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Abstract

Purpose

This study investigated the relationship between the ground reaction force-time profile of a

countermovement jump (CMJ) and fatigue, specifically focusing on predicting the onset of

neuromuscular versus metabolic fatigue using the CMJ.

Method

Ten recreational athletes performed 5 CMJs at time points prior to, immediately following,

and at 0.5, 1, 3, 6, 24 and 48 h after training, which comprised repeated sprint sessions of

low, moderate, or high workloads. Features of the concentric portion of the CMJ force-time

signature at the measurement time points were analysed using Principal Components Anal-

ysis (PCA) and functional PCA (fPCA) to better understand fatigue onset given training

workload. In addition, Linear Mixed Effects (LME) models were developed to predict the

onset of fatigue.

Results

The first two Principal Components (PCs) using PCA explained 68% of the variation in CMJ

features, capturing variation between athletes through weighted combinations of force, con-

centric time and power. The next two PCs explained 9.9% of the variation and revealed

fatigue effects between 6 to 48 h after training for PC3, and contrasting neuromuscular and

metabolic fatigue effects in PC4. fPCA supported these findings and further revealed con-

trasts between metabolic and neuromuscular fatigue effects in the first and second half of

the force-time curve in PC3, and a double peak effect in PC4. Subsequently, CMJ measure-

ments up to 0.5 h after training were used to predict relative peak CMJ force, with mean
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squared errors of 0.013 and 0.015 at 6 and 48 h corresponding to metabolic and neuromus-

cular fatigue.

Conclusion

The CMJ was found to provide a strong predictor of neuromuscular and metabolic fatigue,

after accounting for force, concentric time and power. This method can be used to assist

coaches to individualise future training based on CMJ response to the immediate session.

Introduction

Managing the fatigue response to training is critical to maximise athlete adaptation, whilst

concurrently minimising potential injury and avoiding overreaching. It is therefore important

for coaches and sports scientists alike to accurately monitor and predict the fatigue status of an

athlete to specific training programs. We focus here on fatigue in terms of a decline in the abil-

ity of muscle group(s) to generate force [1]. The overall fatigue status of an athlete at any point

in a training cycle is multi-faceted, reflecting such aspects as the point in the training and com-

petition cycle, nutritional status, use of recovery techniques and general life stressors [2].

Training programs can be optimised by manipulating training variables within the theoreti-

cal constraints of the super-compensation model which requires anticipative management of

fatigue to ensure full or partial recovery in time for the next training session [3]. Thus, there is

a need to monitor both short term fatigue, typically metabolic in origin, and more prolonged,

neuromuscular fatigue. Metabolic fatigue is described as a decrement in muscle force generat-

ing capacity as a response to physical exercise that has outstripped the rate of ATP1 replace-

ment. Its effects begin to diminish after a period of five minutes and is generally thought to

have dissipated after 3 h [1]. This contrasts with neuromuscular fatigue, which is defined as a

prolonged decrease in the muscle’s ability to generate a force or power output after a period of

recovery. Neuromuscular fatigue can be present for upwards of 48 h, and can be identified as a

compound system with both central and peripheral origins [4].

Practitioners often use the Countermovement Jump (CMJ) test to monitor athlete fatigue,

or equivalently recovery status, in terms of neuromuscular and/or metabolic fatigue [5]. In

multiple studies, the CMJ is used to characterise fatigue in functional lower body dynamic per-

formance following: (i) acute training interventions [6], or (ii) as a longitudinal monitoring

tool [7, 8]. Existing research using dynamic performance tests such as the CMJ are generally

focused on discrete time dependent variables [9] derived from the ground reaction force (such

as maximal or peak concentric force, power or velocity). They do not investigate variation

between athletes in relation to fatigue recovery over time and their effects on individualised,

predictive fatigue management. Typically, these studies have been based on mean and peak

force values using standard inferential statistical techniques such as ANCOVA [3, 10]. A limi-

tation of these approaches, is that these discrete variables do not explicitly account for the

multi-dimensional nature of the data, nor the temporal elements associated with different

forms of fatigue. Some authors have more recently sought to account for the time dimensional-

ity of the ground reaction force profile via normalisation techniques [11] or via alternative sta-

tistical approaches such as spatial parametric mapping [12].

