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ARTICLE INFO ABSTRACT
Keywords: Heart failure (HF) is an increasingly prevalent disease in humans; it induces multiple symptoms
Heart failure and damages health. The animal gut microbiota has critical roles in host health, which might be
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Gut microbiota dysbiosis
Co-occurrence network
Community assembly

related to HF symptoms. Currently, several options are used to treat HF, including non-invasive
ventilation (NIV). However, studies on gut microbiota responses to acute HF and associated
treatments effects on gut communities in patients are scarce. Here, short-term (1 week after
treatments) and long-term (3 months after treatment) variations in gut microbiota variations in
rats with acute HF treated were examined NIV through high-throughput sequencing of the bac-
terial 16S rRNA gene. Through comparison of gut microbiota alpha diversity, it was observed
lower gut microbiota richness and diversity in animals with acute HF than in normal animals.
Additionally, beta-diversity analysis revealed significant alterations in the gut microbiota
composition induced by acute HF, as reflected by increased Firmicutes/Bacteroidetes (F/B) ratios
and Proteobacteria enrichment. When network analysis results were combined with the null
model, decreased stability and elevated deterministic gut microbiota assemblies were observed in
animals with acute HF. Importantly, in both short- and long-term periods, NIV was found to
restore gut microbiota dysbiosis to normal states in acute HF rats. Finally, it was shown that
considerable gut microbiota variations existed in rats with acute HF, that underlying microbiota
mechanisms regulated these changes, and confirmed that NIV is suitable for HF treatment. In
future studies, these findings should be validated with different model systems or clinical
samples.

1. Introduction

Heart failure (HF) is a global and increasingly prevalent epidemic disease, which affects more than 26 million people [1]. The
condition occurs when the heart cannot deliver sufficient blood and oxygen to the organs. While this is not the same as cardiac arrest, it
does mean that the heart is failing to pump blood effectively. The condition also induces multiple symptoms, including shortness of
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breath, fatigue or weakness (even after rest), persistent coughing or wheezing, swelling in the legs and feet, and abdominal pain or
nausea [2]. Coronary heart disease, a previous heart attack, or high blood pressure are the most common causes of HF, as they limit the
supply of oxygen-rich blood to the heart [3]. In the USA, HF has an estimated prevalence of 18-21,/1000 individuals and caused 1.25
million hospitalizations in 2018 [4]. In China, HF prevalence estimates are approximately 0.9 %, but increase significantly to 23.5%—
30.8 % in patients 60 years of age or older [5]. HF mortality rates are approximately 25 % after 1 year following diagnosis but increase
to more than 50 % at 5 years [6]. Therefore, further research is required to control and treat this disease.

The gut microbiome is an extremely complex microbial community in the intestinal tract and is critical for immunoregulation,
nutrition absorption, physiological responses, and overall host development [7]. Gut microbiota homeostasis is closely related to host
physiology and health [8]. Many studies have confirmed and identified the relationships between the gut microbiota and host disease,
including those not occurring in the intestines, such as cardiovascular disease [9]. Dysbiotic gut microbiota are reportedly implicated
in HF as they affect cells by using primary and secondary bile acids, short-chain fatty acids, N-oxides, and trimethylamine [10].
Reduced intestinal wall integrity, due to altered microbiota, may also be associated with HF [11]. Specifically, a study found a
diminished percentage of Bacteroides in fecal samples from patients with ischemic and dilated cardiomyopathic HF [12]. Another
study has revealed diminished Faecalibacterium prausnitzii and elevated Ruminococcus gnavus in the gut microbiota in patients with HF
[13]. These previous investigations have suggested a correlation between gut microbiota dysbiosis and HF progression. Importantly,
the relationship between HF and the gut microbiota is mutual. Dysbiotic gut microbiota are not only a cause of HF, but also a possible
consequence of it. When the intestinal microbiome composition is significantly altered, bacterial richness can become reduced in
chronic HF patients when compared with healthy individuals [14]. In contrast with chronic HF, acute HF is a sudden, life-threatening
condition where the heart cannot deliver enough oxygen to meet bodily needs [15]. In this situation, intestinal flora changes are more
likely a consequence of HF. However, studies have rarely focused on gut microbiota responses to acute HF and examined associated
treatment effects on patient gut microbiota.

