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Abstract: The resuscitation of polytrauma with hemorrhagic shock and traumatic brain injury
(TBI) is a balance between permissive hypotension and maintaining vital organ perfusion. There
is no current optimal solution. This study tested whether a multifunctional resuscitation cocktail
supporting hemostasis and perfusion could mitigate blood loss while improving vital organ blood
flow during prolonged limited resuscitation. Anesthetized Yorkshire swine were subjected to fluid
percussion TBI, femur fracture, catheter hemorrhage, and aortic tear. Fluid resuscitation was started
when lactate concentration reached 3–4 mmol/L. Animals were randomized to one of five groups. All
groups received hydroxyethyl starch solution and vasopressin. Low- and high-dose fibrinogen (FBG)
groups additionally received 100 and 200 mg/kg FBG, respectively. A third group received TXA and
low-dose FBG. Two control groups received albumin, with one also including TXA. Animals were
monitored for up to 6 h. Blood loss was decreased and vital organ blood flow was improved with low-
and high-dose fibrinogen compared to albumin controls, but survival was not improved. There was
no additional benefit of high- vs. low-dose FBG on blood loss or survival. TXA alone decreased blood
loss but had no effect on survival, and combining TXA with FBG provided no additional benefit.
Pooled analysis of all groups containing fibrinogen vs. albumin controls found improved survival,
decreased blood loss, and improved vital organ blood flow with fibrinogen delivery. In conclusion,
a low-volume resuscitation cocktail consisting of hydroxyethyl starch, vasopressin, and fibrinogen
concentrate improved outcomes compare to controls during limited resuscitation of polytrauma.

Keywords: multifunctional resuscitation fluid; damage control resuscitation; fibrinogen;
hemostasis; perfusion

1. Introduction

The leading causes of death from trauma are traumatic brain injury (TBI) and hemor-
rhage [1,2]. The goals of resuscitation for TBI and hemorrhagic shock (HS) are seemingly at
odds during prolonged damage control resuscitation (pDCR). HS is best managed with
limited-volume resuscitation to minimize blood loss and promote hemostasis [3]. Con-
versely, TBI worsens with hypotension in a time- and dose-dependent manner [4]. This
challenge is substantiated by the finding that trauma patients with combined HS and TBI
suffer higher mortality and worsened coagulopathy than those with HS alone [5]. Current
strategies employed in the United States military’s Tactical Combat Casualty Care (TCCC)
guidelines include administration of fluid to maintain a palpable radial pulse, which falls
on the side of permissive hypotension and limited resuscitation, potentially allowing a
second-hit to vital organ perfusion, including the injured brain [6].

The common goal behind management of HS and TBI is supporting vital organ
perfusion, but HS and TBI pose differing barriers to this. HS is caused by intravascular
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volume loss, while TBI impairs systemic perfusion through neurovascular dysregulation,
leading to decreased cardiac output and vascular tone [7–9]. Both HS and TBI are also
associated with coagulopathy, which contributes to worsened blood loss [10,11]. An ideal
resuscitation would support hemostasis to limit hemorrhage, increase cardiac output, and
maintain vascular tone to optimize perfusion. If this could be achieved in a low-volume
fluid, its portability could make it available very early after injury, including in far-forward
combat scenarios and prolonged extrication civilian scenarios.

We previously showed that hydroxyethyl starch (HES), used as the first-line resus-
citation fluid by the United States military, in combination with vasopressin improved
vascular tone during resuscitation of HS [12]. This combination increased mean arterial
blood pressure and vital organ perfusion. However, it came at a cost of increased hemor-
rhage volumes, highlighting the need to also address hemostasis directly when formulating
resuscitation strategies.

Fibrinogen plays a critical role in hemostasis after injury because low fibrinogen levels
are associated with increased mortality in trauma patients, and it is the first coagulation
factor to reach a critically low level after trauma [13–15]. Fibrinogen supplementation has
demonstrated benefit by decreasing blood loss and improving survival in experimental
models of both solid organ and arterial hemorrhage [16,17].