A more widely known approach is the use of Principal Components Analysis (PCA) which

can provide a method for explaining variation in data through transformation of many, possi-

bly correlated, factors into a smaller set of uncorrelated components [13]. Thus, a PCA of

PCA can distinguish and predict neuromuscular vs metabolic fatigue using CMJ force-time curves
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force-time curve features across training regimes and recovery times can help identify complex

patterns in athlete fatigue status and expressing similarities and differences within the data set

[14]. Furthermore this technique reduces the dimensionality of the data, which enhances visu-

alisation and interpretation. This approach, however, can be limited in terms of the number of

features that can be studied as PCA returns an incomplete result when the dimensionality

exceeds the number of samples [13]. As the dimensionality is the product of the number of fea-

tures by the number of time points, this can occur quite easily for small datasets. Functional

PCA (fPCA) can help to address this challenge by approximating the force-time curve as a

function. In addition, it can provide insight into the characteristics of the force-time curve

itself and their relationship to fatigue [15].

In recent times, more comprehensive features based analysis of the CMJ have been reported

in relation to their impact on neuromuscular and other forms of fatigue [16]. However, further

investigation of these promising insights has been hampered by the lack of a dataset of suffi-

ciently high resolution in time to help discriminate between neuromuscular versus metabolic

fatigue.

In this paper, we analyse a new high resolution dataset to study and model the relationship

between training workload and onset of short term metabolic fatigue versus long term neuro-

muscular fatigue. We study CMJ performance of ten recreational athletes at multiple time

points from pre- to 48 h post-training in response to different training loads, namely low,

moderate, and high volume repeated sprint training workloads. We apply PCA, fPCA and

regression analysis, focusing on the concentric phase of the ground reaction force-time profile

recorded at each time point pre- and post-training. This approach presents a novel opportu-

nity to classify the underlying effects and dynamics of processes associated with fatigue, and

presents an opportunity to use CMJ force-time data to monitor and predict fatigue and recov-

ery time. Such tools and outcomes have the potential to support coaches and sport scientists to

proactively manage athlete training and fatigue using non-intrusive monitoring based on the

CMJ.

Methods

Design

This study used a randomised cross-over design with repeated measures over time. Each par-

ticipant was requested to complete three randomised repeated sprint running sessions of low,

moderate, or high workload, separated by a minimum of 96 h. Participants performed a single

set of 5 CMJs before each session, immediately after each session (0), and at 0.5, 1, 3, 6, 24 and

48 h, after each session.

Subjects

Ten recreationally trained athletes (5 male and 5 female) were recruited to participate during

the off-season, with physical characteristics of age: 23.5 y ± 1.5 y (mean ± standard deviation);

height: 1.71 m ± 0.1 m; and mass: 71.0 kg ± 12.4 kg. Qualitatively, participants’ level of famil-

iarity with jumping movements was variable; however all participants were defined as non-

habituated jumpers as they did not participate in jumping dominated sports but remained

physically active. Variability in jump technique was not explicitly studied here; however, its

impact on performance across athletes is captured via linear mixed effects modelling (Section

Statistical Analysis). All procedures were approved by the University of Canberra ethics com-

mittee and written informed consent was obtained from all participants prior to commencing

data collection.

PCA can distinguish and predict neuromuscular vs metabolic fatigue using CMJ force-time curves
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Repeated sprint protocol

Participants randomly completed a low (2 sets), moderate (4 sets), and high volume (6 sets)

repeated sprint protocol. Each protocol consisted of multiple sets of 10 x 20 m maximal sprints

on a 20 s cycle, with a 180 s inter-set rest. The protocol is similar to other high intensity

repeated sprint protocols that generate fatigue [17, 18]. Prior to beginning the first set of any

training session each participant completed a standardised warm-up. Participants were

instructed to perform each sprint at a maximal intensity and strong verbal encouragement was

provided. Each sprint repetition was timed using a single beam infra-red light gate system

(Fusion Smartspeed Pro, Summer Park, QLD, Australia) and all repeat sprint training was

conducted on an indoor synthetic running track.