HF can be divided into two categories based on timing and severity: acute and chronic. Treatment options for chronic HF include
medication, lifestyle changes, and surgery [16], whereas therapeutics for acute HF include vasodilators, diuretics, and aldosterone
inhibitors [17]. Surgical options for underlying HF include heart valve repair and coronary artery bypass grafting [18]. In contrast to
chronic HF, acute HF may cause significant respiratory failure, and the main curative modalities include non-invasive ventilation
(NIV), high-flow nasal cannulation, and continuous positive airway pressure [18]. NIV, a method for delivering ventilatory support
without the use of an invasive airway, is a highly valuable tool for the management of acute HF [19]. Several treatments have been
explored to restore gut microbiota balance in human or annimal models with HF; these treatments include fecal microbiota trans-
plantation [20], administration of probiotics [10], and targeted therapy with trimethylamine N-oxide inhibitors [21]. However, these
options often require complex procedures or long treatment period, and thus are suitable for the treatment of only chronic HF [22]. To
date, no research has examined methods to rapidly treat acute HF while restoring the gut microbiota in patients.

To address this, acute HF, NIV treatment effects, and the gut microbiota in a rat model system (Fig. 1) were examined. Feces
samples were collected from normal, HF, and NIV-treated HF rats in daily and monthly schedules to reflect short- and long-term effects.
Gut microbiota dynamics were tracked using high-throughput bacterial 16S rRNA gene sequencing. Microbiota diversity, composition,
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Fig. 1. Flow chart of experimental design, sample collection, and data analysis.
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and functional changes were analyzed in rats. From co-occurrence network analyses, complexity and stability variations in microbiota
were also uncovered. Additionally, microbiota assembly mechanisms were determined using neutral community models. The
following questions were addressed: (i) How does acute HF affect microbiota diversity, composition, and assembly in the studied rat
model? (ii) Does NIV treatment eliminate gut microbiota dysbiosis caused by acute HF? and (iii) Are NIV treatment effects maintained
for long periods? The findings of present study provide a deeper understanding of the adverse effects of acute HF and beneficial effects
of NIV on the microbiota.

2. Materials and methods
2.1. Animals, treatments, and sample collection

This study was approved by the local Ethics Committee. Wistar rats (220 + 20 g adult males) were purchased from the Animal
Experimental Center of the Academy of Military Medical Sciences. In total, 120 rats were used and assigned to three groups: 1) rats
undergoing coronary artery ligation were assigned to the HF group (n = 40); 2) rats undergoing NIV treatment after coronary artery
ligation were assigned to the NIV group (n = 40); and 3) rats undergoing thoracotomy and ligation were assigned to the Normal
Control (NC) group (n = 40). Treatments across groups were consistent with those in a previous study [23]. To examine short-term
effects, feces were collected from five individuals/group at 3, 5, and 7 days post-surgery, while for long-term effects, samples were
collected at 1, 2, and 3 months. Fecal samples were stored at —80 °C for DNA extraction.

2.2. Histopathology

At 3, 5, and 7 days post-surgery, rats were humanely culled. After opening the heart along the longitudinal axis, ventricles were
fixed in 10 % formalin solution for 24 h. After fixing in 4 % paraformaldehyde, heart tissue sections were paraffinized and stained in
hematoxylin and eosin (H&E) (Leagene Biotechnology). All detailed procedures were consistent with those described in a previous
study [24].