TXA is a synthetic lysine analog that competitively binds the functional site of plas-
minogen, effectively blocking the lysis of fibrin and fibrinogen [18,19]. It has been shown
to decrease mortality when given early to trauma patients with suspicion of active hem-
orrhage [20,21]. TXA is highly water soluble, enabling it to be delivered as a relatively
low-volume solution, which makes it well suited for use in a low-volume resuscitation
cocktail. Additionally, its ability to inhibit fibrinogenolysis in addition to fibrinolysis would
mitigate the loss of administered fibrinogen in a blood environment that is potentially
highly proteolytic.

Here, we use a large animal model of polytrauma with TBI and free internal bleeding
to test the hypothesis that limited infusion of a multifunctional resuscitation cocktail
supplemented with fibrinogen improves outcomes through support of the hemodynamic
and hemostatic response during prolonged limited resuscitation.

2. Materials and Methods

We tested a multifunctional, low-volume resuscitation cocktail in a swine model of
severe polytrauma that includes TBI and hemorrhagic shock. This cocktail was meant
to be compatible with resuscitation early after injury, even in austere environments. An
overview of the experimental protocol timeline is provided in Figure 1. The experimental
protocol was approved by the University of Washington Office of Animal Welfare.

2.1. Animal Preparation and Instrumentation

A total of 34 immature (25–30 kg) female Yorkshire swine (Sus scrofa domestica) were
acclimated to the animal facility for 3–5 days with free access to food and water and were
fasted overnight prior to study. On the morning of this study, animals were sedated with
ketamine (30 mg/kg intramuscularly), and anesthesia was induced with isoflurane (2–4%)
via nasal cone. Upon reaching a surgical plane of anesthesia, animals were intubated,
and the isoflurane concentration was reduced to 1–2%. FiO2 was titrated to an arterial
O2 saturation > 95%. End-tidal CO2 (ETCO2) was monitored continuously and main-
tained at 35–40 torr via adjustment of ventilator rate and tidal volume. Buprenorphine
(0.01 mg/kg IM) was administered for analgesia. Animals were placed on a warming
blanket, and body temperature was monitored via pulmonary artery catheter.

After anesthesia induction, the right side of the neck, both femoral areas, and the
anterior abdominal wall were shaved and widely prepared with povidone-iodine. Animals
were instrumented with ECG leads, an ear pulse oximeter, and a Foley catheter to monitor
urine output. Right femoral artery and venous catheters were placed for blood sampling
and fluid/drug administration. A right carotid artery introducer catheter was placed for
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continuous BP monitoring and blood sampling. A 5-French pig-tail catheter was placed via
the right carotid into the left ventricle for pressure monitoring and colored microsphere in-
jection for regional blood flow measurements. A pulmonary artery thermodilution catheter
was inserted via the right external jugular vein and advanced into the pulmonary artery for
central venous pressure (CVP), mean pulmonary artery pressure (MPAP), cardiac output
(CO), and core temperature monitoring, as well as mixed venous blood (MVO2) sampling.
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Following catheter placement, a laparotomy was performed via midline abdominal
incision for splenectomy and placement of an infrarenal aortotomy for creation of an aortic
tear. A midline 10 cm longitudinal abdominal incision was made, and the spleen was
isolated and removed. Following splenectomy, the retroperitoneal fascia was incised, and
the ventral surface of the infrarenal aorta was exposed. A 4.0 monofilament stainless steel
surgical wire was placed through the ventral wall of the infrarenal aorta into the aortic
lumen, advanced, and exited at a point on the aorta 4 mm distal from insertion. The wire
ends were then exteriorized through the abdominal incision, and the incision was closed
with surgical staples. While supine, a 10 cm incision was made over the right anterior
mid-femur. The anterolateral surface of the mid-femur was exposed by blunt dissection for
subsequent fracture.