Countermovement jump (CMJ)

At each time point of interest participants performed a single set of 5 CMJ trials with minimal

(<20 s) passive recovery between each effort. Each CMJ was performed on a portable force

plate sampling at 600 Hz (400 Series Force Plate; Fitness Technology, Adelaide, Australia) with

a 400 g aluminium bar held across their shoulders to control for arm swing. Ballistic measure-

ment software (Fitness Technology, Adelaide, Australia) was used to operate the force plate

and to record the force-time signal which was then exported for processing and extraction

using a custom algorithm developed in the R statistical and data analysis environment [19].

Participants were required to stand in an upright position, with their feet approximately shoul-

der width apart, perform a rapid self-selected depth counter movement followed by an explo-

sive vertical movement with the instruction to jump as high as possible, whilst keeping the bar

firmly against their shoulders. Prior to testing at each test period, each participant completed a

standardised warm-up of dynamic movements and a series of submaximal CMJs.

Using the ground reaction force-time data from each CMJ performed, data pertaining only

to the concentric phase of the jump was extracted. The concentric phase of the CMJ was

defined as “the portion of the jump squat before take-off in which the change in displacement

is positive” [20]. This typically corresponded to the portion of the force-time curve from where

force output was approximately 10% below standing bodyweight to just before flight phase

(force = 0). Although there are many time discrete variables that can be used to characterise

CMJ performance [9, 21] this investigation has used the following variables due to the mixed

population recruited; peak force relative to bodyweight (relPeakF), peak power relative to body-

weight (relPeakP), time to complete the concentric phase and the time from the beginning of

the concentric phase to peak force [22].

The analysis obtained using these four features was compared against an analysis using the

concentric portion of the force-time curve. Although more features or a greater portion of the

curve could be used, both increase dimensionality substantially as jumps are repeated at multi-

ple time points before and after training. Given the small size of the data [10 recreational ath-

letes), the ability to correctly attribute effects in the model is a significant issue [23]. Therefore,

we focused on concentric features and curve in this initial study as they have been shown to be

related to force development ability and fatigue [20, 24]. However, the methods can be

extended in an obvious manner to include more features and more of the curve with a larger

dataset.

Statistical analysis

The statistical analysis is divided into two sections relating to: (i) identification of metabolic

and neuromuscular fatigue using PCA and fPCA, and (ii) prediction of fatigue status through

mixed effects modelling. All analyses were completed using the R statistical programming

PCA can distinguish and predict neuromuscular vs metabolic fatigue using CMJ force-time curves
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environment using the stats, nlme and fda packages [15, 19, 25] for PCA, Linear Mixed Effects

(LME) and fPCA models, respectively.

PCA and fPCA. To assess the impact of different repeated sprint protocols on changes in

CMJ performance, the four CMJ features (relPeakF, relPeakP, concentric jump time, concentric

time to peak force) were stratified by eight time points creating 32 variables for each partici-

pant. Each variable was centred and scaled for subsequent analysis. The PCA was performed

with the prcomp function from the stats package [19], using all 32 variables. The fPCA was per-

formed using penalised smoothing to fit a series of b-spline basis functions to the force-time

curve for each sample and each time point [15].

Using PCA, the Principal Components (PCs, or eigenvectors) and the corresponding pro-

portions of variance explained (eigenvalues) were computed for each method. fPCA also

produces PCs but the PCs are eigenfunctions, where each element of the PC vector is a func-

tion that maps to the force-time curve. For each PC, the relative importance of the original

variables and their inter-relationships were inferred from coefficients (loadings) of the

eigenvector or eigenfunction. Additionally, the PCA and fPCA scores were used to obtain

clusters of similar samples or similar fatiguing effects. Variants of the overall PCA and fPCA

analyses based on subsets of the data were applied for predictive modelling as described

below.

