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Abstract 

Epigenetic deregulation through altered DNA methylation is a fundamental feature of tumorigenesis, but tumor data from bulk tissue samples 
contain different proportions of malignant and non-malignant cells that may confound the interpretation of DNA methylation values. The adjust- 
ment of DNA methylation data based on tumor purity has been proposed to render both genome-wide and gene-specific analyses more precise, 
but it requires sample purity estimates. Here we present P ureB eta, a single-sample statistical frame w ork that uses genome-wide DNA meth y - 
lation data to first estimate sample purity and then adjust methylation values of individual CpGs to correct for sample impurit y. Purit y values 
estimated with the algorithm ha v e high correlation ( > 0.8) to reference values obtained from DNA sequencing when applied to samples from 

breast carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Methylation beta values adjusted based on purity estimates ha v e a 
more binary distribution that better reflects theoretical methylation states, thus facilitating improved biological inference as shown for BRCA1 in 
breast cancer. P ureB eta is a v ersatile tool that can be used f or different Illumina DNA meth ylation arra y s and can be applied to individual samples 
of different cancer types to enhance biological interpretability of methylation data. 
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pigenetic modifications affect gene and genome regulation
ithout altering DNA sequences and are considered a fun-
amental and enabling characteristic in tumor formation ( 1 ).
pigenetic changes including DNA methylation and histone
odifications have been extensively studied in the context of

ancer (e.g. ( 2–4 )). Changes in DNA methylation, the most
tudied epigenetic mechanism to date, are directly involved in
ene regulation and have been shown to be important for tu-
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mor development ( 5–9 ). Different methodologies have been
developed to interrogate genomic DNA methylation patterns
of cells in tumor samples ( 10 ). Among the most used meth-
ods are genome-wide Illumina Infinium DNA methylation ar-
rays, the method of choice for methylation analysis of thou-
sands of cancer samples publicly available as part of The Can-
cer Genome Atlas (TCGA) initiative. Such arrays survey indi-
vidual CpG sites based on a well-proven protocol involving
bisulfite conversion, hybridization, single-base extension, and
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fluorescence scanning ( 11 ,12 ). CpGs are DNA dinucleotides
(cytosine followed by guanine) that are overrepresented in
gene promoters and that when methylated can be involved in
gene silencing through e.g. interfering with the binding of pro-
teins needed for transcription ( 13 ). Irrespective of the chosen
methodology to study methylation patterns, a common chal-
lenge in tumor profiling is that malignant cells are intermixed
with non-malignant cells (e.g. cells from the immune system)
in the so-called tumor microenvironment. Malignant and non-
malignant cells often differ in DNA methylation states, there-
fore data generated from bulk tumor tissue will be influenced
by the composition of cell types present in the sample. 

To address this compositional effect in DNA methylation
studies, several approaches and methods have been proposed.
These may encompass deconvolving data to provide a size es-
timate of the malignant and non-malignant compartments by
cell type (e.g. ( 14–16 )) or more generally estimating purity,
usually on a sample level (e.g. ( 17–19 )). Few methods have
been reported that attempt to adjust individual CpGs for, e.g.
estimated normal cell contamination. An example of the lat-
ter is the recent work by Staaf and Aine ( 20 ) demonstrating
that adjustment of DNA methylation data at a single CpG
level based on linear regression modelling can be performed
in larger cohorts with tumor purity estimates available for
each sample, improving both genome-wide and gene-specific
analyses. To our knowledge, no other method has been pro-
posed and is currently used within cancer research adjusting
beta values for tumor purity on an individual CpG level. How-
ever, not all research data sets are comprised of hundreds of
samples and accurate measurements of tumor purity often do
not accompany publicly available DNA methylation data sets,
rendering the proposed Staaf and Aine ( 20 ) methodology less
widely applicable. Indeed, for purity information to be avail-
able, high-throughput DNA sequencing data of the same set
of samples would typically be needed as it is currently the
gold standard input for methods that calculate tumor purity,
though alternative methods using e.g. DNA methylation as in-
put exist (see ( 21 ) for a review). 