Next, pigs were placed in the prone position with their head placed in a stabilizer. The
scalp was widely prepared with povidone iodine. A circumferential incision was made,
the scalp reflected posteriorly, and the cranium exposed. A 16 mm-diameter craniotomy
was performed in the right parietal region adjacent to the sagittal suture and anterior to the
coronal suture. A T-shaped bolt was screwed into the craniotomy so it abutted the intact
dura. This bolt was connected to the fluid percussion device. Another craniotomy (5 mm)
was performed in the left posterior parietal region, and a neonatal intraventricular catheter
(Phoenix Biomedical Corp., Bolton, ON, Canada) was placed in the left lateral ventricle and
connected to an intracranial pressure (ICP) monitor. A brain temperature-monitoring probe
was also placed in this same craniotomy site. A third craniotomy site (5 mm) was prepared
just anterior to the inion for placement of a sagittal sinus catheter for cerebral venous blood
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sampling. Finally, a fourth craniotomy (3 mm) was made in the left frontoparietal region
for insertion of a Licox tissue O2-sensing probe. All craniotomy sites were sealed with
dental cement.

2.2. Injury Protocol

Thirty minutes after instrumentation, baseline metabolic, hemodynamic, and coagula-
tion measurements were made. Next, animals underwent TBI by fluid percussion using a
device consisting of a saline-filled tube and a weighted pendulum. The saline-filled tube is
connected directly to the bolt installed on the animal’s skull. To induce injury, the pendu-
lum was pulled back a standardized distance and allowed to fall, striking a rubber seal
on the end of a plexi-glass piston. The resulting fluid wave that is generated in this closed
system transmits a 15 msec pressure pulse of 3–3.5 atm to the intact dura. A high-pressure
transducer is attached to the craniotomy bolt (directly above the site of injury), which
permits quantification of the delivered pressure. This percussion injury has been shown
in previous models to result in moderate TBI [22]. After TBI, the animal is immediately
placed in the supine position. At this point, femur fracture was induced by firing a captive
bolt pistol (Schermer Stunner Model MKL, Karl Schermer and Co., Karlsruhe, Germany)
directly against the exposed anterolateral surface of the right femur, as has been described
in previous study [23]. This injury creates an open, displaced, comminuted mid-shaft
femur fracture with surrounding soft tissue injury. Simultaneously, catheter hemorrhage
was begun via the left femoral arterial catheter. Hemorrhage was controlled by computer-
driven roller pump with an exponentially decreasing rate over time to mimic the kinetics
of free hemorrhage, as has been previously described [24–26]. When mean arterial pressure
(MAP) reached 50 mmHg, aortic tear was induced by pulling the exteriorized wire loop,
allowing free intraperitoneal hemorrhage. After aortic tear, animals were maintained at a
MAP of 30 mmHg by toggling catheter hemorrhage on or off. During this period of shock,
serial lactic acid measurements were taken to monitor severity of shock. Upon reaching the
target lactate concentration of 3–4 mmol/L, which usually occurred after approximately
15 min, resuscitation was begun. A similar injury protocol including the fluid percussion
TBI, initial catheter hemorrhage, aortic tear at MAP of 50 mmHg, and maintenance of MAP
at 30 mmHg to induce severe shock has been used previously [24–26]. The model did not
include femur fracture, but it resulted in a 1 h mortality near 90% with no resuscitation
that was modifiable with varying qualities of resuscitation.

2.3. Resuscitation Protocol

Resuscitation consisted of one of five randomly assigned resuscitation fluids divided
into two boluses given 30 min apart, in keeping with TCCC guidelines at the time of
experiment design. The fluids were as follows:

• Albumin control (AC): Hextend 14 mL/kg, 0.4 U/kg vasopressin, and 100 mg/kg
albumin (chosen to equal the same molar concentration of high-dose fibrinogen
below) (n = 5)

• Low-dose fibrinogen (LF): Hextend 14 mL/kg, 0.4 U/kg vasopressin, and 100 mg/kg
fibrinogen concentrate (n = 8)

• High-dose fibrinogen (HF): Hextend 14 mL/kg, 0.4 U/kg vasopressin, and 200 mg/kg
fibrinogen concentrate (n = 8)

