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Abstract

Tumor cells rely on aerobic glycolysis to generate ATP, namely the "Warburg" effect. 2-

deoxyglucose (2-DG) is well characterized as a glycolytic inhibitor, but its effect on cellular

signaling pathways has not been fully elucidated. Herein, we sought to investigate the effect

of 2-DG on ERK function in lung cancer cells. We found that 2-DG inhibits ERK phosphory-

lation in a time and dose-dependent manner in lung cancer cells. This inhibition requires

functional LKB1. LKB1 knockdown in LKB1 wildtype cells correlated with an increase in the

basal level of p-ERK. Restoration of LKB1 in LKB1-null cells significantly inhibits ERK activa-

tion. Blocking AMPK function with AMPK inhibitor, AMPK siRNA or DN-AMPK diminishes

the inhibitory effect of 2-DG on ERK, suggesting that 2-DG—induced ERK inhibition is medi-

ated by LKB1/AMPK signaling. Moreover, IGF1-induced ERK phosphorylation is signifi-

cantly decreased by 2-DG. Conversely, a subset of oncogenic mutants of K-Ras, the main

upstream regulator of ERK, blocks 2-DG—induced LKB1/AMPK signaling. These findings

reveal the potential cross-talk between LKB1/AMPK and ERK signaling and help to better

understand the mechanism of action of 2-DG.

Introduction

One of the primary hallmarks of cancer [1] is altered glucose metabolism. Tumor cells are

known to ferment glucose to lactate in the presence of oxygen, i.e. “aerobic glycolysis” [2].

This process, known as the “Warburg Effect”, is proposed to benefit the growth and survival of

cancer cells through several candidate mechanisms [3], including rapid production of ATP

[4], promoting biosynthesis [5] and acidification of the tumor microenvironment [6], etc.

Based on these mechanistic rationales, targeting glycolysis has been explored as a therapeutic

approach for cancer treatment.
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Of all the glycolysis inhibitors that have been evaluated, 2-deoxyglucose (2-DG) has been

best characterized in animal models [7] and human clinical trials [8,9]. The glucose analogue

2-DG is converted by hexokinase to 2-DG-P [10], which cannot be further metabolized but is

trapped inside the cell and allosterically inhibits hexokinase, the rate-limiting enzyme in gly-

colysis. By blocking glycolysis, 2-DG interferes with various biological processes. First, it

induces energy stress by depleting intracellular ATP [11,12]. Second, it affects anabolic pro-

cesses by decreasing the production of glycolytic intermediates which are the precursors of

nucleotides, lipids or proteins [13]. Finally, it results in NADPH deficiency and disrupts the

antioxidant defenses of cancer cells. Independent of glycolysis inhibition, 2-DG is also known

to interfere with the N-linked glycosylation process because of its structural similarity to man-

nose [14]. 2-DG has been shown to exert indirect effects on various signaling pathways. For

example, 2-DG represses the activity of mammalian target of rapamycin (mTOR) by activating

LKB1/AMP-activated protein kinase (AMPK) signaling, an energetic stress-sensing signaling

pathway [15]. In addition, we previously demonstrated that 2-DG treatment induced the acti-

vation of IGF-1 receptor (IGF1R) signaling [16,17].

2-DG can efficiently inhibit cell growth and invasion, and potently facilitate apoptosis in

various cancer cells [14,18,19]. However, the underlying molecular mechanisms are not yet

well understood. A catabolic block does not sufficiently explain the anti-tumor activity of

2-DG [20]. Extracellular signal-regulated kinase (ERK) cascades are key signaling pathways

involved in the regulation of cancer cell proliferation, survival and invasion [21]. ERK1/2 is a

downstream component of an evolutionarily conserved RAF/MEK/ERK signaling module

that is activated by the Ras small GTPase. Ras is the second most frequently mutated gene in

non-small cell lung cancer (NSCLC), with up to 30% of tumors containing K-Ras activating

mutation [22]. Mutations in the Ras protein, primarily at residues G12, G13 or Q61, can

inhibit the hydrolysis of GTP, rendering the proteins constitutively GTP-bound and activated

[23]. In this study, we sought to investigate the effect of the glycolysis inhibitor 2-DG on ERK

activation. We found that 2-DG inhibits ERK phosphorylation in a subset of NSCLC cells with

wild-type LKB1 and K-Ras. Our findings uncover the potential cross-talk between LKB1/

AMPK and ERK signaling and offer novel insights into the mechanism of action of 2-DG.

