patients (red box plot) as compared to other groups. 
P-values from a Wilcoxon rank sum test are indicated by asterisks. Abbreviations: SASP: Senescence-associated secretory phenotype; 
OSIS: Oxidative stress-induced senescence. 
 
  



www.aging-us.com 2193 AGING 

Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1–3. 
 
Supplementary Table 1. DNA methylation results in the guinea pig (Cavia Porcellus) model of TB infection. 
 
Supplementary Table 2. Pathway analysis of hypermethylated genes in humans and guinea pig (Cavia Porcellus) 
with TB. 
 
Supplementary Table 3. Epigenetic changes in genes targeted by immune-related transcription factors (TF) in 
humans and guinea pig (Cavia Porcellus) with TB. 
 