• Albumin + tranexamic acid control (TA): Hextend 14 mL/kg, 0.4 U/kg vasopressin,
100 mg/kg albumin, and 15 mg/kg TXA (n = 5)

• Tranexamic acid + low-dose fibrinogen (TLF): Hextend 14 mL/kg, 0.4 U/kg vaso-
pressin, 100 mg/kg fibrinogen concentrate, and 15 mg/kg TXA (n = 8)

At the initiation of resuscitation (“R0”), the first bolus was infused over 10 min. The
second bolus was begun 30 min after the onset of resuscitation (“R30”) and was given at
the same rate. After completion of the second bolus, no further resuscitation was given.
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Animals were monitored for up to 6 h after beginning of resuscitation (“R360”) or until
time of death, at which time animals were euthanized with an overdose of pentobarbital
(100 mg/kg). Death was defined as loss of pulse pressure on arterial waveform.

2.4. Outcome Measurements

There were two primary outcome measurements: survival to 6 h and intraperitoneal
hemorrhage volume. Secondary outcome measures included systemic metabolic resus-
citation (lactate, pH, base deficit), hemodynamics (MAP and cardiac output by thermal
dilution), cerebral-specific resuscitation (cerebral perfusion pressure, intracranial pressure,
sagittal sinus venous hemoglobin oxygen saturation, and cerebral lactate), and organ-
specific blood flow measurements by color-tagged microspheres.

Intraperitoneal hemorrhage was measured at 6 h or time of death by opening the
abdomen and collecting shed blood using pre-weighed laparotomy sponges. Systolic, dias-
tolic, and mean arterial pressure, respiratory rate, temperature, and ETCO2 were recorded
at baseline and continuously throughout the protocol. ECG was monitored continuously
for HR and arrhythmias. Cardiac output was measured via the thermodilution technique
at baseline and every 15 min to R120 and every 30 min thereafter. ICP was monitored
throughout the protocol. Cerebral venous O2 saturation was measured at baseline, start of
resuscitation, 15 min intervals to R120, 30 min intervals to R240, and 1 h intervals there-
after. Cerebral perfusion pressure, cerebral O2 delivery, cerebral O2 extraction ratio, and
cerebral metabolic rate of O2 were calculated from the above parameters. Microspheres
(Dye-Trak Microspheres, Triton Inc., Seattle, WA, USA; intravenous—1 mL, 3 million/mL)
were purchased in sterile vials and reconstituted in sterile saline on the day of the experi-
ment for measurement of cerebral, cardiac, renal, and intestinal blood flow. Microspheres
were injected into the left ventricle via catheter at baseline and at R30, R90, R180, and
R360 and organ-specific blood flow was determined using the reference sample method.
Blood was collected at baseline, at the start of resuscitation, and at 15 min intervals un-
til R120, at 30 min intervals until R240, and at 1 h intervals thereafter for hemoglobin,
hematocrit, arterial, mixed venous, and sagittal sinus blood gas measurements, and ar-
terial and sagittal sinus lactate measurements (Radiometer Medical: ABL 505, EML 100,
and OSM3, Copenhagen, Denmark). White blood cells, platelets, prothrombin time (PT),
partial thromboplastin time (PTT), fibrinogen, rotational thromboelastometry (ROTEM,
Instrumentation Laboratory, Bedford, MA, USA) with whole blood and fibrin-specific clot
maximal amplitude measurements using platelet poor plasma obtained by centrifugation
were measured at baseline, and at R0, R60, R120, R240, and R360.