Here, we present PureBeta, a framework that substantially
extends and enhances the work by Staaf and Aine ( 20 ) by
allowing purity estimation and individual CpG adjustment
of samples from multiple cancer types using only the DNA
methylation data itself as input. PureBeta builds on pub-
lished information (e.g. from the TCGA consortium) and uses
genome-wide DNA methylation data to first estimate sam-
ple purities and then adjust methylation values of individ-
ual CpGs with respect to tumor purity with a single sam-
ple approach. We show a strong concordance between pu-
rity estimates obtained from PureBeta and from sequencing-
based technologies in different cancer types such as breast
and lung cancer—the types with the highest incidence and
mortality rate today respectively . Importantly , we demon-
strate that when purity estimates calculated with this algo-
rithm are used to adjust DNA methylation data, the distri-
bution of beta values becomes more binary as would be ex-
pected biologically, thus facilitating the inference of uncon-
founded gene methylation states in tumor cells. PureBeta is a
tool that can be used for both the Illumina HumanMethy-
lation450 and MethylationEPIC arrays and can be applied
to individual samples of different cancer types to enhance
biological interpretability of methylation data with respect
to somatic changes in DNA methylation states of malignant

cells. 
Materials and methods 

Cohorts 

Data sets were retrieved from the TCGA initiative follow- 
ing the workflow described in ( 20 ) for three malignancies: 
breast cancer (BRCA, n = 630), lung adenocarcinoma (LUAD,
n = 418), and lung squamous cell carcinoma (LUSC, n = 333).
These included clinical information and pre-processed DNA 

methylation beta values for 421 368 CpGs obtained with 

the Illumina Infinium HumanMethylation450 BeadChip ar- 
ray. Custom annotations for CpGs were derived by mapping 
their coordinates to other genomic information such as gene 
coordinates as described in ( 20 ). For brevity, relative to genes 
CpGs could be of three categories: in gene promoters, when 

within a 500-base pair (bp)-window upstream or downstream 

from the transcription start site of any gene; proximal to gene 
promoters, when within 5000 bp up- or downstream from 

the gene promoter window; or distal to gene promoters, when 

> 5000 bp away from the gene promoter window. Expression 

of 60 483 transcripts for TCGA BRCA samples in fragments 
per kilobase million (FPKM) was also retrieved following ( 20 ).
Tumor purity calculated with ABSOLUTE ( 22 ) from whole 
exome sequencing (WES) data was obtained from ( 23 ) and 

used as reference values. TCGA identifiers and other charac- 
teristics such as tumor purities estimated with different meth- 
ods are available in Supplementary Table S1 . 

An additional cohort from the Sweden Cancerome Analy- 
sis Network – Breast (SCAN-B) initiative ( 24 ,25 ) (see orig- 
inal publications for the ethics statement) containing DNA 

methylation information for 82 triple-negative breast cancer 
(TNBC) samples reported by Glodzik et al. was used as a vali- 
dation cohort ( 5 ). The triple-negative status is given to a breast 
cancer sample with negative status of both estrogen receptor 
(ER) and progesterone receptor, as well as a lack of amplifica- 
tion of the HER2 / ERBB2 (human epidermal receptor growth 

factor 2 / Erb-B2 receptor tyrosine kinase 2) gene. DNA methy- 
lation data for this cohort was generated with the Illumina 
Infinium MethylationEPIC platform and retrieved from Gene 
Expression Omnibus (accession number GSE148748) as pro- 
cessed beta values. In addition to data from around 850 000 

CpGs, SCAN-B TNBC samples had tumor purities calculated 

from whole genome sequencing (WGS) and had also been pre- 
viously classified as BRCA1 -hypermethylated ( n = 57 tumors) 
based on pyrosequencing or BRCA1 -null (gene inactivation 

by pathogenic germline or somatic variants, n = 25 tumors) as 
reported by Staaf et al. ( 26 ). A total of 29 CpGs available in the 
data sets were used to assess BRCA1 methylation status based 

on their genomic position (within 1500 bp upstream and 500 

bp downstream of the transcription start site of BRCA1 ). No- 
tably, clustering beta values of these CpGs completely recapit- 
ulated BRCA1 promoter hypermethylation status as assessed 

by pyrosequencing ( 5 ). 

