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Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among
individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely
on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an
integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective,
and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell
sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells
sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the
platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage
discovery.

[Supplemental material is available for this article.]

Central questions in human biology andmedicine are in fact ques-
tions about the human cell lineage tree: its structure, dynamics,
and variance in development, adulthood, and aging, during dis-
ease progression, and in response to therapy. Evolution of cancer
tumor and metastases, developmental biology, the landscape of
immune system maturation, and stem cells dynamics are just a
few examples of biological fields for which knowing cell lineage
trees in high resolution will help understand their underlying dy-
namics. Moreover, unraveling the dynamics of diseased cells,
which depend on the specific cellular microenvironment and sto-
chastic events, through their cell lineage tree can help in selecting
the appropriate treatment, thus facilitating the advancement of
personalized medicine. Since the landmark mapping of the
complete cell lineage tree of Caenorhabditis elegans, a 1000-cell
nematode, methodologies which are based on cellular labeling
by reporters (e.g., dyes, fluorescent genes [Kretzschmar and Watt
2012]), and DNA barcodes [Lu et al. 2011]) were developed to en-
able lineage tracing in higher model organisms including mam-
mals. However, being invasive, they cannot be applied to human
research.

More than a decade ago we suggested that somatic mutations
that occur during cell division endow each cell in our body with a
genomic signature that is unique with very high probability
(Frumkin et al. 2005) and that uncovering these genomic signa-
tures can be used to reconstruct human cell lineage trees. Our lab-
oratory has demonstrated (Frumkin et al. 2005, 2008;Wasserstrom
et al. 2008; Reizel et al. 2011, 2012; Segev et al. 2011; Shlush et al.

2012) the feasibility of cell lineage analysis utilizing a low-resolu-
tion capillary electrophoresis (CE)-based system (∼100 loci per
cell). We analyzedmicrosatellite (MS) loci, which have highmuta-
tion rates in vivo (Table 1) and are considered neutral (Ellegren
2004). Since then, related approaches that take advantage of
next generation sequencing (NGS) were developed. Sequencing
cell bulks for somatic mutations may supply a coarse estimation
of the cell population distribution but cannot specify the deter-
ministic position in the lineage tree of each cell and uncover pop-
ulation heterogeneity and sequencing of single cells (SCs) enabled
tracking genomic variants between them (Shapiro et al. 2013).
Mutations such as single nucleotide variants (SNV), copy number
variants (CNV), retrotransposons, and MSs were utilized to deter-
mine genomic distance and variability between individual cells,
thus enabling clonal inference and reconstruction of cell lineage
trees (see examples in Table 1). However, existing cell lineage
methods are not generic and are usually typed for a specific disease
(e.g., cancer patients and their specific point mutations). In addi-
tion, in spite of the striking reduction in sequencing costs,
sequencing whole genomes or even whole exomes from multiple
cells is not a scalable approach for studying the lineage of
hundreds of cells or more (Hou et al. 2012; Xu et al. 2012).
Moreover, available commercial methods for targeted enrichment
are not cost-efficient for large-scale projects (hundreds of cells or
more) and therefore not applicable to standard SC experiments.

Cell lineage analysis based on SC DNA sequencing poses
many challenges, since the starting material consists of only one
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copyof eachDNAmolecule. BothDNA isolation and amplification
introduce technical noise, and methods for measuring and reduc-
ing it, both biochemically and computationally, are still under ex-
tensive research (Shapiro et al. 2013). Targeting highly mutable
regions such as MSs in SCs poses an even greater challenge, as re-
gions that are highly mutable in vivo are often also mutable in vi-
tro, when prepared for and during sequencing. Yet, we opted to
develop our ownmethod for efficient targeting ofMSs in SCs in or-
der to obtain sufficient SCmutational information without resort-
ing to high-coverage whole-genome sequencing.

Based on this concept, here we describe a generic, retrospec-
tive, cost-effective, and scalable SC lineage analysis platform that
consists of a molecular biology pipeline followed by a computa-
tional pipeline. The pipelines aim to accurately analyze thousands
ofMS loci per cell using amicrofluidics-based PCR targeted enrich-
ment protocol, followed by PCR-based library preparation and
NGS. A computational module performs sequencing data analysis
that compares MS somatic mutations between cells and recon-
structs the cell lineage tree. The platform enables sequencing
and analysis of hundreds of cells per run in a two-day preparation
process (starting from a whole genome amplification [WGA] prod-
uct as template). It also enables custom targeting of specific loci,
in addition to the standard MS panel, resulting in a more informa-
tive cell lineage tree that integrates information derived from var-
ious somatic mutations/genomic regions of interest, e.g., specific
genes/loci/SNVs.

Results
A generic cell lineage analysis platform

To enable a cost-effective system, we have designed a simple mo-
lecular biology pipeline that uses two-stepmultiplexed PCR for tar-
get enrichment and low reaction volumes to increase performance

and accuracy (Fig. 1; Supplemental Fig. S1). Our protocol generates
dual indexed Illumina libraries cheaply and is more scalable com-
pared to the standard Illumina library preparation protocol (see
Methods section; Supplemental Fig. S2). The first multiplexed
PCR enriches for specific MS genomic loci (known or suspected
SNV loci can also be targeted) and attaches a partial Illumina li-
brary universal sequence on the flanking regions of the amplicon.
Following pooling of all amplicons, the second PCR step relies on
the flanking universal sequence to attach a sample-specific bar-
code and to form a full-length Illumina library.

In order to validate the two-step PCR scheme, we processed
SC DNA samples that originated from mismatch repair-deficient
mice (Mlh1−/−) colon crypts, which were previously analyzed us-
ing the capillary-based system (Reizel et al. 2011) and demonstrat-
ed the successful reconstruction of the expected crypt dynamics,
with only ∼180 MS loci panel (Supplemental Note S1; Supple-
mental Fig. S3; Supplemental Table S1). We then sought to im-
prove the cost-effectiveness and robustness of the platform by
modifying molecular biology protocols and integrating the plat-
form with computer support and high-throughput and
low-volume devices (see Methods section): (1) In order to enable
a cost-effective, highly multiplex PCR, the first PCR amplification
was performed in a microfluidic Access Array chip (AA, Fluidigm),
which also automatically pools all PCR products of a sample to a
single tube (see Fig. 1). Our current set of ∼2000 primers is distrib-
uted to multiplex groups that mainly consist of ≤43× primer pairs
per reaction well. Most of the MS panel is designed for (A) MSs of
type AC on the X Chromosome to allow for monoallelic MS call-
ing (Frumkin et al. 2008; Wasserstrom et al. 2008; Reizel et al.
2011; Segev et al. 2011; Shlush et al. 2012) and for (B) the longest
MS loci possible, which exhibit a higher mutation rate in vivo
(Ellegren 2004; Supplemental Table S2). Notably, primers were de-
signed such that the entire MS will be covered within a 150-bp

Table 1. Summary of genomic mutations/variance contributors used for single-cell lineage analysis

Somatic mutation type

Single nucleotide variant
(SNV)

Copy number
variant (CNV)

LINE1
retrotransposon
(L1) insertion Microsatellite (MS)

Requires genome/exome-wide
sequencing to detect mutational
loci from bulk/multiple sampled
cells?