2.3. DNA extraction

Using the QIAamp Power Fecal DNA Kit (QIAGEN, CA, USA), total microbial DNA was extracted from feces samples according to
manufacturer’s instructions. Successful DNA extraction was ascertained using agarose gel electrophoresis (2 % agarose). Then,
Nanodrop 2000 (ThermoFisher, CA, USA) instrumentation was used to estimate DNA purity and concentrations. DNA samples were
stored at —20 °C for further applications.

2.4. High-throughput sequencing and data processing

The V3-V4 region of the bacterial 16S rRNA gene were sequenced using 341F and 806R primers [25]. Polymerase chain reaction
(PCR) amplifications, PCR product gel extractions, and sequencing library construction were performed according to a previous study
[26]. Sample libraries were finally sequenced at BIOZERON Biotech. Co., Ltd. (Shanghai, China) using the Illumina Novaseq 6000
platform based on a 250 bp paired-end strategy. Raw reads were quality-assessed using previously published thresholds [27].
High-quality reads were then assigned to samples and tags assembled and clustered into operational taxonomic units (OTUs) using
QIIME v1.9.1 software [28]. Tags with the highest number of OTUs were selected as representative sequences and annotated to a
taxonomy using the SILVA database (Release 138) [29]. Finally, OTU abundance data were normalized using lowest read numbers in
samples (31,224).

2.5. Statistical analysis

Statistical analyses were performed using the R 4.2.2 platform. Two a-diversity indices, Chaol and Shannon, were computed for gut
microbiota according to the OTU abundance table obtained from high-throughput sequencing (“vegan” package). In addition, ac-
cording to the taxonomy of OTUs and their abundance data, the relative abundances of gut microbiota were calculated from the
phylum to genus levels, respectively. Tukey’s honest significant difference (HSD) tests were used to confirm dominant bacteria
abundance variations and a-diversity indices in microbiota across treatments (“multcomp” package). Additionally, principal coordi-
nate analysis (PCoA) and adonis tests for Bray-Curtis distances were also executed (“vegan” package) to evaluate HF and NIV in-
fluences on gut microbiota compositional structures. Ternary plots were also generated to identify gut bacterial relative abundance
differences across treatments (“ggtern” package). To visualize co-occurrence networks in gut microbiota, Spearman’s rank correlations
among OTUs in samples were calculated (“WGCNA” package). Only OTUs detected in at least 9/15 samples across treatments were
used for correlation analyses. If the Spearman correlation coefficient was >0.8 and the Benjamini-Hochberg adjusted P value < 0.05,
the correlation between two OTUs was considered statistically robust. Network graphs were visualized using the Gephi interactive
platform [30] and topological network parameters were also calculated (“igraph™). To assess gut microbiota stability, co-occurrence
network cohesion was calculated according to a previous study [31]. Cohesion index changes across different treatments were
analyzed using Tukey’s HSD tests. Finally, stochastic processes and their importance to gut microbiota assemblies were investigated
using a neutral community model [32].
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3. Results
3.1. Pathological examinations

From histopathology results (Fig. 2), NC rats showed distinct nuclei and regular myocardium without neutrophils and low
lymphocyte numbers. Additionally, distinct cardiomyocyte alterations were observed during the experiment operation. In contrast, on
day 3 in the HF group, muscle cross-striation loss as well as neutrophil and nuclear enlargement had occurred. The myocardium was
replaced by fibroblasts and aggregated lymphocytes appeared on day 5. The epicardium was dominated by lymphocyte infiltration and
necrotic myocardium was replaced by inflammatory granulation on day 7. In the NIV group on day 3, disordered muscle cross-
striations and scattered neutrophils could be observed. Fibroblasts subsequently appeared, and muscle cross-striations disappeared
on day 5. On day 7, lymphocytes were the major inflammatory cell group and connective tissue with focal hyperplasia replaced the
myocardium. These findings suggested distinct myocardial degeneration and necrosis in HF rats when compared with NC counterparts,
while NIV showed effective HF symptom remission.