Linear mixed effects models and prediction. The prediction of athlete fatigue status fol-

lowing training using the CMJ requires the selection of a force-time curve metric useful for

sports performance. The relPeakF variable was selected as it has been reported to provide an

accurate account of fatigue experienced by an individual compared to other variables [3].

Importantly, any decrement in muscle/joint force output, as measured by relPeakF, compared

to a non-fatigued state is a classical description of fatigue regardless of origin or causation [26,

27]. Specifically, we were interested in relPeakF at 6 h and 48 h post training as they correspond

to typical rest periods for athletes completing two training sessions during a day and rest over

a weekend, respectively.

The PCA and fPCA PCs computed from CMJ measurements at some or all time points

pre- and post-training were used as predictors of fatigue via relPeakF. Two baseline models

were created using all available data (i.e. all time points) to compute PC1 and PC2 using

fPCA and thus were the benchmark for relPeakF at 6 and 48 h test intervals. These were

compared against 6 and 48 h baseline models computed using PCA. The performance of the

better of these two models were compared against PCA and fPCA based practical models

for relPeakF at 6 and 48 h where PC1 and PC2 were computed using only CMJ measurements

pre-, post- and 0.5 h after training. All models included an athlete random effect as summa-

rised in Table 1.

The nlme R package [25] was used to build LME models using the maximum likelihood

algorithm. Here, variations between athletes were modelled using a random intercept. This

way the model can account for the repeated measures nature of the experimental design where

there are correlations between measurements of the same individual. Additionally, it captures

innate differences in relPeakF levels between athletes.

To assess the validity of the models, leave one out cross validation was employed as there

were a limited number of participants (n = 10). Mean Squared Error (MSE) in the predicted

relPeakF was used to assess predictive performance and the coefficient of determination R2 was

used to assess model fit. Additionally, each of the prediction models were compared against

their respective baseline models (Models 1 and 2) using the Likelihood Ratio Test (LRT). The

LRT compares the fit of one model against another along with whether the difference is signifi-

cant [28]. The greater the likelihood ratio, the more pronounced this difference.

PCA can distinguish and predict neuromuscular vs metabolic fatigue using CMJ force-time curves
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Results

PCA results

Using the full dataset, which included measurements pre-, post- and up to 48 h after training,

the first two PCs obtained through PCA explained 68.7% of the variation in the data com-

bined, and PC3 and 4 explained an additional 9.9%. Together, the first 10 PCs described 93.1%

of the variation in the dataset. The loadings of the stratified variables for the first two PCs are

illustrated in Fig 1. The loadings for PC1 show a contrast between average force and average

time metrics whilst those for PC2 indicate that this PC represents average power. In contrast,

PC3 represents a weighted average of peak force, peak power and concurrent time and time to

peak force with stronger weighting for the 6 to 24 h period. PC4 demonstrates a clear contrast

between loadings pre- to 1 h post training against loadings for 6 h to 48 h.

The data for each athlete and each training workload are plotted against PC1 and PC2 in

Fig 2 and against PC3 and PC4 in Fig 3. Notably, these analyses revealed that data were clus-

tered most strongly by athlete when plotted against PC1 and PC2 as shown in Fig 2, and then

clustered by training workload within each athlete cluster. Clustering of training workload

became more apparent when plotted against PC3 and PC4 in Fig 3 with greater separation of

high, moderate and low training workloads.

fPCA results

The first two PCs obtained with fPCA explained 55.8% of the variation whilst PC3 and PC4

explained an additional 8.4%. Similar to PCA results, PC1 is an average of the different time

points as is PC2 (Fig 4). However, fPCA additionally reveals that PC2 is made up of a contrast

between the peak force and the drop to zero. PC3 here shows a contrast between early time

points from pre- to 1 h post training and 3 h, 6 h, and 24 and 48 h curves. This contrast occurs

at two time intervals on the force-time curve–at the beginning of the concentric phase and

around the peak. This contrast is repeated somewhat for PC4 especially at the beginning of the

concentric phase, but the latter stage reveals what appears to be contrasting effects associated

with two peaks. It was found that a substantial number of CMJs featured two peaks.