2.5. Statistical Analysis

Cross-sectional data were compared at a single point in time or aggregated over
time with repeated measure two-way analysis of variance (ANOVA) testing the effects
of protocol time and study group with interaction and χ2 tests to compare continuous
and categorical variables, respectively, between groups. Tukey adjustment was made for
multiple comparisons. An overall p value of less than 0.05 was considered statistically
significant for all analyses. Survival was compared between groups using time-to-event
Kaplan–Meier analysis. To test the effect of including fibrinogen, the AC group was
compared to LF and HF. To test the effect of fibrinogen dose, LF was compared to HF. To
test the effect of TXA in the absence of fibrinogen supplementation, AC was compared to
TA. To test the effect of TXA in addition to fibrinogen supplementation, LF was compared
to TLF. The low-dose fibrinogen group was chosen for TXA supplementation, because
we found it had slightly lower hemorrhage volumes than the high-dose fibrinogen group.
Finally, to test for an overall effect of fibrinogen supplementation, all groups containing
fibrinogen concentrate were pooled and compared to all pooled control groups. All
statistical analysis was performed with SAS JMP v.12 (SAS, Cary, NC, USA).

Preliminary work using this polytrauma model found a 0% 6 h survival without
fibrinogen concentrate included in the cocktail. Therefore, in order to detect a clinically
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relevant 50% increase in survival with 80% power while assuming a null 30% difference,
we would require at least 5 animals in each experimental vs. control group and at least
8 animals per group when comparing fibrinogen and TXA dosages, assuming a 5% null
difference to be relevant with alpha = 0.05. Therefore, non-fibrinogen control groups were
allotted 5 animals and fibrinogen- and TXA-containing groups were allotted 8 animals
each. This number of animals in each group also allowed us to detect a difference in lactate
concentration of at least 2 mmol/L, a difference in cerebral perfusion pressure of 10 mmHg,
and a change in intraperitoneal blood loss of 5 mL/kg in up to 4 experimental groups with
80% power.

3. Results
3.1. Effect of Fibrinogen on Survival and Blood Loss

No animals survived to 6 h in the albumin group (0/5), while 13% of animals (1/8)
survived to 6 h in each fibrinogen group (Figure 2A). There were no differences in overall
survival between groups (Kaplan–Meier log rank p = 0.4). Intraperitoneal blood loss
was significantly decreased with LF and HF compared to AC. There was no difference in
intraperitoneal blood loss when comparing LF to HF (p = 0.7) (Figure 2B).

3.2. Effect of Fibrinogen on Hemodynamics and Resuscitation

There was a significant effect of study group on mean arterial pressure during resusci-
tation (ANOVA group effect p < 0.001), but no interaction with the time variable. Overall
mean (SD) MAP during resuscitation was 37.7 (18.4) mmHg with albumin, which was
significantly lower than both low-dose fibrinogen at 46.3 (19.9) mmHg (p = 0.002) and
high-dose fibrinogen 50.8 (22.7) mmHg (p < 0.001). There were no individual differences
between group MAPs at single time points.

There was a significant group effect and interaction on lactate concentration (ANOVA
group effect p < 0.001, interaction effect p < 0.001). Both fibrinogen-containing groups
had significantly lower lactate concentrations compared to the albumin group at 90,
120, and 180 min of resuscitation (Figure 2C). There was no difference between
fibrinogen-containing groups.

There was also a significant group effect of fibrinogen on cerebral perfusion pressure
(CPP) during resuscitation (ANOVA group effect p = 0.006), without a significant interaction.
Overall mean (SD) CPP during resuscitation was 31.7 (16.1) mmHg with albumin, which
was significantly lower than both low-dose fibrinogen at 45.8 (19.5) mmHg (p = 0.001) and
high-dose fibrinogen at 43.8 (22.3) mmHg (p = 0.002). There were no individual differences
between group CPPs at single time points.
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3.3. Effect of Fibrinogen on Brain and Vital Organ Blood Flow