Materials and Methods

Reagents

Mouse monoclonal antibody against LKB1 (#ab15095) was purchased from Abcam, UK. Anti-

bodies against total AMPK (#2532), p-AMPKα Thr172 (#2535), p-ACC (phospho-acetyl-CoA

carboxylase) Ser79 (#3661), total ERK1/2 (#9102), p-ERK1/2 Thr202/Tyr204 (#9101), total

AKT (#9272), p-AKT Thr473 (#9271), p-S6K Thr389 (#9105) and Kras (#3965) were pur-

chased from Cell Signaling Technology, USA. Rabbit polyclonal anti-actin antibody was pur-

chased from Sigma-Aldrich, USA. Mouse anti-Ras antibody was purchased from Millipore,

Germany. 2-DG, puromycin and IGF-1 were purchased from Sigma—Aldrich, USA.

LY294002 (a PI3K inhibitor) was purchased from LC Laboratories. Compound C (an inhibitor

of AMPK) solution was purchased from Calbiochem, USA. The lentiviral LKB1 short hairpin

RNA (shRNA) construct and a negative control construct that was created in the same vector

system (pLKO.1) were purchased from Open Biosystems, USA. LKB1 shRNA ID# is

TRCN408, and its target sequence is GCCAACGTGAAGAAGGAAATT.Lentiviral helper plas-

mids (pCMV-dR8.2 dvpr and pCMV-VSV-G) were obtained from Addgene, USA. Plasmids

encoding wild-type (WT) LKB1 [24], dominant negative AMPK (DN-AMPK) [25] and

EGFP-K-Ras mutants [26] were constructed as previously described.
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Cell culture

The LKB1 mutant (H460, A549, H157 and H23) and LKB1 WT (H226, H522, HOP92, H596,

H1703, H520, Calu-1, H1650, HCC827 and H1975) NSCLC cell lines were purchased from the

American Type Culture Collection (ATCC, USA). The isogenic K-Ras G13D and K-Ras WT

HCT116 colon carcinoma cells were kindly obtained from Prof. Bert Vogelstein (The Johns

Hopkins University School of Medicine, Baltimore, MD 21287, USA). Cells were cultured in

RPMI 1640 medium (Gibco, USA) supplemented with 10% fetal bovine serum (Gibco, USA)

at 37˚C in a humidified atmosphere with 5% CO2.

LKB1 stable knockdown using lentiviral short hairpin RNA

Lentivirus stocks were prepared following the manufacturer’s protocol, as described previously

[27]. Briefly, 1.5×106 293T cells were plated in 10-cm dishes. 24 hours later, cells were co-trans-

fected with shRNA constructs (3 μg) together with pCMV-dR8.2 dvpr (3 μg) and pCMV-

VSV-G (0.3 μg) helper constructs using Lipofectamine 2000 reagent. Two days later, viral

stocks were harvested from the culture medium, which was filtered to remove non-adherent

293T cells. To select NSCLC cells that stably expressed shRNA constructs, cells were plated at

subconfluent densities and infected with a cocktail of 1 ml of virus-containing medium, 3 ml

of regular medium, and 8 μg/ml polybrene. Selection with 2 μg/ml of puromycin was started

48 hours after lentivirus infection. After about 4 weeks of selection, monolayers of stably

infected pooled clones were harvested for use and cryopreserved. Western blot was used to

evaluate LKB1 stable knockdown in NSCLC cells.

GFP-LKB1 adenovirus

The GFP-LKB1 adenovirus was constructed as previously described [24]. Briefly, GFP-LKB1

plasmid was digested with Kpn1, and the 5’-overhang was filled in with Klenow DNA poly-

merase. The GFP-LKB1 fragment was released from the vector backbone by NheI digestion,

and cloned into pShuttle vector digested with XbaI and EcoRV. The pShuttle-GFP-LKB1 plas-

mid was transformed into BJ5183-AD-1 cells (Stratagene, cat# 200157) to generate AdEasy-

GFP-LKB1 plasmid. This plasmid was transfected into 293 cells to generate adenovirus con-

taining GFP-LKB1.