Yes Yes Yes No

Requires genome-wide sequencing
per cell?

No Yes Yes No

Requires multiple sampled cells for
analysis as reference?

No Yes No Yes

Can the detected mutational pattern/
patterns be measured at a single-
cell resolution by cheaper analysis
of a cell population (e.g., FACS,
digital droplet PCR)?

Yes Yes Yes No

Somatic rate per locus per generation
for human normal cellsa

10−8 (Wang et al. 2012) 10−6–10−4

(Zhang et al.
2009)

b 10−3–10−5 (Willems et al. 2016)c

Examples of single-cell analyses to
reconstruct clonal/lineage analysis

(Hou et al. 2012; Wang et al.
2012; Xu et al. 2012; Gawad
et al. 2014; Lohr et al. 2014;
Lodato et al. 2015)

(Navin et al.
2011; Cai et al.
2014; Wang
et al. 2014)

(Evrony et al. 2015) (Wasserstrom et al. 2008;
Salipante et al. 2010; Reizel
et al. 2011, 2012; Shlush et al.
2012; Evrony et al. 2015)

aThese numbers reflect mutation per generation. Rate per cell division can be extrapolated from these data to about 1–2 orders of magnitude lower.
bEvidence of such measurement was not found. The number of somatic L1 insertions per neuron was measured to be ∼4%, meaning that somatic in-
sertion occurs in one out of 25 neurons (Evrony et al. 2012).
cDinucleotide repeats.
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read (see Methods). (2) We modified the second PCR to apply a
sample barcode by utilizing combinations of forward and reverse
PCR primer combinations, resulting in a dual indexed NGS library
(Supplemental Fig. S4; Supplemental Table S3). (3) A database
that collects information regarding DNA samples and primers
was designed. This database contains data on reagent stocks and
usage during the pipeline. In addition, it allows the coupling of
sequencing data to DNA samples, allowing efficient bioinfor-
matics analysis. (4) Robotic scripts were automatically generated
for laborious/high-throughput tasks: primer pair mixing into
multiplex groups, random sample picking into AA PCR reactions
to eliminate sample bias according to plate or chip location (Sup-
plemental Fig. S5). Magnetic beads PCR purifications and equali-
zation of sample concentration were performed automatically
(Evoware, Tecan) (See Supplemental Note S2 for elaboration on
robotic reactions and example scripts). (5) Sample pooling was
performed in a novel iterated manner using the noncontact
nanoliter liquid handler (Echo550, Labcyte) (Fig. 1B): Following
sample pooling at an equal volume (assuming an equimolar con-
centration per sample) and low coverage sequencing (Miseq, Illu-
mina), sample success was evaluated (allele dropout, successfully
aligned amplicon count). Later, another iteration of cherry pick-
ing was performed on selected samples with normalized volumes
to reduce variance between sample read counts in a subsequent

high-throughput sequencing (NextSeq 500, Illumina) (Supple-
mental Fig. S6).

We have developed a computational analysis pipeline that
starts with the raw sequencing data and ends with a reconstructed
cell lineage tree along with statistical significance analysis that is
based on various annotations of the different samples. The cell lin-
eage tree can be easily integrated with functional analysis derived
either from SNVs that were targeted as part of the AA panel or
fromother sources, such as expression data derived from protocols
that extract both DNA and RNA of the same SC (Dey et al. 2015;
Macaulay et al. 2015). A detailed description of the computational
analysis pipelines is provided in Supplemental Note S3, Supple-
mental Figures S7–S12, and Supplemental Table S4.

Cell lineage tree of ex vivo grown cancer cells

Current estimations of MSmutation rates range between 10−3 and
10−5 mutations per locus per cell division, depending on various
factors such as the MS length, repeat type, and the specific cell ge-
notype (Ellegren 2004). Using computer simulations, we conclud-
ed that the current panel size of ∼2000 MS loci does not allow
performing lineage reconstruction using a normal cell population
with a limited number of cell divisions (Fig. 5, see below). We thus
opted to evaluate the platform on cancerous cells, which harbor

Figure 1. A schematic pipeline of the single-cell lineage analysis platform. (A) Tumor andmetastases are given as an example for the utilization of the plat-
form to study cancer dynamics (red, yellow, and blue cell populations). (Top left box) Single cells are extracted from an individual, and DNA is extracted and
amplified using whole-genome amplification (WGA). (Bottom box) The amplified DNA from the cells to be analyzed as well as PCR primer pairs in multiplex
groups are fed to anAccess Arraymicrofluidic chip (Fluidigm). The first PCR targets thousands of specific loci (mainlyMSs) fromeach single-cell DNA. All PCR
products of the samecell areharvested into a singlewell. The secondPCRadds auniversal sequenceatboth sides of the first PCRproducts,where each sample
is barcoded with a unique set of primer pairs, resulting in a sequencing-ready library. Pooling the libraries and sequencing them (top right box) enables the
analysis and reconstruction of the cell lineage tree. An elaboration of the process is described in theMethods section and Supplemental Figures S1 and S2. (B)
Schematic representation of the normalization intended for equalization of reads distribution between samples in a multiplexed NGS run. (A) An equal vol-
ume of samples at equal concentrations is pooled and sequenced in a low-coverage sequencing run (Miseq, Illumina). (B) Volume normalization according
to user-defined parameters is performed, and (C) another cherry picking is carried out according to normalized volumes (see Supplemental Fig. S6).
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microsatellite instability (MSI), as cancer is the major application
of clonal analysis and cell lineage reconstruction (Ding et al.
2012; Gawad et al. 2014; Lohr et al. 2014; Wang et al. 2014). We
designed a novel controlled ex vivo experiment utilizing DU145,
a human male prostatic carcinoma cell line, via an automated
cell picking device (CellCelector, ALS) (Fig. 2; Supplemental Fig.
S13): SCswere seeded in separatemicrowells and underwent clonal
expansion. Then, repeatedly, SCs were picked from microwells
containing SC clones, seeded separately innewmicrowells, and ex-
panded. The process generated an ex vivo cell lineage tree with a
known topology in which each SC clone is represented by a
node in the tree (Fig. 2A). Collaterally,we picked SCs frommultiple
SC clones and fed them as input into our cell lineage analysis plat-
form (Fig. 2B). Knowing the ex vivo lineage tree allows verifying
the reconstruction power of the cell lineage analysis platform by
comparing the known tree and the reconstructed tree (Frumkin
et al. 2005). Two aspects of the reconstruction accuracywere exam-
ined: (1) comparing topologies of the reconstructed tree with the
known tree; and (2) comparing the depth of cells (the number of
cell divisions from the most common recent ancestor [MRCA])
as inferred from the reconstructed tree and the known tree. We
picked 167 SCs from 45 SC clones corresponding to nine seeding
time points (see tree topology in Supplemental Fig. S14) and sub-
jected them to our platform using a panel of 1759 primer pairs,
the targets of which include 2087 MSs (Supplemental Table S2).
Average reads for each sample was 1.6M, and using 1759 targets
the average reads per target is about 1000. We analyzed only tar-
gets that resulted in >10 reads in at least two samples, which ex-