The contrast between pre- to 1 h post-training to 3 to 48 h post-training effects as reflected

in PC3 and PC4 was reflected in clusters of PC scores for PCs 1 through 4. Hierarchical cluster-

ing [29] of fPCA scores for each PC revealed that, generally speaking, pre- to 1 h post-training

scores were grouped into the same cluster, whilst 3h to 48 h-post training effects tended to be

Table 1. Summary of predictive models.

RESPONSE MODEL NAME MODEL # EXPLANATORY VARIABLES

METABOLIC FATIGUE RELPEAKF AT 6 H 6 h fPCA Baseline 1 fPCA PC1 and PC2 (using full dataset), athlete random effect

6 h PCA Baseline 2 PCA PC1 and PC2 (using full dataset), athlete random effect

6 h fPCA Practical 3 fPCA PC1 and PC2 (using data up to 0.5 h after training), athlete random

effect

6 h PCA Practical 4 PCA PC1 and PC2 (using data up to 0.5 h after training), athlete random

effect

NEUROMUSCULAR FATIGUE RELPEAKF AT 48

H

48 h fPCA Baseline 5 fPCA PC1 and PC2 (using full dataset), athlete random effect

48 h PCA Baseline 6 PCA PC1 and PC2 (using full dataset), athlete random effect

48 h fPCA

Practical

7 fPCA PC1 and PC2 (using data up to 0.5 h after training), athlete random

effect

48 h PCA Practical 8 PCA PC1 and PC2 (using data up to 0.5 h after training), athlete random

effect

https://doi.org/10.1371/journal.pone.0219295.t001
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grouped separately (see Fig 5 for PC3). The contrast in scores, especially between larger red

versus blue scores (positive versus negative) are generally more prominent within clusters of

time points.

Linear modelling and prediction

Table 2 reports the fit of each model based on cross-validated MSE and the goodness of fit R2.

Perhaps unsurprisingly, the baseline models of relPeakF at 6 h and 48 h demonstrated the best

fit (lowest MSE and highest R2) and predictive accuracy as they used all available data. Both

the 6 h and 48 h practical models, which are based on practically obtainable data, vis a vis CMJ

measurements taken up to 0.5 h post-training, provided similar cross-validation accuracy to

models that used more information. Additionally, fPCA and PCA models of the same response

and using same time points for PC construction performed similarly in terms of MSE and R2.

Further investigation of the differences between fPCA and PCA fitted models using the LRT

showed that generally, the fit of fPCA based models were not statistically different to their

PCA counterpart as reflected in the LRT p-value and minimal differences in predictive MSEs

(Table 3). Only the 6 h configuration showed a significant difference in the likelihood ratio but

Fig 1. Variable loadings for principal component 1 (PC1) to PC4, showing relative peak force, peak power output, concentric time and concentric

time to peak force at each time point. PC1 and PC 2 reflect averaged effects, whereas PC3 shows greater weighting of 6 h to 24 h metrics and PC4

identifies a clear contrast between pre- to 1 h post-training, and 3 h to 48 h post-training effects.

https://doi.org/10.1371/journal.pone.0219295.g001

PCA can distinguish and predict neuromuscular vs metabolic fatigue using CMJ force-time curves
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the difference in MSE is small. Significant differences did arise between baseline and practical

models in terms of model fit, however, the difference in predictive accuracy (MSE) was small

relative to the absolute MSE.

Discussion

The application of PCA to our study of CMJ force-time features at time points before and after

training allowed us to identify variables that most strongly contributed to onset of fatigue and

recovery following training. We found that PC1 and PC2, which explained the majority of the

variation in the data, was dominated by averaging effects across force and time metrics, and of

power (Fig 1). This, in combination with the plot of the data on PC1 and PC2 (Fig 2) suggests

that differences amongst athletes were the most significant contributor to CMJ variation.