The PureBeta framework 

Our approach to calculating tumor purities from bulk DNA 

methylation stems from the work of Staaf and Aine ( 20 ).
Briefly, the authors observed that beta values of individual 
CpGs could be separated into populations that correlated dif- 
ferently with sample purities and that these patterns could 

be captured using simple linear regressions. They then de- 
vised a strategy to use these regressions to adjust methyla- 
tion values to improve the interpretation of DNA methyla- 
tion data from bulk samples. However, in the original pub- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
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ication, there was a need for precalculated purity estimates
or each sample of interest, as well as for a higher number of
amples to be analyzed at once for successful calculation of
egressions. To solve these issues, PureBeta was developed us-
ng the concept delineated by Staaf and Aine ( 20 ) to create
nd / or use reference data to estimate tumor purity of individ-
al samples or full cohorts and subsequently adjust methy-
ation values based on the obtained estimates. For clarity, in
his work we refer to purity or tumor purity as the fraction
f malignant cells in a sample and to the complementary 1-
urity as the fraction of non-malignant cells. PureBeta was
ritten in R v4.3.0 and can be downloaded as an R package

rom GitHub at https:// github.com/ StaafLab/ PureBeta and
eference data are available in FigShare at https:// doi.org/ 10.
084/m9.figshare.26272864 . Pseudocode explaining the steps
aken in the main functions of the package is available as
upplementary Methods . PureBeta can be summarized into
hree main modules: (i) creation of reference data from a
ohort through the reference_regressions_generator() func-
ion, (ii) estimation of tumor purities for individual samples
hrough the purity_estimation() function and (iii) subsequent
djustment of beta values per CpG per sample through the
eference_based_beta_correction() function (Figure 1 ). 

reation of reference data 
his is performed on a cohort level (e.g. TCGA BRCA) and

t is required for calculating the reference linear regressions
hat will be used in the next modules. Detailed information
n this module such as packages used and optimization cri-
erion have been thoroughly described in the work by Staaf
nd Aine ( 20 ). DNA methylation beta values and accompany-
ng tumor purities of samples from e.g. sequencing data like

ES or WGS are needed as input. Briefly, for each CpG, in-
ut variables are contrasted, and flexible mixture modeling is
sed to divide samples from the reference cohort into one to
hree populations based on the different linear relationships
etween the variables, which are then summarized per pop-
lation per CpG by linear regression (Figure 1 A). These are
eferred to as reference regressions. Regressions can be cal-
ulated from any cohort given that the sample size is large
nough to robustly detect populations. For this module, Pure-
eta generates an output file with properties such as the slope,

ntercept, degrees of freedom, and residual standard error of
ach regression, as well as the beta variance per CpG. Pure-
eta provides pre-calculated reference data for TCGA BRCA,
CGA LUAD and TCGA LUSC to be used by users when in-
ut information needed in this module of the algorithm is not
vailable. 

urity estimation 

his newly developed module is performed on a single sam-
le level, i.e. one sample at a time is analyzed to have its pu-
ity estimated. DNA methylation beta values from a sample
f interest go through a series of steps before a final purity
stimate is made (Figure 1 B-F). First, CpGs with reference re-
ressions are filtered based on beta variance to retain only
hose with variance above 0.05. This is performed to remove
ow-varying, non-informative CpGs expected to have only one
opulation with less clear links to tumor purity. Variance cut-
ff value was chosen taking into consideration all three TCGA
ohorts using a 6-fold cross-validation scheme described at
he end of this module ( Supplementary Figure S1 ). Then, one
emaining CpG at a time, a sample’s beta value is assigned
to one of the reference regressions calculated at cohort level
in the previous module (Figure 1 B). Not all CpGs with beta
variance above the threshold contribute to the estimate: when
a beta value can be assigned to more than one regression or
when the assigned regression’s slope is too small to be infor-
mative with regards to purity change, the information from
that CpG is discarded. Slope cutoff was determined to be 0.2
after optimization using the 30 000 CpGs with highest beta
variance in the TCGA BRCA set, corresponding to a variance
of 0.05 and above, also using a 6-fold cross-validation scheme
( Supplementary Figure S1 ). CpGs that are not discarded are
used to calculate a 1-purity confidence interval for the sample
being analyzed through bootstrapping performed individually
per CpG (Figure 1 C). To achieve this, first a 1-purity value is
calculated based on the sample’s original beta value for that
CpG and the linear regression for the population it has been
assigned to following a linear model with 1-purity as the inde-
pendent variable ( x ), the original beta value ( βorig ) as the de-
pendent variable ( y ), and the intercept (a) and slope (b) for that
population of that CpG as calculated in the previous module
(Equation 1 ). 