cluded 108 targets (5%). An average of 68% of the reads were
successfully mapped to the targets shown in Supplemental Table
S2 (63% were mapped to MS and 5% to non-MS targets). Out of
the remaining reads about half were the result of either dimeriza-
tion or mispriming, and the rest had low alignment scores and
thus were excluded from the analysis. MS sizes were called by an
in-house calling algorithm (Supplemental Note S3; Supplemental
Figs. S15, S16).

The DU145 cell line carries various chromosomal aberrations
including CNVs, although aberrations on the DU145 X Chromo-
some were not clearly observed by karyotyping (Supplemental
Fig. S17). Nevertheless, we noted that a substantial number of
loci from the X Chromosome exhibited a bimodal pattern
(Supplemental Note S5), suggesting that DU145 has loci on the X
Chromosome,which gainedCNV. In order to validate these results
we searched for such bimodality on theXChromosome of the nor-
mal cell lineH1, and indeed the results confirmed that theCNVs in
DU145 are real. Out of 1577 loci with sufficient signal (signal exists
in at least 10% of the samples) on the XChromosome of cells from
DU145, 340 loci (22%) exhibitedmultiallelic signal,whereas in the
H1 cell line, only three out of 1625 loci (0.2%, P-value < 10−85, χ2

test of proportions) exhibited a biallelic signal (which is probably
due to amplificationnoise ormispriming). CNVsmay cause an am-
biguity in the mutational calling score, as they may hamper the
calling of MSs that originate from more than one allele. However,
in the case of the ex vivo DU145 tree, the negative effect on the
cell lineage reconstruction is attenuated due to the higher MSmu-
tation rate of these cancer cells compared to normal cells (Boyer

Figure 2. Cell lineage analysis of a controlled ex vivo tree. Schematic representation of the ex vivo SC clone tree experiment. (A) Single cells are picked
from a plate to form colonies. After a limited number of cell divisions, cells are picked from each clone to form SC subclones. Repeating this step generates a
SC clone tree with a known structure. (B) Collaterally, in each passage in which single cells are selected for SC subcloning, single cells are picked to a PCR
plate for WGA and subsequent cell lineage analysis.
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et al. 1995). Remarkably, the reconstructed ex vivo cell lineage tree
was highly accurate in spite of these obstructions (Fig. 3).

In order to quantify the reconstruction accuracy, we
employed a triples distance (Critchlow et al. 1996) approach
(see Supplemental Fig. S18) and calculated the percentage of triples
in the reconstructed tree that match the topology of the real tree.

Since the tree consists of 167 leaves, there are
167
3

( )
= 762,355

possible triples. However, sincewedonot know the topologywith-
in SC clones, we considered only triples where each of the three
leaves stem from different SC clones, of which there are 596,341
triples. Out of these triples, 89% had the correct structure, com-
pared to 33% for a random reconstructed tree (the chance that a
random triple will be correct). Furthermore, in order to observe a
finer resolution, we divided the triples into groups according to
the distance between the root and the branchof the triple. This dis-
tance corresponds to the common cell divisions of the pair of
leaves emanating from the branch (Supplemental Fig. S19).
It also correlates with the number of common unique mutations
of that pair, which affects reconstruction accuracy of the triple.
Figure 3D shows the percentage of correctly reconstructed

triples as a function of this distance. Interestingly, when this dis-
tance is four SC clones or larger, the score is perfect, meaning
that 100% of the triples are correctly reconstructed. It can also be
seen that a distance of one clone achieves >80% accuracy and
the distance of two clones is already higher than 90% (Fig. 3D).
We note that there are few cell samples that contribute to failed
triplets more than others; however, we could not find objective
technical parameters that would allow us to identify and remove
those cells.

The second aspect of the reconstruction accuracy is the esti-
mated depth of the cells, corresponding to the number of cell divi-
sions from the founding cell. Figure 3E shows the distribution of
the reconstructed depth as a function of the SC clone depth in
the generated tree.

Unbiased analysis of human cancerous and normal cells derived
from a melanoma patient

In order to validate the reconstruction ability from in vivo samples
taken from human patients, we first performed a multi-individual
experiment in which SCs were taken from several individuals and

Figure 3. Reconstruction of the cancer ex vivo SC clone tree using the parameters that were calibrated using the simulations. (A) A schematic represen-
tation of the known cancer ex vivo SC clone tree. The numbers within the boxes indicate the number of single cells sampled from the specific subclone (total
of 167 samples). (B,C) Close-up view of the indicated reconstructed subtrees. Edge colors in the reconstructed tree indicate statistically significant clustering
as described in Shlush et al. (2012) and match the box colors of the subclones in A. Trees are drawn as ultrametric (all leaves are equidistant from the root)
for clarity. The full, reconstructed tree can be found in Supplemental Figure S14. (D) Percentage of correct triples as a function of the length between the
two MRCAs of the triple (see Supplemental Figs. S18, S19). The overall average score is 89%. (E) Correlation between the reconstructed cell depth, cor-
responding to the number of cell divisions from the root, and the subclone level.
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were subjected to analysis in our platform (Fig. 4A). Reconstruction
of the cell lineage tree generated the expected result of accurately
separating the different individuals (Fig. 4B). We sought to test
the platform utilizing a controlled known two-cell population
structure. Cell samples were collected from both a metastasis and
normal peripheral blood lymphocytes (PBL) of a single melanoma
patient. Cells were then processed using our platform andwere an-
alyzed for their cell lineage tree (Fig. 4C,D). The reconstructed tree
demonstrates an effective in vivo separation for two subpopula-
tions, as expected.