However, PC3 and PC4, which explained an additional 9.9% of the variation, exposed con-

trasts between metabolic fatigue time course indicators for time points pre- to 1 h post-train-

ing [1], and neuromuscular fatigue indicators for time points 3 to 48 h post-training [4]. This

Fig 2. CMJ relPeakF results plotted against PC1 and PC2, illustrating the grouping of individual athlete results and intra-athlete spread of results

according to training session workload. CMJ performance tends to cluster by athlete, and within each athlete, there is some separation by training

workload.

https://doi.org/10.1371/journal.pone.0219295.g002
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finding provides evidence to support the use of CMJ as a predictor of neuromuscular and met-

abolic fatigue.

These findings were validated through fPCA evaluation of the concentric portion of the

data. PC1 and PC2 again explained the majority of the variation and represented weighted

averaging effects over the force-time curve, but additionally revealed a contrast between the

beginning of the concentric phase and the peak in PC2. This contrast between phases of the

curve and contrasting temporal response between metabolic time points up to 1 h post-train-

ing and neuromuscular time points from 3 to 48 h post training were highlighted in PC3. PC4

also demonstrated similar effects but additionally revealed an artefact of jump technique at

toe-off which can produce double peaks. We hypothesise that this relates to technical profi-

ciency, coordination and fatigue. When combined with clustering results where scores tended

to cluster by time points consistent with metabolic or neuromuscular fatigue but not both, the

findings support the use of the CMJ for predicting onset of neuromuscular versus metabolic

fatigue.

In addition, coaches and support staff can potentially apply the protocol and PCA and

fPCA analyses at the beginning of a season and other key points in time to develop team

Fig 3. CMJ relPeakF results plotted against PC3 and PC4, illustrating the grouping of individual athlete results showing greater clarity in

groupings by training workload for each athlete.

https://doi.org/10.1371/journal.pone.0219295.g003
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capability maps. These can be used to compare athletes easily and non-invasively based on

their metabolic and neuromuscular response to physical activity. This allows coaches to opti-

mise team structure, particularly in sports such as soccer and rugby, to ensure player’s

strengths are being adequately utilised. Moreover, it would also serve as a performance moni-

toring process of an athlete’s response to a given training regime over time. The cautionary

point to this approach is that there was noticeable intra-trial fatigue in our participants when

executing the proposed protocol (Section Design), i.e. fatigue experienced when performing 5

consecutive CMJs, as evident in the spread of performance results within the athlete and train-

ing intensity clusters (Fig 2). However, this dispersion was generally less than the variation due

to difference in training intensities and between individual athletes. It would also be reasonable

to assume that in a suitable athletic population that has a higher training age, the individual

variation in performing 5 consecutive CMJs would reduce thus improving the predictive accu-

racy of the described approach.

Since PCs can be considered as variables themselves, they can be used in fatigue prediction

models based on CMJ measurements at different times before and after training. The

Fig 4. Variable loadings for PC1 to PC4 where each curve represents a stratified time point, the x axis the force-curve time and the y axis the

force-curve weighting. PC1 and 2 represent averaging effects across time points, whereas PC3 and PC4 show contrasts between pre- to 1 h post-

training, and 3 h to 48 h post-training. Note also the occurrence of contrasts at the beginning and around the peak of the curve for PC3 and PC4.

https://doi.org/10.1371/journal.pone.0219295.g004
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advantage of using fPCA results is that the entire curve along with any peculiarities such as a

double peak can be used to predict fatigue. Using linear mixed effects models we were able to

predict the onset of neuromuscular and metabolic fatigue based on relPeakF whilst accounting

for large variations in fatigue profile between athletes. Practically, using CMJ measurements

up to 0.5 h after training (athletes are likely to still be at the training facility at this time), we

were able to predict the relPeakF of the CMJ with a MSE of 0.013 and 0.015 at 6 and 48 h, corre-

sponding to metabolic and neuromuscular fatigue, respectively. While the baseline model was

Fig 5. Scores for all 150 sample points (y axis) and 8 time points (x axis) for PC3. The colour of each cell represents the score value. Clusters of

sample points are shown with coloured regions and a tree on the left hand side, and clusters of time points are shown on the top with coloured regions.