y = a + b × x → 1 − purity = 

βorig − a 
b 

(1)

Next, data points (beta and 1-purity pairs) from the popu-
lation that generated the linear regression are resampled with
replacement to compose a new population of same size to
which a new linear regression is fitted. Resampling and lin-
ear modeling are performed 500 times (default). A differ-
ent resampling number can be chosen by the user but in-
creasing it does not significantly impact purity estimation
( Supplementary Figure S1 ). For each resampling (i), a beta
value is predicted ( βpred ) using the 1-purity estimate obtained
in Equation 1 and an added randomly sampled residual ( ε ) to
account for the intrinsic variability of the dependent variable
according to the regression parameters (Equation 2 ). 

βpre d i = a i + b i × ( 1 − purity ) + ε i (2)

The described bootstrapping method thus generates a dis-
tribution of βpred values that is used to obtain an interval of the
most common beta values. This interval can be made narrower
or wider by changing the confidence level alpha ( α), set to a de-
fault value of 0.7 after a 6-fold cross-validation scheme similar
to the one performed for the slope ( Supplementary Figure S1 ).
At 0.7, the interval would include 70% of the βpred values
ranging from the 15th to the 85th percentiles considering their
distribution. Finally, a 1-purity interval is calculated using the
predicted beta value interval from Equation 2 and the original
regression’s intercept and slope from Equation 1 (Equation 3 ).

( 1 − purit y min , 1 − purit y max ) = 

(
β 1 −α

2 
, β1 − 1 −α

2 

)
− a 

b 

(3)

After all CpGs have been processed, 1-purity intervals are
combined determining a 1-purity coverage, i.e. the number of
CpGs and estimated intervals that contain a given value in
the 1-purity scale (Figure 1 D). Coverages showed a system-
atic overestimation of low purity sections seen as a secondary
peak at 1-purity intervals close to 0.8 that is corrected by fit-
ting a new regression to the raw coverage values and using
the residuals as the new corrected coverage, an approach that
does not distort the original meaning of the data (Figure 1 E).
As the final step, the corrected coverage is smoothed with a
spline regression ( 27 ) and its maximum value is recorded as

https://github.com/StaafLab/PureBeta
https://doi.org/10.6084/m9.figshare.26272864
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data


4 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 

Figure 1. P ureB eta’s frame w ork. Ov ervie w of the algorithm’s three main modules (i–iii). ( A ) As the first module, samples are divided into up to three 
populations for each CpG and linear regressions are calculated between beta values and known sample purities as exemplified by one CpG 

(cg09248054) and the TCG A BR CA cohort. ( B ) To estimate the purity of a new sample in the second module of P ureB eta, the sample is first assigned to 
a population based on its beta v alue. T his is performed per CpG. If the beta value would be assigned to multiple regressions or to regressions with small 
slopes, the CpG is discarded from the estimation calculation. ( C ) A purity interval is calculated based on the original beta values and the assigned linear 
regression for each kept CpG using a bootstrapping approach. ( D ) All purity intervals are combined into a purity coverage. ( E ) The purity coverage is 
corrected for a detected systematic overrepresentation of low purity values. ( F ) The maximum coverage value is assigned as the sample’s purity 
estimate together with a purity interval. (G, H) As the final module of the algorithm, original beta values are adjusted per CpG to reflect values of 
samples comprised of only tumor ( G ) or only normal ( H ) cells according to the calculated sample purities and linear regressions. Beta values shown in 
these panels are from the same CpG and samples in panel A. See Methods for more details on each step. 