Brain and vital organ blood flow was available for all groups up to and including the
first 60 min of resuscitation and is reported as the percent of baseline blood flow for each
organ measured prior to TBI and HS. MAP was too low after 60 min in the albumin control
group to obtain accurate vital organ blood flow measurements. Measurements from the
left and right kidneys compared and found to be not significantly different, so they were
combined. There was a significant effect of treatment group on brain blood flow in some but
not all of the various brain regions measured (Figure 2D). In the injured cerebral cortex and
cerebellum, there was no effect of fibrinogen on blood flow during resuscitation (ANOVA
group effect p values > 0.14). However, there was a significant increase in regional blood
flow in the uninjured cortex and medulla with high-dose fibrinogen, compared to albumin
control (ANOVA group effect p values < 0.033). Overall, most brain regions tended to
increase in groups that received fibrinogen, with the high-dose fibrinogen group recovering
nearly 100% of baseline flow during the first 60 min of resuscitation. Blood flow also tended
to increase with fibrinogen in other vital organs including the heart, kidney, and gut. Left
ventricular blood flow typically increased above baseline values during shock, and this
response was significantly more pronounced in fibrinogen-containing groups (ANOVA
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group effect p = 0.04). There was also a significant effect of study group on kidney and
ileum blood flow (ANOVA group effect p values < 0.04). The high-dose fibrinogen group
had significantly increased blood flow to the left ventricle of the heart and ileum compared
to albumin, and the low-dose fibrinogen group had significantly increased blood flow in
the kidney and ileum compared to albumin controls.

3.4. Effects of Tranexamic Acid on Survival and Blood Loss

None of the animals in the AC or ATC groups survived to 6 h (0% survival). There
was no difference in overall survival when comparing albumin alone to albumin+TXA
(Kaplan–Meier log rank p = 0.3). One animal in each of the LF and TLF groups survived to
6 h (13% survival) and no statistical survival difference when comparing fibrinogen alone to
fibrinogen+TXA (Kaplan–Meier log rank p = 0.7) (Figure 3A). Blood loss was significantly
less when TXA was added to albumin, but this was not associated with increased survival.
There was no difference in blood loss when TXA was added to fibrinogen concentrate
(Figure 3B).
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ROTEM data showed similarly low levels of fibrinolysis in all groups, regardless of
whether TXA was administered (Table S1).

3.5. Effects of Tranexamic Acid on Hemodynamics and Resuscitation

Data were available for all groups only during the first 120 min of resuscitation due to
deaths in the albumin+TXA group. (Figure 3C) When comparing AC to ATC, there was a
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lower MAP in the ATC group that did not reach significance (ANOVA interaction effect
p = 0.058). There was a significant group effect on lactate (ANOVA group effect p = 0.003)
with a significantly higher average (SD) lactate for ATC at 7.3 (5.4) mmol/L than with
AC at 5.9 (3.5) mmol/L. There was also a significant interaction effect on CPP (ANOVA
interaction p = 0.015) where adding TXA to albumin decreased CPP significantly at 30 and
60 min of resuscitation compared to albumin alone (Figure 3C).

There were no effects of TXA on MAP or lactate when tested in the presence of
100 mg/kg fibrinogen. Mean (SD) CPP was significantly decreased during the first 120 min
of resuscitation with fibrinogen+TXA at 35.4 (17.4) mmHg compared to fibrinogen alone at
50.0 (20.2) mmHg (ANOVA group effect p = 0.001).

3.6. Effects of Tranexamic Acid on Organ Blood Flow

The addition of TXA to albumin decreased brain blood flow during the first 60 min of
resuscitation in all regions of the brain sampled compared to albumin alone (ANOVA group
effect p values ≤ 0.018), except for the uninjured cortex, where there was no effect. There
was also no effect of TXA on organ blood flow (heart, kidney, gut) compared to albumin
alone. There were no effects of TXA on vital organ blood flow when TXA was added to low-
dose fibrinogen in comparison to low-dose fibrinogen alone, except for the ileum, where
the 60-min blood flow measurement was significantly decreased with fibrinogen+TXA
(57%) compared to fibrinogen alone (103%) (ANOVA interaction effect p = 0.04).

3.7. Pooled Effects of Fibrinogen

To test for an overall effect of fibrinogen regardless of its concentration or the pres-
ence of TXA, animals were pooled into two separate groups segregated by the pres-
ence or absence of fibrinogen in the resuscitation fluid. The fibrinogen group consisted
of the 100 mg/kg fibrinogen, 200 mg/kg fibrinogen, and 100 mg/kg fibrinogen+TXA
groups (n = 24 total). The no fibrinogen group consisted of the albumin, and albumin+TXA
groups (n = 10 total). All animals received the same amount of Hextend and vasopressin
during resuscitation.