Validation and prediction of the cell lineage platform using
computer simulations

In order to evaluate the future potential of the platform and pre-
dict how different parameters affect reconstruction accuracy, we
performed computer simulations using eSTG (environmental-de-
pendent Stochastic Tree Grammars) (Spiro et al. 2014), a dedicated
formal programming/simulation language developed in our labo-
ratory (see Supplemental Note S5 for the eSTG program defini-
tion). The eSTG program for generating the in silico cell lineage
trees has three parameters:

1. The MS mutation rate r. As noted, the mutation rate ranges be-
tween 10−3–10−5 mutations per MS locus per cell division de-
pending on various factors. We thus chose to simulate three
mutation rate scales, namely: 10−3, 10−4, 10−5. The low muta-
tion rate might correspond to short MSs of normal cells, where-
as the fast mutation rate might correspond to cells harboring

MSI. The middle mutation rate might correspond either to
highly mutable long MSs of normal cells or to short MSs of
MSI cells.

2. The signalmodeling. Samples can vary in quality based on their
source and the DNA extraction protocols. Loci can also vary in
quality due to genomic location and amplification protocols. In
order to capture the variability in signal quality both between
the different loci and between the different samples, we em-
ployed a probabilistic model that assigns each individual locus
L a probability pL of obtaining a signal from that locus and each
sample S a probability qS of obtaining a signal from that sample,
such that the probability of having a signal in locus L of sample
S is pL·qS. Using simulated annealing, we estimated these prob-
abilities from the ex vivo experiment and used them in the sim-
ulations (see Supplemental Note S4).

3. Noisy alleles, defined as the probability pnoise for each locus call
to randomly shift by one repeat unit compared to the true val-
ue. The MS calling values can be incorrect due to random mu-
tations inserted during the different DNA amplification
stages. However, the number of alleles can also lead to errone-
ous calling. When using loci from normal male X or Y
Chromosomes, there is only one allele, but in other cases there
can be an ambiguity in the allele calling, for example, if there
are several MS alleles that differ by one repeat unit and if only
one of the alleles is amplified, it can bemistaken for amutation.
We thus simulated two scenarios of noisy alleles, one for nor-
mal cells and the other for cancerous cells withDNA aberrations
and CNVs on all chromosomes. The calibrations were done

Figure 4. In vivo cell lineage tree reconstruction of human cells. To validate the reconstruction of human in vivo samples, we first selected single-cell
samples from seven human individuals and distributed them among different AA chips. (A) Representation of different cell samples in 48-well batches (cir-
cles) in 14 AA chips, with colors indicating different source individuals. (B) As expected, cell lineage reconstruction of samples from A demonstrates accurate
reconstruction of human samples in accordance with individual donors. The width of the colored branches represents the significance of the clustering,
which was calculated using a hypergeometric test (wider = lower P-value) (see Supplemental Note S3). Branches are colored in accordance with the colors
in A. The two bottom left samples of each AA chip correspond to a positive control (dark green) and negative control (pink). (C,D) Cell lineage reconstruction
of melanoma and normal lymphocytes from the same patient (YUCLAT) (Krauthammer et al. 2015). (C) Same representation as in A: Metastatic melanoma
(red) and normal PBL (blue) were randomly distributed over six AA chips. (D) Cell lineage reconstruction of samples from C demonstrates a perfect sepa-
ration between the two cell populations. Arrows indicate a SC sample duplicate.
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using ex vivo experiments of both cancerous and normal cells
as described in Supplemental Note S4 and in the Methods
section.

We used the stepwise mutation model (SMM) for modeling
MSmutations (Ohta and Kimura 2007). Our aimwas to investigate
the reconstruction accuracy across the parameter space. We used
the same phylogenetic reconstruction algorithm for the in silico
trees as used for the ex vivo trees. Figure 5 shows the triples dis-
tance score of the reconstructed tree as a function of the number
of MS loci for the current signal quality as calculated using the
ex vivo experiments and the presumed future signal quality assum-
ing future protocol enhancements affecting both the quantity and
the quality of the signal. Each panel shows the reconstruction per-
formance of the threemutation rates, where the parameters for the
fastest mutation rate were calculated using the cancer ex vivo tree
and the parameters for the medium and low mutation rates were
calculated using the normal ex vivo tree (see Supplemental Note
S4). The variability among repeated simulations is indicated as
the shaded colored area. Results show that, as expected, a panel
of ∼2000 loci on cells with MSI can achieve around 90% recon-
struction accuracy (see red mark on Fig. 5A). It can also be seen
that increasing the panel to 50,000 loci greatly increases the recon-
struction accuracy in the normal cells scenario.

Discussion
We have demonstrated both experimentally and by computer
simulations the power of a high-throughput cell lineage analysis
platform, which is generic, cost-effective, and scalable. It is generic
because it does not rely on disease-related/patient-specific SNVs
but rather utilizes endogenous MSs, which are neutral but have

highmutation rates that serve asmolecu-
lar clocks (Frumkin et al. 2005), and
therefore can theoretically be used to re-
construct the cell lineage tree of a whole
organism. Improving the reconstruction
accuracy of the system requires further
development. On the biochemical side,
it requires increasing the MS panel size,
improving technical signal quality by
improved WGA, and optimizing the
multiplex groups and targeted enrich-
ment protocols in order to increase the
percentage of reads that successfully
align to target loci (see Fig. 5). On the
computational side, it requires the devel-
opment of optimized cell lineage tree re-
construction algorithms that take into
account missing and noisy data.
Nevertheless, here we provided a high
resolution proof-of-concept for an unbi-
ased generic lineage reconstruction using
MSs only, utilizing a controlled ex vivo
lineage tree with a limited number of di-
visions and in vivo cancer and normal
cells from a melanoma patient. The scal-
ability of this platform is demonstrated
by two properties: (1) Scaling up the pan-
el size: The addition of new primer pairs
to an experiment, or even to a specific
AA chip, is simple and automatic, en-