 

 

 

 

 

 

 

 

 

the 1-purity estimate for that sample (Figure 1 F). Estimates
are accompanied by a 1-purity interval to incorporate a de-
gree of uncertainty that includes all 1-purity values above a
user-specified percentage of the maximum coverage in the al-
gorithm (Figure 1 F). The default for this parameter is 0.96
returning all 1-purity values that have a higher coverage than
96% of the maximum obtained for that sample. Reducing this
parameter will generate wider intervals. The 1-purity estimate 
and interval are the final output of this module of PureBeta.
For optimization of parameters, estimates from PureBeta were 
compared to the reference values from WES looking to mini- 
mize the absolute difference between them. Optimization for 
variance, slope, and alpha parameters was performed using a 
6-fold cross-validation scheme as mentioned above. For this,
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he entire TCGA cohort for one cancer type was randomly di-
ided into six non-overlapping subsets of similar but not equal
izes and one subset at a time was used for purity estimation
ased on regressions calculated from the samples in the other
ve subsets combined ( Supplementary Figure S1 ). 

djustment of beta values 
fter acquiring tumor purity estimates for all samples in the
ohort of interest, reference regressions calculated in the first
odule and purity estimates produced in the second module

re used to adjust beta values of individual CpGs as described
n the work from Staaf and Aine ( 20 ). Briefly, for each CpG the
alculated regressions and residuals per sample are used to ob-
ain the adjusted beta values considering purity values equal
o 0 or to 1. This generates new beta values better reflecting
ure tumor cell methylation (Figure 1 G) when the 1-purity
stimate is used as the independent variable in the linear re-
ressions. The framework also generates new beta values for
nferred non-malignant background methylation (Figure 1 H)
hen linear regressions are calculated using purity values and

hese values are used as independent variable instead in the ad-
ustment. The data resulting from this module is further inves-
igated here using the hypermethylation status of the BRCA1
ene as a case example in the SCAN-B TNBC cohort. This
odule can be performed on a single sample level using the
rovided set of reference regressions directly or for multiple
amples from an entire new cohort of interest. If applied to
 novel cohort, a refitting approach where regressions are re-
alculated from pooling together reference samples and novel
amples first and then the refitted regressions are used for beta
djustment might be recommended. See the last section of the
esults for more information on the refitting approach. 

tatistical and computational analyses 

ll statistical analyses were performed with R v4.2.0. All P -
alues reported are two-sided and compared to a level of
ignificance of 0.05. Correlations were calculated with the
earson method using the cor.test() function. Correlation be-
ween DNA methylation and gene expression was calculated
sing beta values and FPKM from the full TCGA BRCA co-
ort. Two other estimates of tumor purity were calculated
rom DNA methylation data for test samples of the three
CGA cohorts. The first estimate was calculated with the

nfiniumPurify ( 28 ) R package v1.3.1 and the getPurity()
unction without normal data and with cancer type set as
RC A, LU AD, or LUSC as appropriate. The second esti-
ate was calculated through cell fraction imputation using

he online version of CIBER SOR Tx ( 29 ) (quantile normal-
zation disabled, 1000 permutations) with appropriate signa-
ures extracted from the MethylCIBER SOR T ( 15 ) R pack-
ge v0.2.0 (breast_v2, lung_NSCLC_adenocarcinoma_v2,
ung_NSCLC_squamous_cell_carcinoma_v2). Purity values
rom PureBeta were further compared to previously published
stimates calculated with different methods ( 30 ). The gene set
verrepresentation (GSO) analysis was done with the clus-
erProfiler ( 31 ) R package v4.4.4 and the enricher() function
sing the hallmark gene sets from the msigdbr ( 32 ) R pack-
ge v7.5.1. Genes of interest were compared to a universe of
6 809 genes that contained any CpG available to this study
ocated in their promoter regions based on transcription start