Survival was significantly greater in the fibrinogen group (12.5%) vs. the no fibrinogen
group (0%) (Kaplan–Meier log rank p = 0.04) (Figure 4A). Internal blood loss was also
significantly less for the fibrinogen group (Figure 4B).

3.8. Pooled Effect of Fibrinogen on Hemodynamics and Resuscitation

There was a significant effect of fibrinogen on MAP measurable up to 240 min (ANOVA
interaction effect p = 0.03), cerebral perfusion pressure (CPP) up to 240 min (ANOVA treat-
ment effect p < 0.001), and blood lactate concentration measurable up to 180 min (ANOVA
interaction effect p = 0.004). There was a significant interaction effect of study group for
MAP and lactate concentration (ANOVA interaction effect p values < 0.024) (Figure 4C).
MAP was significantly increased in the fibrinogen group at 30, 60, 90, and 120 min of
resuscitation. Lactate was significantly decreased with fibrinogen from 60–180 min of
resuscitation. Overall average (SD) CPP was significantly increased with fibrinogen at
40.5 (20.2) mmHg, compared to no fibrinogen at 30.9 (18.8) mmHg, but did not differ at
individual time points.

Pooled analysis of the effect of fibrinogen on organ blood flow revealed that there
was a significant overall effect of fibrinogen where blood flow was increased in all regions
of the brain and all organs measured (all ANOVA group effects p ≤ 0.038) (Figure 4D).
Individual differences included a significantly increased blood flow within the medulla,
left ventricle, and kidney with fibrinogen at 60 min of resuscitation (ANOVA interaction
term p values < 0.034).



J. Clin. Med. 2021, 10, 5484 10 of 14

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 10 of 14 
 

 

3.7. Pooled Effects of Fibrinogen 
To test for an overall effect of fibrinogen regardless of its concentration or the presence of 

TXA, animals were pooled into two separate groups segregated by the presence or absence of 
fibrinogen in the resuscitation fluid. The fibrinogen group consisted of the 100 mg/kg fibrino-
gen, 200 mg/kg fibrinogen, and 100 mg/kg fibrinogen+TXA groups (n = 24 total). The no fi-
brinogen group consisted of the albumin, and albumin+TXA groups (n = 10 total). All animals 
received the same amount of Hextend and vasopressin during resuscitation. 

Survival was significantly greater in the fibrinogen group (12.5%) vs. the no fibrino-
gen group (0%) (Kaplan–Meier log rank p = 0.04) (Figure 4A). Internal blood loss was also 
significantly less for the fibrinogen group (Figure 4B). 

 
Figure 4. Combined effect of fibrinogen on survival time (A), intraperitoneal blood loss (B), hemo-
dynamics and lactate (C), and vital organ blood flow (D). All animals received Hextend and vaso-
pressin. Error bars represent standard deviation. * p < 0.05 compared to no fibrinogen with Tukey 
HSD adjustment for multiple comparisons. 

Figure 4. Combined effect of fibrinogen on survival time (A), intraperitoneal blood loss (B), hemodynamics and lactate (C),
and vital organ blood flow (D). All animals received Hextend and vasopressin. Error bars represent standard deviation.
* p < 0.05 compared to no fibrinogen with Tukey HSD adjustment for multiple comparisons.