Transient transfection

Transfections were carried out with Lipofectamine 2000 reagent according to the manufac-

turer’s instructions (Invitrogen). Briefly, cells grown to 90% confluence in 6-well plates were

transfected with 1.0 μg/well plasmids with 3 μl Lipofectamine 2000 and replaced with fresh

growth medium after 4–6 hours.

Small interfering RNA treatment

SiRNA specific for AMPK-α1 (PRKAA1) and AMPK-α2 (PRKAA2) were purchased from

Applied Biosystem (AB), with the corresponding sequences: 5’GAGUCUACAGUUAUACCAA
tt-3’ and 5’-GCAUAUGGUUGUUCAUCGAtt-3’. Lamin A/C siControl (Santa Cruz Bio-

technology) was used to control for any nonspecific off-target effects of siRNA transfection.

Cells were transiently transfected with chemically synthesized AMPK siRNAs (200 pmol) or

with the nonsilencing control siRNA using Lipofectamine 2000 reagent (Invitrogen) according

to the manufacturer’s instructions. Specifically, H522, H520, Calu-1 and H1650 cells were

grown to 60–70% confluence in 6-well plates. Lipofectamine 2000 reagent was incubated with
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Opti-MEM1 for 5 min, and a mixture of siRNA was then added. After incubation for 20 min

at room temperature, the mixture was diluted with medium and added to each well.

Western blot

Proteins were resolved by polyacrylamide gel electrophoresis and transferred onto polyvinyli-

dene difluoride (PVDF) membranes (Millipore, Germany). The membranes were blocked in

Tris-buffered saline containing 0.2% Tween 20 and 5% fat-free dry milk and incubated first

with primary antibodies and then with horseradish peroxidase-conjugated secondary antibod-

ies. Specific proteins were visualized with enhanced chemiluminescence detection reagent

according to the manufacturer’s instructions (Pierce Biotechnology, USA).

Results

2-DG inhibits ERK activation in LKB1 wild-type NSCLC cells but not in

LKB1 mutant cells

We previously demonstrated that 2-DG activates IGF1R signaling [17], thus we expected that

2-DG treatment should uniformly promote the activation of downstream MEK-ERK signaling.

To investigate the effect of 2-DG on ERK phosphorylation in NSCLC cell lines of diverse

genetic background (Table 1), a panel of cell lines was treated with 25 mM 2-DG for 2 hours,

and the phosphorylation of ERK1/2 at Thr202/Tyr204 was examined with Western blot. Con-

sistent with our previous findings, 2-DG treatment indeed led to increases in ERK phosphory-

lation in H460, A549, H157 and H23 cells (Fig 1A). However, in H226, H522, HOP92, H596,

H1703, H520, Calu-1, H1650, HCC827 and H1975 cells, 2-DG treatment resulted in decreases

in ERK phosphorylation (Fig 1B). Notably, H460, A549, H157 and H23 cells contain bi-allelic

inactivation of LKB1, which abolished the expression of LKB1 protein (Fig 1C). Thus, these

results suggest that the differential effect of 2-DG on various cancer cells was not related to p53

Table 1. Genetic alterations in NSCLC cell lines.

Cell Line LKB1 TP53 KRAS HRAS NRAS EGFR

H226 WT WT WT WT WT WT

H522 WT fs WT WT WT WT

HOP92 WT R175L WT WT WT WT

H596 WT G245C WT WT WT WT

H1703 WT fs WT WT WT WT

H520 WT W146* WT WT WT WT

Calu-1 WT HD G12C WT WT WT

H1650 WT fs WT WT WT E746-A750-del

HCC827 WT V218-del WT WT WT E746-A750-del

H1975 WT R273H WT WT WT L858R

A549 Q37* WT G12S WT WT WT

H460 Q37* WT Q61H WT WT WT

H157 del[24] E298* G12R WT WT WT

H23 W332* M246I G12C WT WT WT

Data source: Catalogue of somatic mutations in cancer: fs: frame shift;