ites as mentioned before. 
Results 

PureBeta estimates from DNA methylation data are 

concordant with those from WES in breast and 

lung cancer 

PureBeta can be divided into three main modules: (i) creation
of reference data through calculation of reference regressions
from a cohort, (ii) estimation of tumor purity for each sam-
ple and (iii) subsequent adjustment of beta values given the
calculated purities (Figure 1 ). Each module can be run in-
dependently if the required input data are available. To test
the framework, the TCGA BRCA cohort was divided into
a random 80–20 split, i.e. 80% of the samples ( n = 504)
were used for calculating the regressions per CpG that were
then used to estimate the tumor purity of the remaining 20%
( n = 126). After optimization of parameters ( Supplementary 
Figure S1 ), tumor purities estimated with PureBeta showed
good agreement (Pearson correlation r = 0.84) with the
standard reference purity values calculated from WES
data (Figure 2 A). In addition, accompanying 1-purity inter-
vals were generally narrow (mean: 0.052, min–max: 0.023–
0.090) and included the WES value for almost half of
the samples in the validation set ( n = 58). As an error
metric, we calculated the absolute difference between WES
and PureBeta purities showing that there were no system-
atic miscalculations connected to lower or higher estimated
tumor purity values (Figure 2 B). Two samples stood out by
having very large errors in their estimates, both purport-
edly composed entirely of tumor cells in the validation set
(purity = 1 as estimated by TCGA). However, when com-
pared to independent in silico tools used for calculating tu-
mor purities (InfiniumPurify and MethylCIBER SOR T) devel-
oped specifically for the Illumina arrays, PureBeta’s perfor-
mance showed good agreement (Pearson correlation r > 0.85,
Supplementary Figure S2 ), making the WES estimate used as
reference a comparative outlier. Indeed, upon further inves-
tigation of copy number profiles of the two outlier samples,
they seemed to contain a substantial fraction of normal cells,
rendering the TCGA estimate inaccurate ( Supplementary 
Figure S2 ). 

To test PureBeta’s suitability on other types of cancer, we
applied our framework to the two main histological types of
lung cancer, lung adenocarcinoma (using the TCGA LUAD
cohort) and lung squamous cell carcinoma (using the TCGA
LUSC cohort). Analyses were performed in the same way as
for TCGA BRCA: 80% of samples were randomly selected
to generate the regressions (LUAD n = 334, LUSC n = 266)
and the remaining 20% had their tumor purities estimated
(LUAD n = 84, LUSC n = 67). Again, PureBeta showed good
performance and the Pearson correlation between the esti-
mates and the standard reference values obtained from WES
was 0.90 and 0.83 for LUAD and LUSC, respectively (Figure
2 A). However, data points were more widely spread around
a 1:1 relationship than in the TCGA BRCA cohort as also
reflected by an increase in mean distance between estimated
purities and reference values (Figure 2 B). Similarly, purity in-
tervals were slightly wider in the lung cancer cohorts than
in the breast cohort despite being calculated with the same
optimized, default parameters, suggesting that larger cohorts
could correlate with more precise estimates (Figure 2 C). Ad-
ditional comparisons were made between the estimates ob-
tained with PureBeta and purity values obtained with other
programs for the three TCGA cohorts evidencing our ap-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
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Figure 2. P ureB eta’s perf ormance in the different cohorts. ( A ) Correlation betw een 1-purity as estimated with P ureB eta and reference v alues calculated 
from WES on 20% of samples after using the other 80% to calculate regressions per TCGA cohort. Vertical bars correspond to the 1-purity interval for a 
sample. Dashed line corresponds to a 1:1 relationship. ( B ) Error between 1-purity as estimated with P ureB eta and from WES calculated as absolute 
dist ance bet w een estimates per sample f or the three TCG A cohorts. Dashed line corresponds to the mean dist ance. ( C ) Violin plot of purit y interv al siz e 
as obtained from P ureB eta per TCGA cohort. Violin width reflects cohort size. ( D ) Correlation between 1-purity as estimated with PureBeta and 
reference values calculated from WGS in SCAN-B TNBC. Vertical bars correspond to the 1-purity interval for a sample. Dashed line corresponds to a 1:1 
relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proach is comparable to that of other more established soft-
ware ( Supplementary Figure S2 ). 