1, P, 30, 60 –corresponding to pre-, post-, 0.5 and 1 h after training are clustered together. 3 h and 6 h are in their own clusters, and 24 h and 48 h are

clustered together.

https://doi.org/10.1371/journal.pone.0219295.g005

PCA can distinguish and predict neuromuscular vs metabolic fatigue using CMJ force-time curves

PLOS ONE | https://doi.org/10.1371/journal.pone.0219295 July 10, 2019 11 / 16

https://doi.org/10.1371/journal.pone.0219295.g005
https://doi.org/10.1371/journal.pone.0219295


significantly better than the practical model, the practical model was still comparable in cross-

validated predictive performance to the baseline models. Therefore, the study suggests that it is

feasible to use CMJ measurements collected before and up to 0.5 h post training to help predict

the onset of, and hence manage, neuromuscular and metabolic fatigue.

Somewhat surprisingly, the predictive accuracy (i.e. MSE) of models using PCA were virtu-

ally identical to those using fPCA across baseline and practical models in predicting both meta-

bolic and neuromuscular fatigue. This suggests that for our dataset, the four variables of peak

force, peak power, concentric time and time to peak are good predictors of neuromuscular

versus metabolic fatigue. However, it is possible that a larger sample size would enable fPCA

based models, which are of higher dimensionality than discrete PCA based models, to achieve

greater predictive accuracy as they can better capture jump and fatigue variability.

Practical applications

In an application of these findings we propose that the use of the 6 and 48 h predictions can

serve very different purposes in the training optimisation context. Athletes in many sports will

commonly complete two training sessions each day, and the 6 h prediction model can be used

to assess training readiness of an athlete ahead of their second daily session. In contrast, as the

48 h prediction model is more strongly related to the fatigue status of an athlete following a

training session or possibly match play, this model can be used to predict fatigue status follow-

ing a programmed rest day, for example. For coaches and athletes, ensuring maximum train-

ing benefit is achieved while avoiding overreaching and injury is of extreme importance. By

having an almost real time understanding of an athlete’s response to a training session, as well

as a prediction of their fatigue condition prior to subsequent sessions, these detrimental

Table 2. A list of the linear mixed effects models investigated for the prediction of relPeakF, detailing the covari-

ates in each model (a common covariate in each model was an athlete random effect), mean squared error, cross

validation mean squared error and variable selection results.

Model Name Selected Explanatory Variables Cross Validation MSE R^2

6 h fPCA Baseline PC1 and PC2 (using fPCA on full dataset) 0.009 0.792

6 h PCA Baseline PC1 and PC2 (using PCA on full dataset) 0.010 0.719

6 h fPCA practical PC1 and PC2 (using fPCA on data up to 0.5 h post-training) 0.013 0.640

6h PCA practical PC1 and PC2 (using PCA on data up to 0.5 h post-training) 0.013 0.639

48 h fPCA Baseline PC1 and PC2 (using fPCA on full dataset) 0.015 0.801

48 h PCA Baseline PC1 and PC2 (using PCA on full dataset) 0.012 0.814

48 h fPCA practical PC1 and PC2 (using fPCA on data up to 0.5 h post-training) 0.015 0.714

48 h PCA practical PC1 and PC2 (using PCA on data up to 0.5 h post-training) 0.015 0.728

https://doi.org/10.1371/journal.pone.0219295.t002

Table 3. Likelihood Ratio Test results for comparison of the linear mixed effects models used in relPeakF prediction. The ratio describes the increase in goodness of

fit (as measured by the log likelihood) for the first model compared to the second model, e.g. the difference in the log likelihood between the 6 h PCA baseline and the 6 h

fPCA baseline models is 16.32. Here the better model is the one shown to have a statistically significant difference in likelihood.