*: nonsense mutation;

HD: homozygous deletion; del: deletion

doi:10.1371/journal.pone.0168793.t001
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or EGFR mutation status but correlated with LKB1 status. We used the phosphorylation of

AMPK at Thr172 as a surrogate marker for LKB1 function [24]. AMPK is not phosphorylated

in LKB1-mutant NSCLC cells after the addition of 2-DG [16]. As shown in Fig 1B, 2-DG treat-

ment led to a significant increase in AMPK phosphorylation in LKB1-WT cells, indicating that

Fig 1. 2-DG inhibits ERK activation in LKB1 wild-type NSCLC cells but not in LKB1 mutant cells. A. H460, A549, H157 and H23 cells

were treated with 25 mM 2-DG for 2 hours, and p-ERK (Thr202/Tyr204) was examined by Western blot. B. H226, H522, HOP92, H596,

H1703, H520, Calu-1, H1650, HCC827 and H1975 cells were treated with 25 mM 2-DG for 2 hours, and p-ERK 1/2 and p-AMPK (Thr172)

were examined by Western blot. C. A549, H460, H157, H23, H1299, H1650, H1975, H1792, H226, H2170 and H520 cells were harvested

and lysed, and LKB1 protein expression was examined by Western blot. D. Calu-1, H522, H226, H520 and H1650 cells were treated with 25

mM 2-DG for the indicated length of time (0 hours, 2 hours, 4 hours), and p-ERK was examined by Western blot. E. Calu-1, H522, H226,

H520 and H1650 cells were treated with 25 mM 2-DG for the indicated length of time (4 hours, 8 hours, 24 hours), and p-ERK was examined

by Western blot. F. H226, H522, H520 and Calu-1 were treated with 2-DG at the indicated concentrations (0 mM, 2.5 mM, 25 mM) for 2

hours, and p-ERK was examined by Western blot.

doi:10.1371/journal.pone.0168793.g001
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LKB1 is functional in these cells. These results suggest that 2-DG treatment is capable of inhib-

iting ERK activation via a functional LKB1 protein.

To characterize the inhibitory effect of 2-DG on ERK phosphorylation in LKB1-WT cells,

Calu-1, H522, H226, H520 and H1650 cells were treated with 2-DG (25 mM) for varying

lengths of time. As shown in Fig 1D, ERK phosphorylation was moderately suppressed upon

2-DG treatment for 2 hours, and was significantly inhibited after 4-hour treatment. In addi-

tion, this p-ERK inhibition continued to be detectable even 8–24 hours after 2-DG treatment

(Fig 1E). We also treated LKB1-WT cells (H226, H522, H520 and Calu-1) with 2-DG at the

indicated concentrations for 2 hours. As shown in Fig 1F, 2.5 mM 2-DG was sufficient to sup-

press ERK phosphorylation in all four cell lines, but 25 mM 2-DG treatment led to a more

complete suppression in H520 cells. These results indicate that 2-DG inhibits ERK phosphory-

lation in a time and dose-dependent manner in LKB1-WT cells.

2-DG—induced ERK inhibition is independent of PI3K/AKT activation

We previously demonstrated that 2-DG induces AKT phosphorylation in both LKB1 mutant

and LKB1-WT NSCLC cells [16]. AKT has been reported to negatively regulate MEK/ERK sig-

naling through phosphorylating RAF [28]. To investigate the role of AKT in 2-DG—mediated

ERK inhibition, LKB1-WT NSCLC cells (H226, H522 and Calu-1) were pretreated with or

without LY294002(LY), a small molecular inhibitor of PI3K, for 30 minutes before 2-DG treat-

ment. As shown in Fig 2, 2-DG treatment indeed led to increased phosphorylation of AKT. In

the presence of LY294002, the basal level of AKT phosphorylation was abolished. LY294002

pretreatment did not alter 2-DG—induced ERK inhibition, suggesting that this inhibition is

not mediated by PI3K/AKT signaling.