3.2. Gut microbiota diversity and variations

Regardless of the time period, significantly lower Chaol and Shannon indices were observed in the gut microbiota of rats with HF
when compared with NC animals (Tukey’s HSD test, p < 0.05, Fig. 3). More importantly, gut microbiota a-diversity in HF rats after NIV
treatment returned to normal levels after a short time and were maintained for a long period (Tukey’s HSD test, p < 0.05, Fig. 3).
Additionally, the range of a-diversity changes in gut microbiota was shorter in the long term than short term, and was possibly related
to natural recovery rates in HF rats over these periods (Fig. 3). In the short-term periods, gut microbiota a-diversity levels in NC and HF
groups were stable, but levels in NIV-treated samples gradually increased in line with study duration (Fig. S3). Also, a-diversity indices
in NIV-treated rats were stable over the long-term periods (Fig. S3).

3.3. Variations in gut microbiota composition

PCoA based on Bray-Curtis distances identified distinct and separated gut microbiota distribution across different treatments, in
both the short- and long-term periods (Fig. 4a and b). Adonis tests also confirmed significant variations in microbiota composition
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Fig. 2. Hematoxylin and eosin-stained cardiomyocytes in three rats from each group at indicated time points.
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Fig. 3. Alpha diversity index variations in gut microbiota across different treatments. Significant differences across samples are indicated by
different lowercases letters above boxes in the same sub-figure (Tukey’s HSD test, p < 0.05).

structures across different treatments (p < 0.05). Regardless of the period, gut microbiota in HF animals showed remarkable differ-
ences when compared with NC individuals, but NIV reversed these phenomena (Fig. 4a and b). HF also increased inter-individual gut
microbiota differences (Tukey’s HSD test, p < 0.05), while NIV restored them to normal levels (Fig. 4c and d). Also, amplitude changes
in gut microbiota composition across different treatments in the long-term periods were weaker when compared with the short-term
periods, consistent with a-diversity results.

3.4. Variations in the relative abundance of gut bacteria

Firmicutes was the most dominant bacterial phylum in the gut microbiota, followed by Bacteroidota, while the relative abundance
of other bacterial phyla was relatively low (Fig. S4). In the short-term periods, six bacterial phyla were identified as connected to HF;
the relative abundance of Firmicutes, Proteobacteria, Actinobacteriota, and Desulfobacterota was significantly increased, while the
relative abundance of Bacteroidota and Verrucomicrobiota was significantly decreased in rats with HF compared with NC individuals
(Tukey’s HSD test, p < 0.05, Fig. 5a). Critically, any changes in the relative abundance of phyla were practically eliminated after NIV
treatment (Fig. 5a). Ternary plots indicated shared bacterial OTUs and abundance comparisons between NC, HF, and NIV groups.
These results showed that multiple OTUs belonged to Firmicutes, which were enriched in HF rat gut microbiota in the short-term
periods (Fig. 5b). However, multiple OTUs belonging to Bacteroidota were identified at the bottom of the plot, suggesting gut
microbiota similarities between NC and NIV-treated rats (Fig. 5b). In the long-term periods, the most altered and abundant phyla from
the short-term periods had not changed significantly, except for Proteobacteria (Fig. 5¢). Additionally, in the long-term, most bacterial
OTUs in the center and bottom of the ternary plot were enriched in HF rats, with only a few low-abundance bacterial OTUs (Fig. 5d).