J. Clin. Med. 2021, 10, 5484 11 of 14

4. Discussion

Our study has several important findings. First, the addition of fibrinogen concen-
trates to a low-volume resuscitation cocktail containing HES and vasopressin can improve
survival and reduce blood loss during limited-volume resuscitation of polytrauma with TBI
and noncompressible arterial hemorrhage. While the comparisons between the individual
fibrinogen arms and their corresponding controls were not statistically significant, a post
hoc pooled analysis of all of the fibrinogen arms compared to the non-fibrinogen arms
showed a survival benefit. This effect appears to be related to improved hemostasis, rather
than oncotic effects, as reflected by a decrease in hemorrhage volume. The hemostatic
benefit of fibrinogen administration is further supported by the comparisons of fibrinogen-
containing arms to the albumin controls, which showed that fibrinogen decreased blood
loss, even in the setting of greater MAPs, which is a primary goal of damage control
resuscitation in the setting of TBI.

The decreased hemorrhage volume seen in the pooled analysis of fibrinogen-containing
arms was also accompanied by improved resuscitation quality. This was broadly reflected
in better hemodynamic profiles, decreased lactate concentration, and improved vital organ
blood flow, including to the heart and injured brain. These findings were corroborated
by similar results in the individual comparisons between fibrinogen-containing arms
and controls.

These findings are in keeping with prior human and animal studies showing that
fibrinogen supplementation improves coagulation profile and hemostasis [16,17,27–30].
Our model shows its effectiveness in severe polytrauma that is meant to represent the most
drastic battlefield injuries with limited access to volume resuscitation or surgical repair for
several hours. There are multiple ongoing clinical trials to directly test the effect of early
fibrinogen supplementation in humans after injury.

The threshold effect seen in our study with fibrinogen dosing is also consistent with
existing literature. Two prior pig studies of resuscitation after trauma have shown a benefit
to the administration of an amount of fibrinogen similar to our low-dose group with no
additional benefit seen with higher doses [16,30]. The threshold amount ranges between 75
and 150 mg/kg. At higher concentrations, the oncotic effects of additional fibrinogen could
counteract any marginal hemostatic benefit. This is consistent with the slightly higher blood
pressures and hemorrhage volumes seen in our high- vs. low-dose fibrinogen groups.

Our model was limited in its ability to detect the impact of TXA. None of the ex-
perimental arms resulted in any significant fibrinolysis, as detected by ROTEM analysis.
Because of this, none of the TXA-containing arms had any added benefit over their controls.
Pigs tend to be hypercoagulable and less prone to hyperfibrinolysis after trauma than hu-
mans. However, this clearly is not representative of the human trauma population, which
exhibits a complex and heterogeneous impact on fibrinolysis with well-demonstrated
benefits of TXA to certain populations of trauma patients [20,21,31–34]. Therefore, inter-
pretation of the impact of TXA on a low-volume resuscitation cocktail such as the one
presented here should be suspended until further testing can be done in an appropriate
model of fibrinolysis.

Sheppard et al. stated that the ideal resuscitation fluid would be universally infusible
and easily portable, and it would provide both metabolic resuscitation and hemostatic
support [35]. Traditional resuscitation fluids and donor blood products satisfy only one
or two of these requirements, leaving a gap with major implications for both military
and civilian prehospital care. Our findings represent important steps in the development
of a more complete resuscitation fluid for these purposes. A low-volume resuscitation
cocktail containing Hextend, vasopressin, fibrinogen, and possibly TXA shows benefits in
all of the required areas, making it a promising candidate for further development toward
prehospital use. Since it is now known that Hextend can contribute to coagulopathy and
is no longer the preferred primary resuscitation fluid in TCCC guidelines, it is possible
eliminating Hextend and incorporating blood transfusion would further improve the
performance of this cocktail.



J. Clin. Med. 2021, 10, 5484 12 of 14

In conclusion, the addition of fibrinogen to a low-volume resuscitation cocktail con-
taining HES and vasopressin improved survival, blood loss, and vital organ blood flow.
In conjunction with our previous findings regarding the benefits of vasopressin, we have
created a multifunctional resuscitation cocktail that is amenable to use by military medics
in far-forward settings with severe polytrauma patients. Further study should focus on test-
ing for possible additional benefit with adding TXA in an appropriately fibrinolytic model
to further optimize the cocktail for human use and possibly in a model that incorporates
TCCC-recommended fresh whole blood transfusion.
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