Fig 2. 2-DG—induced ERK inhibition is independent of PI3K/AKT signaling. H226, H522 and Calu-1

cells were pretreated with or without LY294002 (10 μM) for 30 minutes before 2-DG treatment. p-AKT and p-

ERK levels were examined by Western blot.

doi:10.1371/journal.pone.0168793.g002
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LKB1 negatively regulates ERK phosphorylation

The finding that 2-DG requires functional LKB1 to inhibit ERK in NSCLC cells (Fig 1)

prompted us to investigate whether LKB1 is involved in negative regulation of ERK phosphor-

ylation. To test this hypothesis, we established isogenic LKB1 stable knockdown NSCLC cells

(H522 pLKO.1 and H522 LKB1 shRNA, H520 pLKO.1 and H520 LKB1 shRNA, H1650

pLKO.1 and H1650 LKB1 shRNA) using a lentivirus system. As shown in Fig 3A, compared

with the control cells, LKB1 protein levels were substantially reduced in cells stably expressing

LKB1 shRNA. LKB1 downregulation correlated with an increase in the basal level of p-ERK.

Next, we sought to evaluate the impact of ectopic LKB1 expression on 2-DG—induced ERK

activation in LKB1 null NSCLC cells. A549 and H23 cells were infected with adenovirus

expressing GFP-LKB1 fusion protein or control adenovirus containing only GFP [24], and the

cells were then treated with 25 mM 2-DG for 2 hours. As shown in Fig 3B, compared with the

control group, ectopic expression of LKB1 significantly attenuated 2-DG—induced ERK acti-

vation in both LKB1 mutant cell lines. Together, these results indicate that LKB1 negatively

regulates ERK phosphorylation.

AMPK acts downstream of LKB1 to inhibit ERK phosphorylation

AMPK, one of the canonical substrates of LKB1 as described above, has previously been

shown to be potentially involved in regulating ERK signaling [29–31]. To examine the role of

AMPK in 2-DG—induced ERK inhibition, Compound C (C.C), a small molecule inhibitor of

AMPK, was used. LKB1-WT Calu-1, H522 and H520 cells were pretreated with or without C.

C (10 μM) for 30 minutes before 2-DG treatment. This pharmacological inhibition of AMPK

Fig 3. LKB1 negatively regulates ERK phosphorylation. A. Isogenic LKB1 stable knockdown NSCLC cell lines (H522-pLKO.1 and

H522-LKB1 shRNA, H520- pLKO.1 and H520-LKB1 shRNA, H1650-pLKO.1 and H1650-LKB1 shRNA) were established using a

lentivirus system. LKB1 protein expression and p-ERK levels were examined with Western blot. B.A549 and H23 cells were infected with

adenovirus expressing GFP-LKB1 fusion protein or control adenovirus containing only GFP, and treated with 25 mM 2-DG for 2 hours.

LKB1, p-AMPK and p-ERK levels were examined by Western blot.

doi:10.1371/journal.pone.0168793.g003
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activity greatly diminished the inhibitory effect of 2-DG on ERK, indicating that ERK inhibi-

tion by 2-DG is probably mediated by AMPK (Fig 4A).

To further evaluate the role of AMPK in regulating ERK phosphorylation, LKB1 WT cells

were transiently transfected with control siRNA or AMPKα siRNA, in the absence or presence

of 2-DG. As shown in Fig 4B, transient depletion of AMPKα by siRNA resulted in enhanced

basal levels of ERK phosphorylation. Furthermore, suppression of AMPK expression and

activity (as demonstrated by the phosphorylation of its key substrate ACC) by RNAi partially

attenuated ERK inhibition by 2-DG (Fig 4C).

Fig 4. AMPK acts downstream of LKB1 to inhibit p-ERK. A. H522, Calu-1 and H520 cells were pretreated with or without 10 μM

Compound C (C.C) for 30 minutes before 2-DG treatment. P-S6K and p-ERK levels were examined by Western blot. B. H522, H520, Calu-1

and H1650 cells were transiently transfected with control siRNA or AMPKα siRNA. AMPK protein expression and p-ERK levels were

examined by Western blot. C. H596 cells were transiently transfected with control siRNA or AMPKα siRNA, and treated with 25 mM 2-DG for