abling the researcher to rely on deep sequencing data to capture
additional genomic regions of interest (e.g., disease-related/
patient-specific genes or SNVs). Development of algorithmic
tools that integrate different mutation types in cell lineage tree re-
construction is essential and will improve understanding of the
different mutational profiles in health and disease. We also dem-
onstrated the successful multiplex amplification with 43× ampli-
cons per PCR reaction well (Supplemental Fig. S20) and showed
feasibility for a size of 219× loci per reaction (Supplemental Note
S6; Supplemental Fig. S21), suggesting a feasible future analysis
of ∼10,000 (220 × 48) loci using the same molecular biology pipe-
line. This of course needs to be further validated in a larger exper-
iment; nevertheless, even under any panel size constraint, we can
append another primer panel in an additional AA chip run. (2)
Scaling up the number of cells: The current platform enables a
streamlined pipeline, which starts with isolation of SCs and ends
upwith a cell lineage tree. It integrates both a computer-controlled
management of samples, the use of high-throughput devices (e.g.,
AA chip) and robotic automation, making the addition of cells to
an experiment a simple task. The cost-effectiveness of the protocol
is realized in the reduction of costs throughout the pipeline down
to an estimated ∼$40 per cell (Supplemental Table S5). Examples
include: (1) The AA chip allows for a complex PCR mixing of
∼2500 PCR reactions at a nanoliter volume scale, reducing the re-
agents costs; (2) barcoding the samples (using the second PCR dual
indexing protocol), which creates the full-size NGS library, reduces
the need for the purchase of costly reagents for standard library
preparation and enables a reduction of primer purchase to a
square-root of a single index protocol; and (3) pooling of hundreds
of libraries using a novel iterated approach (Fig. 1B) has led to
more equal representation of samples in an NGS sequencing run
(Supplemental Fig. S6). This approach presents an effective read

Figure 5. Reconstruction accuracy as a function of the number of MS loci of the simulated ex vivo tree
(a random reconstructed tree achieves an accuracy of 33%). (A) Reconstruction accuracy as a function of
the number of MS loci using current signal quality as calibrated from the ex vivo experiments. Green and
red areas represent performance accuracy of normal cells (medium and lower mutation rates), whereas
the blue area represents accuracy of MSI cells (higher mutation rate). Note that the signal quality of MSI
cells is lower than that of the normal cells due to chromosomal aberrations. The red circle indicates per-
formance of the current ∼2000 loci panel as applied to the cancer ex vivo experiment. (B) Same as A but
using improved signal parameters (less noise and less dropout) expected in the future. Inner lines repre-
sent average results over 10 simulations and shaded areas represent the standard deviation.
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distribution between samples, which is essential when performing
a highly multiplexed NGS run.

The previous platform (Reizel et al. 2011, 2012; Shlush et al.
2012) was based on small multiplex groups (4×) using fluoro-
phores and different MS lengths in CE, similarly to the protocol
used for forensic analysis. The platform presented here demon-
strates an immense advancement over our previous lineage analy-
sis platform:

1. Improved molecular biology workflow: Utilizing NGS analysis al-
lows for improved preparative molecular biology protocols that
result in a simplified workflow. This workflow enables an overall
reduction in labor and higher throughput. For example: (1) The
pooling of all amplicons and samples togetherwith the ability to
correctly annotate the sequenced reads with their targets (ac-
cording to the MS flanking sequences) and to cells (according
to the NGS library indexes). (2) The number of analyzed loci in
our previous system was ∼130 compared to ∼2000 in the NGS-
based platform. This is mainly due to highly multiplexed ampli-
fication and improved biochemistry (two-step PCR), which en-
ables automated pooling of all amplicons (not limited to 16
amplicons per CE reaction). As we demonstrate by computer
simulations, the increased number of loci directly affects the re-
construction accuracy (Fig. 5). (3) Single use of template as start-
ing material (1–2 µL of WGA product taken to the AA chip
amplification of 2000) instead of 32 off-chip reactions (4×) en-
ables a reduction of the starting material. The reduced starting
material allows for future calibration of the WGA protocols in
order to reduce amplification steps, thus reducing noisy signal.
(4) Decreased sample processing period. The time from DNA to
signal was reduced from 72 h for 24 samples to ∼14 workdays
for 480 cells. For comparison, in this 14-d period, the previous
system could produce signal only for ∼140 cells. (5) The cur-
rent system design also enables a much easier and simpler scal-
ability in the number of analyzed loci. Increasing the number
of loci requires ordering additional primers according to an exist-
ing design,whereas the previous platform required calibration of
different amplicon sizes and fluorophores.

2. Cost: Although our previous system was automated, it was lim-
ited by the biochemistry that required mass amounts of starting
DNA as template for 32 multiplex (4×) reactions per cell, to be
analyzed by CE. Hence, reagents (PCR reagents, fluorescent
primers, Liz 500, and formamide) and consumables (PCR plates)
were themain cost contributors in the previous platform, which
cost ∼$100 per cell. The main costs in the current platform are
AA chips and NGS, because the primers are not modified or pu-
rified (although large in size, ∼45-mer) and are purchased only
once (due to the use of nanoliter PCR reaction volumes). More
important, the cost per locus changed dramatically by 38-fold,
from ∼$0.76 per amplicon in our previous platform to $0.02
per amplicon in the current platform.

3. Precision: Utilizing NGS instead of CE data enables a better un-
derstanding of the actual sequence of each and every analyzed
molecule, making the mutation calling direct and not inferred
by size.

4. Analysis: MS calling in the previous system was done manually
by visually marking the highest peak of the MS stutter histo-
gram, whereas the current system performs this task automati-
cally using a calling algorithm (Supplemental Note S3).

Our platform presents a cost-effective solution for lineage re-
construction without the need for prior knowledge of the tissue/
patientmutations ormutation distribution. This is achievedmain-

ly by the utilization of high-throughput and microfluidics-based
technologies and by utilization of MSs, which present a high mu-
tation rate in vivo (Table 1 presents a comparisonwith othermeth-
ods). Although cost reduction has been substantial in recent years,
the cost for whole-genome sequencing (WGS) at 30× coverage
is ∼$1200 (https://www.genome.gov/sequencingcostsdata/, ac-
cessed February 22, 2016). SC low-depth WGS might enable the
analysis of CNVs; however, it is biased toward cancer lineage
analysis (as CNVs are typically related to cancer), and even under
5× coverage ($200 per cell), it is not scalable for a large number
of cells. We also note that, unlike targeted enrichment, current
WGS protocols do not cope well with the analysis of MSs, because
random shearing may split the MS and therefore a higher depth
would be required. Due to the high cost and low efficiency of
SC WGS, some also validate their findings using bulk analysis in
order to detect the distribution of mutations in the population
(Evrony et al. 2015). Another method for lineage analysis utilizes
bulk whole-genome (or -exome) sequencing in order to detect pa-
tient-/tumor-specific putative genomic variants, followed by cus-
tom targeted enrichment (Gawad et al. 2014; Lohr et al. 2014).
The mutations found in these methods are highly effective as tar-
geting candidates as they provide a patient-specific signal, which
differs between cells with a high precision. However, this makes
them affordable per cell only if many cells are to be analyzed,
and since they are not generic, they are not scalable for the analysis
of many patients. As previously described, the flexibility of our au-
tomated multiplex group generation allows for easy incorporation
of any genomic region of interest (e.g., SNVs, disease-related genes,
mutations which were found in WGS), making the system a flexi-
ble genotyping platform limited only by read length (which can
also be accommodated by increasing the number of amplicons
per region).