3.5. Gut microbiota co-occurrence networks

Gut microbiota co-occurrence networks across different treatments for the short- and long-term periods were constructed (Fig. 6a
and b, respectively). Based on topological parameters, all networks followed non-random distribution patterns and exhibited small-
world characteristics (Table 1). In both periods, network nodes were lower for HF rats than NC rats but returned to normal in NIV
networks (Table 1). In contrast, the change trend in edge number was completely opposite to the node number, indicating a higher
degree in HF rats but a lower degree in NIV rats when compared with NC animals (Table 1). Moreover, network modularity, from high
to low, was NIV, NC, and HF (Table 1). These results identified more complex co-occurrence patterns in HF gut microbiota, while
changes reverted to normal levels after NIV treatment. Moreover, cohesion was compared to assess network stability alterations in gut
microbiota across different treatments. Significantly lower network cohesion was identified in the HF group when compared with NC
and NIV groups in the short-term period (Tukey’s HSD test, p < 0.05, Fig. 6¢). In contrast, no significant variations were identified in
cohesion networks across different treatments in long-term periods (Tukey’s HSD test, p > 0.05, Fig. 6d).

3.6. Assembly mechanisms in gut microbiota

The relative importance of niches and neutral processes in community assemblies was analyzed to explore mechanisms underlying
observed spatial-temporal patterns. From the neutral community model results, 78.1 %, 59.0 %, and 74.4 % of the gut microbiota in
rats conformed to the neutral-based theory in rats in the short term (Fig. 7a). In the long-term periods, many of the relationships
between frequently occurring OTUs and associated relative abundance variations were successfully estimated using the neutral
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Fig. 4. Principal coordinate analysis (PCoA) based on Bray-Curtis distances in gut microbiota across different treatments for the short- (a) and long-
(b) term periods, respectively. Bray-Curtis distance differences in gut microbiota across different treatments in the short- (¢) and long- (d) term
periods, respectively. Significant differences in samples across treatments are indicated by different lowercases letters above boxes in the same sub-
figure (Tukey’s HSD test, p < 0.05).

community model. Of these, the explained proportion of the neutral community model was highest in NIV, followed by NC, and lowest
for HF samples (Fig. 7b). Thus, HF reduced the contribution of stochastic processes on rat gut microbiota assembly, while NIV reverted
assemblies back to normal levels.

4. Discussion
4.1. Gut microbiota dysbiosis in rats with acute HF

In animals, changes in gut microbiota communities can indicate a wide variety of health conditions. Gut microbiota a-diversity
reductions often cause a poor host-health status and are manifested as weaker resistance to potentially harmful factors [33]. Previous
studies reported decreased gut microbiota diversity in patients with diverse diseases [34-36], including those with HF [37], in
agreement with the results of this study. Additionally, in the present study, the abundance of some major bacterial taxa in rat gut
microbiota was altered by acute HF. It is widely accepted that host intestinal homeostasis is highly influenced by Firmicu-
tes/Bacteroidetes (F/B) ratios in gut microbiota [38]. Increased F/B ratios in the gut microbiota of rats with acute HF were identified in
this study. Similar result have also been found in patients with cardiovascular disease [39]. Increased F/B ratios are usually observed in
obese individuals and reflects lower acetate and propionate, and higher butyrate production levels [40]. In recent years, the rela-
tionship between obesity and the risk of cardiovascular disease has been recognized [41]. The results of this study further suggest that
cardiovascular disease may also be a possible cause of obesity. In addition to Firmicutes, specific gut microbial species belonging to
Proteobacteria were reportedly associated with HF [42]. In this study, more abundant Proteobacteria levels are detected in HF rats
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Fig. 5. Variations in relative phyla abundance in the gut microbiota across different treatments in the short- (a) and long- (c) term periods,
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figure (Tukey’s HSD test, p < 0.05). Ternary plots show the relative occurrence of individual OTU’s in gut microbiota across different treatments
over the short- (b) and long- (d) term periods.

when compared with NC animals. Proteobacteria contain multiple pathogens (e.g., Escherichia), while Proteobacteria blooms are often
linked to inflammatory bowel disease, metabolic syndrome, and some extraintestinal diseases [43,44]. Taken together, the results of
this study show that acute HF induces gut microbiota dysbiosis in rats.