2 hours. AMPK protein expression and p-ERK levels were examined by Western blot. D. Calu-1 cells were transiently transfected with

plasmid encoding control vector or dominant negative AMPKα 1(DN-AMPK), and AMPKα protein expression and p-ERK levels were

examined by Western blot. E. H596 cells were transiently transfected with plasmid encoding control vector or dominant negative AMPK α 1

(DN-AMPK), and treated with 25 mM 2-DG for 2 hours. AMPKα protein expression and p-ERK levels were examined by Western blot.

doi:10.1371/journal.pone.0168793.g004
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LKB1 WT cells were also transiently transfected with plasmids encoding control vector or

dominant negative N157A AMPKα 1 (DN-AMPK). As shown in Fig 4D, compared with con-

trol, the expression of DN-AMPK promoted ERK phosphorylation significantly in Calu-1

cells. Consistently, 2-DG—mediated ERK inhibition was abrogated by DN-AMPK (Fig 4E).

Taken together, these data indicate that AMPK acts downstream of LKB1 to negatively regu-

late ERK activation.

IGF-1–induced ERK activation is inhibited by 2-DG

To investigate the effect of 2-DG on ERK activation induced by growth factors, LKB1 WT cells

(H226 and Calu-1) were serum-starved for 4 hours and then pretreated with or without 2-DG

before the addition of fetal bovine serum (FBS). As shown in Fig 5A, in the absence of 2-DG,

FBS potently stimulated ERK activation. 2-DG pretreatment induced AMPK activation as

assessed by the increased level of p-AMPK, and greatly attenuated serum-dependent ERK acti-

vation. Next, we sought to evaluate the impact of 2-DG on ERK activation induced by IGF1

(20 ng/ml). As shown in Fig 5B, in the absence of 2-DG, IGF-1 increased ERK phosphoryla-

tion. 2-DG pretreatment significantly blocked IGF-1–dependent ERK phosphorylation. These

results suggest that 2-DG is capable of inhibiting IGF-1–dependent ERK signaling.

A subset of K-Ras oncogenic mutations blocks 2-DG—induced LKB1/

AMPK signaling

We previously demonstrated that 2-DG induced ERK phosphorylation in three LKB1-WT cell

lines, H1299, H1792 and H358 [17]. A close examination of these three cell lines indicated that

all of them contain either N-Ras or K-Ras mutations. In contrast, among the 10 cell lines evalu-

ated in Fig 1B, 9 contain WT K-Ras (Table 1). This finding led us to evaluate the effect of

K-Ras mutation on 2-DG—induced LKB1/AMPK activation. Isogenic K-Ras WT and K-Ras-

G13D HCT116 colon carcinoma cells [32] were treated with 25 mM 2-DG for the indicated

Fig 5. IGF-1–induced ERK activation is inhibited by 2-DG. A. H226 and Calu-1 cells were serum-starved

for 4 hours and then pretreated with or without 2-DG before addition of fetal bovine serum (FBS). P-AMPK

(Thr172) and p-ERK levels were examined by Western blot. B. Calu-1 cells were serum-starved for 4 hours,

pretreated with or without 2-DG, and then challenged with 20 ng/ml IGF-1 for 10 min. P-ERK levels were

examined by Western blot.

doi:10.1371/journal.pone.0168793.g005
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lengths of time, and p-AMPK levels were examined with Western blot. As shown in Fig 6A, in

K-Ras WT HCT116 cells, 2-DG induced AMPK phosphorylation robustly. In contrast, in

K-Ras mutant cells, the p-AMPK level was only slightly increased by 2-DG. This result suggests

that K-Ras G13D mutant is capable of attenuating 2-DG—induced AMPK activation.

To further evaluate the impact of various K-Ras mutations on 2-DG—induced LKB1/

AMPK activation, HCT116 cells with only WT endogenous K-Ras were transfected with dif-

ferent cancer-derived K-Ras mutants, including 13D, 12V and 12D, and then were treated

with 25 mM 2-DG for 2 hours. As shown in Fig 6B, compared to the control group, overex-

pression of G13D and G12V significantly attenuated 2-DG—induced AMPK phosphorylation.

In contrast, the G12D mutant had a limited effect on 2-DG—induced AMPK

phosphorylation.