The basic elements of themolecular biology pipeline are quite
standard and require a two-step amplification that outputs NGS
libraries (seeMethods and Supplemental Figs. S1, S2).We have val-
idated their successmanually, off-chip (data not shown). However,
in a large-scale experiment scope (namely many targets and sam-
ples), it becomes laborious, time-consuming, and costly. With
the understanding that this platform requires expensive instru-
mentation and operating skills, we envision the cell lineage plat-
form as part of a central service or a core facility to which cell
samples from collaborators will be sent and analyzed. This will
eliminate the need for specific instrumentations and manpower
experience (both laboratory skills and bioinformatics skills) and
will allow the collaborators to concentrate on the biological ques-
tions and sample collection.

Currently, our MS panel mainly targets loci on the X
Chromosome to enable confident MS calling in male samples
(see Methods). One of the major bioinformatics challenges is the
bi- or multiallelic MSs generated from autosomal chromosomes,
the X Chromosome in females, or from CNV regions. The first
two can be overcome by either longer reads, which may detect
allele-specific SNVs, or by detection of two distinctMS sizes, which
can be annotated to a specific allele for each analyzed cell. CNVs
pose a harder challenge, as they are in fact a duplication of the
exact locus and thereforemay have a closerMS signal and a similar
flanking region. Utilization of uniquemolecular identifiers (UMIs)
(Carlson et al. 2015)may reduce the generated noise; however, due
to the need for SC WGA, a background noise will remain. Future
plans focus on improving the MS calling algorithm to input
non-X and CNV loci, thus increasing the platform accuracy for
both normal cells and specifically for cancer cells which exhibit
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substantial CNVs (Navin et al. 2011). Interestingly, our results
from the ex vivo tree validation suggest that cancer analysis pre-
sents a trade-off: Although CNVs may hamper the accuracy of
theMS calling, the highmutation rate in these cells generates a dis-
tinct signal that enables tracking of the cell lineage accurately.
Better understanding of CNV mutational processes would allow
for improved analysis.

We acknowledge the fact that when scaling our platform to
include tens of thousands of targets as discussed above (Fig. 5),
primer costs become a significant cost factor. In addition, it would
require much larger multiplex groups and/or utilization of addi-
tional AA chips, which also increases the cost per cell. Our future
development is focused mainly on development and improving
targeted enrichment one-pot multiplexed reactions, such as mo-
lecular inversion probes (MIP) or targeted capture (Leung et al.
2016), in which per-probe cost is significantly lower due to multi-
plexed synthesis in advanced microarray technologies. MIPs were
previously validated for low-scale MS analysis (Carlson et al. 2015)
and for a large number of targets (Li et al. 2009), proving the feasi-
bility of such protocols for massive MS analysis from SC WGA
products. MIPs also allow for a precise targeting, rather than ran-
dom shearing, which can split the MS sequence, as previously
discussed.

Notably, we and others have generated data from ex vivo
grown cell cultures (Frumkin et al. 2005; Carlson et al. 2012;
Reizel et al. 2012; Zong et al. 2012). Here we demonstrated the first
large-scale SC ex vivo tree in the sense that tens of SC clones were
used for generating the tree and hundreds of SCs were used for
analysis. Analysis of DNA from both cancerous and normal ex
vivo cell lineage trees may serve as a high-resolution tool for better
understanding the mutational processes and profiles of multiple
genomic regions at a resolution of few replications, in health
and disease. Such understanding can help create better panels
for targeted sequencing (including loci other than MS) (see Table
1) and drive algorithm development.

The number of cell divisions has a great impact on the cell
lineage reconstruction accuracy since genome replication flaws
(i.e., somatic mutations) during cell divisions are effectively the
“tool” that generates the analyzed signal. In human, cells under-
go ∼50 divisions after formation of the zygote; however, this
number may vary greatly between different organs (Hayflick
1965). In cancer, the number of cell divisions from the founder
cell is still an open question; however, estimates range from 32
divisions for a 1-cm3-sized tumor (size-based calculation) (Friberg
and Mattson 1997) to 280 divisions in a colorectal tumor (Tsao
et al. 2000). We believe that a size-based estimation gives only
a lower bound to the maximum number of cell divisions since
it implies that the cancer cell lineage tree is an unbiased binary
tree. In our ex vivo tree experiment, we estimate that there are
roughly 12–15 cell divisions from SC to final clone (before
recloning iteration). The results of the ex vivo tree reconstruction
implies that the cells have a similar microsatellite mutation rate
as that of MSI cancers (10−3 mutations per locus per division,
as validated using the simulation results) (see Fig. 5A); hence it
presents an analog to certain in vivo cancer tumor developments.
However, it should be noted that it is different than an in vivo
tumor by many properties (e.g., initiated by a cell line and not
by direct primary cells, grown in culture without the intratumor
environment, etc.). To summarize, the estimated number of cell
divisions from the MRCA of two cell populations should be taken
into consideration when planning a cell lineage experiment since
it may greatly affect the reconstruction efficiency (see Fig. 3D).

Further improvements in integrated SC sequencing-based
technologies, such as genomics and transcriptomics (Dey et al.
2015; Macaulay et al. 2015) and genomics and epigenomics
(Smallwood et al. 2014; Buenrostro et al. 2015) would add layers
of information for each and every cell in the reconstructed cell lin-
eage tree and would help with understanding the underlying dy-
namics of the biological process. In conclusion, our platform
serves as a prototype which lays the biological, computational,
and architectural foundations for an envisioned large-scale human
cell lineage discovery project.