4.2. Determinism and unstable gut microbiota in rats with acute HF

The examination of co-occurrence networks yielded several insights into the effects of acute HF in mediating complexity and
stability in the gut microbiota of rats. Acute HF improved complexity and reduced gut microbiota stability, which suggests that HF acts
as a deterministic filtering factor selecting certain bacteria in rat intestinal tracts [45]. More complex co-occurrence pattern have also
been found in the gut microbiota of mice with increased risk of cardiovascular disease [46] and Tibetan patients with coronary heart
disease [47]. As a result, in individuals with acute HF, taxa that are more interrelated will dominate the gut microbiota, while the
proportion of neutral, unrelated taxa will decrease. This shift will lead to the development of more complex network structures. This
inference is consistent with the results of neutral community models in the present study, suggesting that many non-neutral taxa
accounted for the majority of the gut microbiota in rats with acute HF. Stability is more critical than complexity in the gut microbiota
for host health and well-being as it ensures that beneficial symbionts and associated functions are maintained over time [48]. In the
present study, network stability clearly decreased with increased network complexity in the gut microbiota of rats with acute HF. Acute
HF induced the gut microbiota to form cooperating networks with more links between limited taxa, which may be more efficient in
resisting HF stress but may be unstable [49]. In normal individuals, higher gut microbiota diversity introduces species which enhance
competition and could stabilize such networks [50]. Moreover, greater stability in the gut microbiota of normal rats could be due to
stochastic contributions to gut microbiota assembly [51]. Stochastic gut microbiota assembly could represent a more balanced state,
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Table 1
Topological parameters of co-occurrence networks of gut microbiota for rats among different treatments in short- and long-term experiments.
Noses  Edges  Modularity  Average Diameter  Density  Average path Clustering Power-law Small world
degree length coefficient model coefficient
S-NC 149 766 0.442 10.282 6 0.069 2.930 0.518 0.805 3.744
S-HF 127 1038 0.284 16.346 6 0.130 2.248 0.509 0.890 2.156
S-NIV 134 547 0.477 8.164 8 0.061 3.283 0.424 0.818 3.800
L-NC 120 604 0.424 10.067 6 0.085 2.772 0.453 0.837 3.416
L-HF 114 812 0.360 14.247 6 0.126 2.589 0.586 0.822 2.562
L-NIV 134 547 0.477 8.164 8 0.061 3.283 0.424 0.818 3.800

which may enhance gut microbiota resistance to external stresses [52].

4.3. NIV treatment ameliorates gut microbiota dysbiosis in rats with HF

In healthy individuals, the gut microbiota tends to form a fixed and stable state for physiological function [53], whereas a transient
perturbation can push the gut microbiota to a transient alternative state [54]. When perturbations disappear, two possible outcomes
may occur. Microbial communities in some ecosystems may return to their initial state after a few days, however, incomplete recovery
may lead to alternative stable states [55]. Such alternative states are frequently observed in gut microbiota after pathogen invasion
[56], antibiotic treatments [57], and dietary interventions [58]. However, in the present study, after 3 days, the gut microbiota
reverted to an NC-like state after NIV. For longer periods, HF symptoms were alleviated due to the establishment of collateral cir-
culation. The gut microbiota in HF rats also gradually changed to an NC state, while NIV-treated gut microbiota remained stable for a
long time in the NC-like state. This finding suggested that NIV treatment reversed the gut microbiota dysbiosis induced by acute HF in
rats and showed long-term effectiveness. Resilience, the ability of the gut microbiota to withstand and recover from perturbations, is
crucial for gut health and overall well-being in hosts [59]. The diverse and stable microbial communities in a resilient microbiota can
outcompete pathogens and maintain a protective barrier against infections [60]. In addition, by maintaining a stable and diverse
microbial composition, a resilient gut microbiota can support various physiological processes, including nutrient metabolism, immune
regulation, and gut barrier function [61]. As a strategy to promote gut microbiota resilience, NIV treatment may have broad clinical
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Fig. 7. Neutral community rat gut microbiota models across different treatments in the short- (a) and long- (b) term periods, respectively.
and nursing applicability.
4.4. Limitations and strengths