To confirm our findings in NSCLC cells, LKB1 WT/Kras WT H522 cells were transfected

with plasmids encoding Kras G12V, WT Kras or vector, and then treated with 2-DG. As

shown in Fig 6C, in cells transfected with WT Kras or vector, 2-DG robustly induced AMPK

activation and significantly inhibited p-ERK. In contrast, in cells with over-expression of Kras

Fig 6. A subset of oncogenic K-Ras mutations blocks 2-DG—induced LKB1/AMPK signaling. A. Isogenic K-Ras WT and K-Ras-

G13D HCT116 colon carcinoma cells were treated with 25 mM 2-DG for the indicated length of time (0 hours, 2 hours, 4 hours), and p-AMPK

level was examined by Western blot. B. K-Ras WT HCT116 cells were transfected with plasmids encoding vector or the indicated EGFP

K-Ras mutant (13D, 12V or 12D), and then treated with 25 mM 2-DG for 2 hours. Ras protein expression and p-AMPK levels were examined

by Western blot. C. H522 cells were transfected with plasmids encoding Kras G12V, WT Kras or vector, and then treated with 2-DG. Kras, p-

ERK and p-AMPK levels were examined by Western blot.

doi:10.1371/journal.pone.0168793.g006
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G12V, 2-DG treatment neither significantly increased AMPK phosphorylation nor suppressed

ERK phosphorylation. These results demonstrate that a subset of K-Ras mutants is capable of

inhibiting 2-DG—induced AMPK phosphorylation.

Discussion

Glucose is the major source of energy for cancer cells. Warburg demonstrated that cancer cells

largely depend on aerobic glycolysis to generate ATP [2]. A direct consequence of this discov-

ery is the development of therapeutic strategies that target glycolysis. 2-DG, the best known

glycolysis inhibitor, has been shown to interfere with anabolic processes, disrupt antioxidant

defenses and induce energy stress by blocking glycolysis [13]. However, 2-DG also has unan-

ticipated side effects that remain to be deciphered. Herein, we report that 2-DG inhibits the

ERK cascade in a subset of NSCLC cancer cells with wild-type LKB1 and K-Ras.

One intriguing finding of our study is the potential cross-talk between LKB1/AMPK and

ERK signaling. LKB1 is inactivated in 20–30% of NSCLC, ranking it as the third most fre-

quently mutated gene in lung adenocarcinoma after p53 and K-Ras [22]. As a tumor suppres-

sor, LKB1 plays significant roles in inhibiting lung cancer initiation and metastasis [33].

However, the underlying molecular mechanisms remain to be fully elucidated. Herein, we

demonstrate that LKB1 negatively regulates ERK activation in NSCLC cells. Given the impor-

tant role of the ERK signaling pathway in the regulation of cancer cell proliferation, survival

and metastasis [21], our findings suggest that the downregulation of ERK signaling may con-

tribute to the multiple biological functions of LKB1 in lung cancer cells. For example, sustained

ERK activation in cancer cells has been shown to enhance the induction of MMPs in the sur-

rounding environment, leading to degradation of the extracellular matrix (ECM) [34]. There-

fore, our findings suggest that ERK signaling might be an important mediator of lung cancer

progression and metastasis provoked by LKB1 deficiency, offering novel molecular insights

into the tumor suppressive role of LKB1.

Mechanistically, our data indicate that LKB1 mediates this effect through the energy sen-

sor AMPK [35]. We provide evidence that blocking AMPK function with AMPK inhibitor,

AMPK siRNA or DN-AMPK α1 plasmid results in increased ERK phosphorylation. ERK

downregulation by LKB1/AMPK could represent the mechanism by which cell prolifera-

tion is inhibited when cancer cells are exposed to stresses causing ATP depletion. The

cross-talk between AMPK and ERK has been explored by several groups, but the findings

are contradictory regarding how the two signaling pathways interact. Consistent with our

findings, a recent study [31] reported that AMPK attenuates ERK signaling in MEF cells by

phosphorylating BRAF Ser729. Paradoxically, prolonged treatment with AICAR and met-

formin, two other AMPK activators, has been shown to enhance ERK phosphorylation in

melanoma cells by inducing degradation of dual-specificity phosphatase (DUSP) 6 [36].