Methods

Cancer ex vivo tree generation experiment

The DU145 human prostate cancer cell line, derived from brain
metastasis, was obtained from the National Cancer Institute
(NCI). Cells were cultured in RPMImedium (Gibco) supplemented
with 10% FBS (Biological Industries), and 2 mM L-Glutamine
(Biological Industries). Prior to the SC picking, cells were detached
and dissociated by using 0.25% Tripsin-EDTA (Biological Indus-
tries) followed by pull-down and resuspension in growthmedium.
The cells were then transferred to tissue culture (TC) plates and put
aside for a fewminutes in order to enable them to land on the plate
bottom for further visualization and immediate picking. SCs were
picked via the CellCelector (ALS) using a 50-µm-diameter capillary
into either 96-well culture plates containing 50 μL growthmedium
per well for 2 wk clonal expansion or into 96-well PCR plates con-
taining 5 μL PBS per well for subsequent WGA (Fig. 2A,B, respec-
tively). WGA was performed immediately after cell deposition or
after plate storage at−20°C. The estimated number of cell divisions
after 2 wk is ∼12–15.

Normal ex vivo clone generation experiment

H1 human ES cells (WA01) were obtained from the WiCell
Research Institute. Cells were first cultured on mitotically inacti-
vated mouse embryonic fibroblasts (iMEFs) in hESC medium
(DMEM/F-12[HAM] [Biological Industries], 20% KnockOut
Serum Replacement [Gibco], 1% MEM nonessential amino acids
[Biological Industries], 2 mM L-Glutamine [Biological Industries],
0.1 mM 2-mercaptoethanol [Gibco], 8 ng/mL bFGF [Peprotech]),
and passaged using 1 mg/mL Collagenase IV (Worthington) every
3–4 d.

As a preparation for the picking procedure, cells were cultured
onGFRMatrigel (BD) in iMEF conditioned hESCmedium (CM) for
4 d. Prior to SC picking, cells were detached and dissociated by us-
ing 0.25% Tripsin-EDTA (Biological Industries) incubation for 3
min followed by pull-down and resuspension in CM. Transfer to
TC plates and the SC picking procedure were as described above
for DU145 cells with the exception of using a 96-well culture plate
precoated with Matrigel and containing 100 μL CM per well.

During the two weeks, clonal expansion medium was
changed after the initial 6 d and then every second day. We esti-
mate the number of cell divisions after 2 wk was ∼15.

In order to insure cell survival, 10 µM ROCK Inhibitor (Axon
Medchem) was added to the cells 1 h prior to trypsinization, dur-
ing the SC picking and during clonal expansion.

Cell lineage reconstruction from a melanoma patient

YUCLAT (Krauthammer et al. 2015) metastatic melanoma (right
axilla) and blood were sampled from a 64-yr-old male patient.
The samples were collected by the Tissue Resource Core of the
Yale SPORE in Skin Cancer with the participant’s signed informed

Biezuner et al.

1596 Genome Research
www.genome.org



consent according to Health Insurance Portability and Account-
ability Act (HIPAA) regulations with a Human Investigative Com-
mittee protocol as described (Krauthammer et al. 2015). Peripheral
blood lymphocytes (PBL) were isolated from blood obtained 2 mo
after tumor excision. Themetastaticmelanomacells were grown in
OptiMEM (Invitrogen) supplemented with antibiotics and 5% fe-
tal calf serum. Cells were kept frozen in fetal bovine serum (FBS)
supplemented with 5% DMSO.

Isolation ofmetastatic SCs was done using the CellCelector as
described above. Isolation of single lymphocytes from the periph-
eral blood was done manually as follows: Aliquots of 0.5 µL were
spread on a flat-bottom 96-well plate (Costar 3596, Corning) and
observed under the microscope. Drops that contained SCs were
collected into 0.2mL tubes. Cells fromboth populations were sub-
jected to WGA.

Cell lineage platform processing

The main procedures in the platform are described here. The full
pipeline is depicted in Supplemental Figure S1, and the robotic
adaptation is elaborated in Supplemental Note S2.

Whole-genome amplification (WGA)

WGA was applied to SCs either immediately after cell deposition
or after storage at −20°C. Spin down or centrifugation at 4500
rpm for 5minwas applied to test tubes or 96-well plates containing
SCs, respectively. WGA was performed using REPLI-g Mini kit
(Qiagen) with a modified protocol: 3.5 µL of buffer D2 was added,
and cells were lysed on ice for 10min. Following addition of 3.5 µL
stop buffer and centrifugation at 4500 rpm for 5min, 20 µL of mix
containing Buffer REPLI-g and Polymerase REPLI-g (at the same
proportions as recommended in the manual) was added, and the
sample was incubated at 30°C for 16 h. A multiplex diagnostic
PCR targeting four genomic regions of different lengths was used
as a WGA success test. A single band in a 1.5% agarose gel was suf-
ficient to flag the sample as positive for subsequent Access Array
analysis.

Primers and multiplex PCR design

Target-specific primers were designed by Primer3 (Untergasser
et al. 2012) and ordered from IDT. Since the MS mutation rate in
vivo is dependent both on the repeat sequence (mono- and di-
repeats are highly mutable) and the number of repeats (long
stretches of repeats aremoremutable) (Ellegren 2004), we designed
primers that target the longest MSs of mainly AC type. Most of
the primers target the X Chromosome in order to reduce the
noise of biallelic MS calls in male genomes and to eliminate the
need to haplotype autosomal MSs in cases of allele drop-out.
Amplicons were designed to cover the entire MS plus at least 5 nu-
cleotides (nt) from both reads, in a 2 × 150-bp sequencing run.
Specifically, the sizes of the MS targets in our panel range from 8
to 98 bp, with amedian size of 38 bp. To increase primer cost-effec-
tiveness, ∼21% of our primers amplified more than one MS target
(up to 8 MS targets per amplicon). Merging of these reads also al-
lows for MS calling improvement. Other primers that target other
genomic regions (SNVs) were also designed and were mainly used
as a feasibility test for a large multiplex validation (Supplemental
Fig. S21). Primers were assigned to 48 multiplex groups by an in-
house algorithm, which assigns a specified set of primer pairs
that target regions separated by at least 10 kbp. Each primer con-
tains a prefix of a universal sequence that constitutes a part of
the Illumina sequencing primers: Fwd primer 5′ tail: CTACACGA
CGCTCTTCCGATCT; Rev primer 5′ tail: CAGACGTGTGCTCT

TCCGATCT. MS targets, their corresponding primer sequences,
and their multiplex groups are listed in Supplemental Table S2.