After establishing the framework and successfully applying
it to three cancer types, reference regressions for hundreds of
thousands of CpGs were calculated using all samples in the
TCGA cohorts separately. To support independent analyses in
breast and lung cancer, these reference regressions are avail-
able for public use with the PureBeta software. Importantly,
these reference regressions allow the user to apply PureBeta
down to a single sample of interest. Currently, the Illumina
HumanMethylation450 platform has been superseded by the
Illumina MethylationEPIC, interrogating > 900 000 CpGs in
its second version. To test PureBeta’s applicability to Methyla-
tionEPIC data, we proceeded to estimate purities of the inde-
pendent SCAN-B TNBC cohort ( n = 82, with reference purity
values determined from WGS) using reference regressions cal-
culated from all 630 TCGA BRCA samples. Notably, we ob-
tained a correlation of 0.92 between the estimates from Pure-
Beta and the values calculated from WGS (Figure 2 D). This
shows that reference regressions based on data deposited in
TCGA from the widely used but now discontinued Human-
Methylation450 array can be used effectively to estimate tu-
mor purity for samples profiled with the more current Methy-
lationEPIC array given its backwards compatibility and both
methylation arrays having a substantial number of overlap-
ping probes. 

CpG selection by PureBeta per cohort and per 
sample are not constant 

In theory, PureBeta can utilize the entire DNA methylation
data set but whether a given CpG contributes to the purity
estimate for a specific sample is decided individually based on
a set of requirements (Figure 1 ). Thus, CpG usage can vary 
between samples and likely also between cancer types. To in- 
vestigate this in more detail we first studied the TCGA BRCA 

cohort. In this cohort, around 38 500 CpGs with regressions 
remained after variance filtering corresponding to 9.1% of the 
total number of CpGs. Of these CpGs, ∼23 000 CpGs were 
used per sample on average to make an estimate, but num- 
bers varied from ∼17 000 to ∼28 000 CpGs. Samples with 

lower or higher tumor purities tended to need less CpGs for 
an estimate to be made than samples with intermediate purity 
values (Figure 3 A). However, there was no relationship be- 
tween the number of CpGs used and the distance metric calcu- 
lated between the PureBeta estimate and the reference purity 
(Figure 3 B). 

Conversely, from the CpG perspective, the remaining 
∼38 500 CpGs varied from not being used by PureBeta for 
any sample ( n = 270 CpGs, 0.7%) to being used in any num- 
ber up to all 126 samples when estimating purities (Figure 
3 C). Several CpGs have been previously associated with spe- 
cific leukocytes and their beta values can be used to esti- 
mate purity ( 30 ) or to deconvolute DNA methylation data 
to estimate quantities of different immune cells in a sample 
( 15 ,33 ). A comparison between these CpGs and CpGs used 

by our pipeline revealed that PureBeta’s ability to estimate 
tumor purity is not directly associated to beta values of im- 
mune cells as very few CpGs used by PureBeta are among 
leukocyte-specific CpGs ( Supplementary Figure S3 ). The CpG 

usage pattern allowed us to also investigate deeper the 3266 

CpGs that were used in purity calculations of > 97% of TCGA 

BRCA samples ( Supplementary Table S2 ). When it comes to 

genomic distribution, no chromosomes seemed to be particu- 
larly favored by PureBeta after the variance filtering nor in 

CpGs in the top 97% that couldn’t be related to different 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
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Figure 3. CpG usage by PureBeta in the TCGA cohorts. ( A ) 1-purity estimated with PureBeta in TCGA BRCA compared to the number of CpGs used for 
making the estimate. ( B ) Absolute distance between estimated and reference 1-purities in TCGA BRCA compared to the number of CpGs used during 
estimation. ( C ) Percentage of TCGA BRCA samples that had a same CpG used during purity estimation. ( D ) Distribution relative to genes of all CpGs 
used for purity estimation in the three cohorts compared to expected (exp.) values considering all ∼421 0 0 0 CpGs available. Expected values are the 
same across cohorts. ( E ) Distribution of Pearson correlation values between DNA methylation beta values and gene expression data after CpG to gene 
mapping through genomic coordinates. Only CpGs categorized as in promoters were kept. ( F ) Percentage of samples in a cohort using a same CpG 