Consequently, the regulation of ERK signaling by LKB1/AMPK is highly complex and fur-

ther studies are needed to dissect the precise mechanisms that link the two signaling

pathways.

Another intriguing finding of this study is that a subset of Ras mutations is capable of over-

riding 2-DG—induced LKB1/AMPK activation. Thus, it is conceivable that there is an interac-

tive regulation between LKB1/AMPK and RAS-RAF-MEK-ERK signaling in cancer cells.

Intriguingly, LKB1 loss is frequently accompanied by K-Ras mutations in NSCLC. In addition,

concomitant loss of LKB1 significantly accelerates oncogenic K-Ras G12D-driven lung cancer

progression in a mouse model [33]. Moreover, LKB1 loss detected by immunohistochemistry

is a biomarker for more aggressive biology in K-Ras-mutant lung adenocarcinoma [37]. These

reports suggest a potential link between LKB1 and K-Ras in lung cancer. In our study, we
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provide novel evidence that a subset of oncogenic K-Ras mutants (G13D and G12V) can atten-

uate LKB1/AMPK signaling in colon carcinoma cells, whereas G12D cannot. The mechanism

underlying the differential effect of distinct oncogenic RAS mutations on LKB1/AMPK signal-

ing remains unknown. K-Ras G12V mutations have been associated with a worse prognosis

than G12D mutations in lung cancer [38]. It thus seems that particular amino acid substitu-

tions might dictate specific oncogenic outcomes [39]. In agreement with our study, ERK has

been previously reported to inactivate LKB1/AMPK signaling in melanoma cells by phosphor-

ylating LKB1 and compromising the ability of LKB1 to bind and activate AMPK activation

[40]. In contrast, a recent finding demonstrates that oncogenic H-Ras induces LKB1 polyubi-

quitination and activation by activating Skp2-SCF under energy stress [41]. Therefore, the reg-

ulation of LKB1 by hyperactive Ras is intricate and complicated. It is hypothesized that, on one

hand, Ras-driven cancer cells must inactivate the tumor suppressor LKB1 to grow; on the

other hand, they need to activate LKB1/AMPK signaling to counteract metabolic stress-

induced cell death.

Overall, 2-DG exerts inhibitory effects on the growth or survival of all lung cancer cells

tested(as shown in S1 Fig), but the molecular basis of 2-DG mediated growth suppression is a

complex topic that cannot be stratified by LKB1-mutation status alone. For example, we ini-

tially hypothesized that LKB1-null cells would be more susceptible to 2-DG—mediated sup-

pression because these cells lack an LKB1/AMPK-mediated metabolic checkpoint to promote

cell survival under those circumstances. Our published study later refuted that hypothesis by

demonstrating that 2-DG is also capable of activating various prosurvival pathways in

LKB1-mutant cells through the activation of IGF1R [16,17].

The situation in LKB1-wild type cells turns out to be equally complex. Previous studies pre-

dicted that the activation of LKB1-AMPK signaling will suppress mTOR signaling and inhibit

cell proliferation [42–44]. In this study, we discovered that the activation of AMPK signaling

by 2-DG through LKB1 also suppresses MEK/ERK signaling, and this suppression may also

contribute to the growth suppression in LKB1-wild type cells. However, another important

finding of this study is that a subset of Kras mutants is capable of suppressing the function of

wild-type LKB1 to maintain the aberrant activation of MEK/ERK signaling. In summary, these

findings highlight the fact that lung cancers have heterogeneous genetic alterations, and LKB1

mutational status alone cannot be used to predict the response of these cell lines to 2-DG

treatment.

In summary, our study shows that the glycolysis inhibitor 2-DG suppresses ERK phosphor-

ylation in a subset of NSCLC cells with wild-type LKB1 and K-Ras. The study reveals the

potential cross-talk between LKB1/AMPK and ERK signaling, and offers novel insights into

the tumor suppressor role of LKB1. In addition, these findings help to better define the mecha-

nism of the biological effects of 2-DG and provide a rationale for lung cancer targeted therapy.

Supporting Information

S1 Fig. The effect of 2-DG on the survival of various LKB1 wild-type or LKB1 mutant

NSCLC cells.
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