The experimental setup is critical factor directly affecting study scope and applicability. In this study, variations in the gut
microbiota of rats over short- (1 week) and long-term periods (3 months) were examined in three sampling points per each period. The
results indicated rapid and significant changes in the gut microbiota of rats, which were subsequently stably maintained over time. In
future studies, examining more time points at the beginning of acute HF and NIV treatment, such as change within 24 h, might provide
a more detailed view. In this study, acute HF was a strong selective factor, and rat gut microbiota variations were determined by this.
Additionally, the present study involved feeding rats in a laboratory, with study individuals having the same genetic background and
survival conditions. This may be why good resilience was observed in rat gut microbiota after NIV treatment. However, in clinical
environments, responses to perturbations are very different from one person to the next [62] Thus, incomplete recovery may be
observed in the gut microbiota of patients with acute HF after NIV, similar to the results from patients with HF treated with left
ventricular assist devices or heart transplantation [63]. In addition, although some valuable insights were obtained in this study, the
methods allowed us to analysis only the diversity and composition of the gut microbiota [64]. To examine the functional implications
of the gut microbiota and potential interaction mechanisms in rats with acute HF and treated with NIV, further investigations inte-
grating metagenomic or metatranscriptomic analyses will be necessary [65]. Moreover, a coronary artery ligation model in Wistar rats
was used in this study; however, studies using other models might yield different results. Validating the findings of this study in
different model systems or clinical samples in the future could increase the generalizability and applicability of these findings.

4.5. Significance and implications

The gut microbiota plays a major role in the pathogenesis and progression of acute HF. In patients with acute HF, splanchnic
hypoperfusion causes intestinal ischemia and edema, thus increasing intestinal permeability [66]. Consequently, bacterial trans-
location and entry of bacterial metabolites into the bloodstream result in local and systemic inflammatory responses that exacerbate
HF [67]. Investigating the gut microbiota in rats with acute HF may reveal its crucial role in disease pathogenesis, such as decreased
diversity, increased F/B ratios, and decreased stability. Moreover, targeting the gut microbiota may serve as a potential therapeutic
strategy for acute HF. Approaches including dietary interventions, prebiotics, probiotics, and fecal microbiota transplantation may
help restore a healthy gut microbiome and decrease the production of harmful metabolites [68]. Thus, the results of present study may
aid in the development of both microbiome-based diagnostics and therapeutics for acute HF. Additionally, the findings of this study
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further expand the implications of NIV in treating acute HF. NIV, delivered as non-invasive pressure support ventilation, compared
with conventional oxygen therapy, can rapidly ameliorate respiratory distress and decrease the need for endotracheal intubation [18].
Previous studies have explored several advantages of NIV, including amelioration of respiratory distress, decreased intubation rates,
and potentially decrease mortality [69]. In this study, the previously poorly understood effects of NIV on restoring gut microbiota
dysbiosis were revealed, which further supporting NIV as a valuable non-invasive tool in the management of acute HF.

5. Conclusions

This study examined the efficacy of NIV in treating HF and provided perspectives on the roles of acute HF and NIV in shaping the
gut microbiota in rats. Gut microbiota richness and diversity were significantly decreased under acute HF stress, while composition
varied significantly and was represented by increased F/B ratios and Proteobacteria levels. Additionally, animals with acute HF were
shown to have a less stable and deterministic dominant gut microbiota. More importantly, acute HF was the direct cause of gut
microbiota dysbiosis in rats, while NIV restored dysbiosis to a normal state. These findings contribute key insights into the implications
of HF in gut microbiota dysbiosis, and highlights the use of NIV for treating acute HF.
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