Response Model Tested Likelihood ratio Difference in MSE p-value

Metabolic Fatigue 6 h fPCA Baseline vs 6 h PCA Baseline 16.32 0.0004 0.003

Neuromuscular Fatigue 48 h fPCA Baseline vs 48 h PCA Baseline 2.56 0.0003 0.98

Metabolic Fatigue 6 h PCA practical vs 6 h fPCA practical 2.56 0.0009 ~1

Neuromuscular Fatigue 48 h PCA practical vs 48 h fPCA practical 4.45 0.0009 ~1

Metabolic Fatigue 6 h fPCA Baseline vs 6 h fPCA practical 39.1 0.004 <0.0001

Neuromuscular Fatigue 48 h fPCA Baseline vs 48 h fPCA practical 27.7 0.0006 <0.0001

https://doi.org/10.1371/journal.pone.0219295.t003
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training by-products or training errors can be avoided [30]. Interestingly, the PCA athlete

capability map (Fig 2) provided empirical evidence of athlete pacing during some training ses-

sions, as fatigue experienced from moderate training workloads exceeded that experienced

from high training workload. Such findings may be useful to coaches in the provision of train-

ing sessions. However, pacing effects are beyond the scope of this current work.

Although relPeakF variable has been shown to be an accurate indicator of fatigue [3], there

are many other sport-specific variables relevant to fatigue and performance that could be pre-

dicted or studied using the developed PCA/fPCA approach. Furthermore, PCA/fPCA out-

comes could be related to sport-specific performance metrics. For example, Mooney, Cormack

et al. (2013) [31] observed that the CMJ flight time to contraction time ratio (FT:CT) was pre-

dictive of practical metrics of match intensity (measured with accelerometers) and perfor-

mance (assessed by coaches) in Australia Rules Football. Relating PCA/fPCA outcomes to

sport-specific, practical metrics can assist coaches and athletes to better manage their work-

loads in view of their impact on in-game performance. As a result, another key outcome of our

work is the method itself, as it can be translated by or for practitioners to relate to fatigue and

performance indicators directly relevant to their sport.

Despite the suitability of the developed algorithm to the analysis of any CMJ data, the num-

ber of participants in this investigation can be considered small in comparison to the number

of variables in the analysis. This limits the number of features that can be used for PCA analysis

and the degree of complexity in the force-time curve that can be captured due to model iden-

tifiability with high dimensionality and small sample size. However, the methods can be

applied and extended to model more complex curves such as including eccentric and concen-

tric phases [16, 32, 33] and other features (e.g. velocity) given a larger sample size. Therefore,

further study using a broader data set, such as with differing fatiguing stimulus other than

repeated sprints and athletes of differing training status (elite versus sub-elite for instance), can

help to validate the findings of this study. Our study revealed that the greatest variability in

PC1 and 2 was due to differences among athletes, which suggests that jump technique could

be a key factor affecting CMJ performance worthy of future research. Additional validation

can be provided through cross validation of the results of this investigation with other alterna-

tive fatigue characterisation methods such as plasma blood lactate analysis. Such further study

can also provide greater insight into the dynamics of neuromuscular and metabolic fatigue

onset. Finally, although relPeakF was used as one relevant indicator of CMJ performance and

fatigue, future work with larger datasets can additionally investigate techniques such as func-

tional linear mixed effects modelling to model the force-time curve directly using functional

data [15].

Conclusions

In this paper, we related neuromuscular and metabolic fatigue to the first four principal com-

ponents of a PCA and fPCA of the concentric portion of CMJs at time points before and after

training. This enabled us to develop athlete capability maps and, with the use of linear mixed

effects models, predict the fatigue status of athletes at 6 and 48 h after training sessions of dif-

fering workloads based on relPeakF. Such a tool has the potential to support coaches and ath-

letes in managing training workload with respect to fatigue.

Supporting information

S1 Data. Countermovement Jump (CMJ) data used in this study. Ten athletes participated

and each participant was requested to complete three randomised repeated sprint running ses-

sions of low, moderate, or high workload, separated by a minimum of 96 h. Participants
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performed a single set of 5 CMJs before each session, immediately after each session (0), and at

0.5, 1, 3, 6, 24 and 48 h, after each session.

(CSV)

S1 Table. Summary statistics for the standard deviation, proportion of variance and cumu-

lative proportion of the principal components (PCs) calculated from the CMJ data. The

PCs are a transformation of the data where PC1 describes the most variation in the data, fol-

lowed by PC2 and so on. In our study, PC1 corresponds to neuromuscular fatigue effects and

PC2 to metabolic fatigue effects.
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