Microfluidic-based targeted enrichment

Targeted enrichment of genomic loci was performed using Access
Array (AA, Fluidigm) in accordance with the AA guidelines with
noted exceptions: Primer pooling to multiplex groups composed
of up to 47× primer pairs was done using a liquid handling robot
(Evoware, Tecan) (Supplemental Note S2), using a script generated
according to the specified multiplex design algorithm. Final addi-
tion of 20× Access Array Loading Reagent (Fluidigm, PN 100-0883)
was performed to retrieve a final primer concentration of 1 µM
and 1× Access Array Loading Reagent. However, the >47× multi-
plex groups were manually composed by addition of equal vol-
umes of primers with an initial 50 µM primer concentration and
with the final addition of 20× Access Array Loading Reagent to
the mixture to retrieve a final concentration of 1× Access Array
Loading Reagent. In order to reduce overamplification, PCR ampli-
fication on the Access Array was performed using the initial 30
amplification steps of the recommended run protocol “AA 48×48
Standard v1.” To enable a control over each chip and to track po-
tential contaminations, each Access Array chip carried two control
slots for 50 ng/µL Jurkat genomic DNA (NEB) and water as positive
and negative controls, respectively. WGA samples were randomly
and automatically inserted into the PCR reaction mix without a
prior purification step (Evoware, Tecan) (Supplemental Note S2).

PCR purification

Water was added prior to each purification reaction to reduce liq-
uid handling errors during the purification step: 10 µL or 70 µL
for manual and automatic purification, respectively. A 1× volume
of Agencourt AMPure XP SPRI magnetic beads (Beckman Coulter)
was used to purify the sample from residual enzyme, nucleotides,
andprimer dimers traces, according to the recommended protocol.
This process was done either manually on a DynaMag-96 Side
Skirted Magnet (Life Technologies) or automatically, using a robot
(Evoware, Tecan) (Supplemental Note S2) and a Magnum FLX
magnetic plate (Alpaqua).

Library preparation and sample-specific barcoding

Following dilution of the purified PCR from the first PCR (1:100),
sample-specific barcodingwas performed using standard PCRwith
forward and reverse primer combinations (Sigma). The indexes
within the primer sequences and their dual combination annotat-
ed the original SC samples and produced a ready-to-run TruSeq HT
NGS library using the standard Illumina sequences. Primer se-
quences are as follows: Fwd primer: AATGATACGGCGACCACC
GAGATCTACAC[Fw_Index_D5XX]ACACTCTTTCCCTACACGAC
GCTCTTCCG; Rev primer: CAAGCAGAAGACGGCATACGAGAT
[Rev_Index_D7XX]GTGACTGGAGTTCAGACGTGTGCTCTTCCG;
where square brackets indicate sequencing indexes (Supplemental
Table S3; Supplemental Fig. S4). PCR was performed using Q5
High-Fidelity DNA Polymerase (M0491S, NEB) in a real-time PCR
machine (LC480, Roche). PCR mix was according to the recom-
mended protocol, with the addition of SYBR green I (Lonza) at a
final reaction of 0.5× that was used to track amplification and to
prevent overcycling. The reaction protocol was 95°C for 2min, fol-
lowedby five amplification steps of 95°C for 30 sec, 56°C for 30 sec,
and 72°C for 30 sec; and 12 amplification steps of 95°C for 30 sec
and 72°C for 1 min. Final elongation was performed at 72°C for
10 min. PCR reactions were purified using 0.8× vol of Agencourt
AMPure XP beads according to the above-mentioned protocol.
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Concentration measurement and preparation for sample pooling

Including the addition of Illumina adapters and indexes (136 bp),
libraries range between 200 and 400 bp, with a mean of 303 bp
(with a standard deviation of 37 bp). Library sizes are presumed
equal for all analyzed cells, since the same PCR primers panel was
used for every sample. Hence, sample concentration determines
molarity, and can be used to predict the reads distribution in a
NGS run. Therefore, all samples are measured for concentration
andareequalized to the sameconcentrationbefore samplepooling.

Concentration of each sample was measured using the Qubit
dsDNA HS Assay Kit (Life Technologies) in a flat-bottom 96-well
plate (655180, Greinier) using a plate reader (infinite 200,
Tecan), using the following parameters: excitation wavelength:
486 nm, emission wavelength: 528 nm.

To prepare for sample pooling and multiplexing, libraries
were automatically diluted and normalized to the same minimal
equal concentration (Supplemental Note S2). Samples were auto-
matically transferred to an Echo Qualified 384-well plate (LP-
0200, Labcyte) using a robot (Bravo, Agilent).

Sample pooling and sequencing

Sample pooling was done using the cherry pick application of
the Echo550 (Labcyte). Pooling was done using equal volume.
Library pool purification and concentration was performed (Mine-
lute, Qiagen). This process also removes all traces of SYBR green
from the second PCR. Samples were processed by a size selection
of sizes 200–500bp (2%gel, BluePippin, Sage Science). Theproduct
was concentrated again (Minelute) and was sent for 2 × 220-bp
low-coverage sequencing (Miseq, Illumina). Following analysis,
another iteration of pooling was performed according to (1) selec-
tion of qualified DNA libraries and (2) normalization of volumes
to achieve an expected number of a successful read distribution
(see criteria above). Negative controls are pooled at the average
volume of all samples. The library pool passed the same concen-
tration and selection processes as before, and samples were sent
for 2 × 150-bp high-throughput sequencing (NextSeq 500, Illu-
mina) that generated sequencing data for data analysis and cell
lineage reconstruction.

Data analysis and cell lineage analysis reconstruction

The computational data analysis (Supplemental Note S3) started
with raw sequencing data processing using cutadapt (https://
cutadapt.readthedocs.io/en/stable/), and paired-end reads were
merged using PEAR (Zhang et al. 2014). Following the merging,
reads were uniquely mapped to their target using read alignment
of only the read’s edges corresponding to the primer pairs. MS
lengthwas then determined by aligning the read to references con-
taining a range of MS lengths and choosing the reference length
with the highest alignment score. By combining all reads from a
SC that aremapped to a specific target, we get a lengths histogram,
which is a result of a well-knownMS stutter artifact caused byDNA
amplification. Following the MS calling (Supplemental Note S3), a
mutation table, which consists of all samples and all loci, was gen-
erated andwas expanded to enablemultiple allele signals fromany
given cell. This mutation table was then used for the tree recon-
struction using the neighbor-joining algorithm with the absolute
distance function. In this work, most of the MSs that were used
for the analysis are of type AC.

Data access
Mutation tables and sequencing data generated in this study have
been submitted to ArrayExpress (www.ebi.ac.uk/arrayexpress) un-
der accession number E-MTAB-4553.
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