during purity estimation. CpGs that were not used in any sample were excluded. ( G ) Upset plot of CpGs used during purity estimation and how many 
were in common across cohorts. 
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roportions of CpGs relative to genes and their beta vari-
nce ( Supplementary Figure S3 ). Within chromosomes, most
sed CpGs were considered distal relative to gene promot-
rs as expected based on the assayed positions by the Illu-
ina platform, but used CpGs were also in greater proportion
istal to and less often in promoters than expected (Figure
 D). This was not surprising given that we applied a vari-
nce cutoff in PureBeta and that distal CpGs tend to have
reater beta variance when compared to those in gene pro-
oters ( Supplementary Figure S3 ). Among the ∼3000 CpGs
sed in more than 97% of TCGA BRCA samples, even more
ere considered distal (62.4%) complicating their connection

o the regulation of specific genes. 
It is more straightforward to associate CpGs to specific

enes when the dinucleotides overlap directly with promoter
egions. Among the ∼38 000 CpGs used during estimation,
8000 CpGs (21%) were in gene promoters and could be

inked to 4472 genes in a many-to-many relationship, al-
hough most connections were unique ( Supplementary Figure 
3 , Supplementary Table S2 ). A GSO analysis of these 4472
enes resulted in tumor related terms such as epithelial to
esenchymal transition and KRAS signaling among overrep-
resented hallmarks ( Supplementary Table S3 ). When focus-
ing only on the CpGs used in > 97% of samples, 370 of
∼3000 CpGs (11.3%) were located within the promoters of
381 genes. The GSO analysis did not return any hallmark
as significantly overrepresented among these 381 genes. We
also calculated the correlation between beta values of CpGs
and the expression of the genes in which they were located.
As expected, most correlation values were negative. Interest-
ingly, the peak of correlation values moved gradually towards
zero as CpGs were restricted to those used for estimating pu-
rities in more than 60% (mean) and 97% of samples sug-
gesting an enrichment for e.g. cell type-specific distal elements
(Figure 3 E). 

Unlike in breast cancer, CpGs in the lung cohorts had
lower variance of beta values and only 2.7% ( ∼11 500)
and 5.2% ( ∼22 000) were kept for calculating regressions
in TCGA LUAD and TCGA LUSC, respectively, after filter-
ing. It is important to note that variance cutoff was deter-
mined by taking into consideration all three TCGA cohorts
( Supplementary Figure S1 ) and that increasing the number of
CpGs up to a similar number to what was used in TCGA
BRCA did not improve purity estimates considerably in the

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
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lung cancer cohorts ( Supplementary Figure S4 ). How many
CpGs were used per sample during purity estimation also var-
ied and it was similar to TCGA BRCA in that there was a peak
of CpG probes used in close to 50% of samples but diverged
from the breast cohort by having very few CpGs used in all
or almost all lung cancer samples (Figure 3 F). Though fewer
CpGs remained after variance filtering in TCGA LUAD, 8.5%
of CpGs with regressions were not used for estimation in any
sample, a higher percentage than the unused 2.1% in TCGA
LUSC, which is in turn higher than the unused percentage in
TCGA BRCA (0.7%). 

Regarding the distribution of CpGs with regressions and
CpGs used to estimate purity in chromosomes, the pat-
terns in TCGA LUAD and TCGA LUSC were similar to
those in TCGA BRCA except for CpGs in sex chromo-
somes ( Supplementary Figure S5 ). This was expected as
the proportion of women differed between cohorts (TCGA
BRC A: 100%, TCGA LU AD: 53%, TCGA LUSC: 27%).
Interestingly, purity estimates calculated with and without
CpGs located in sex chromosomes were virtually the same
( Supplementary Figure S5 ). Relative to genes, CpGs followed
the distribution patterns seen in TCGA BRCA by favoring
those distal to gene promoters in contrast to those directly in
promoters (Figure 3 D). A GSO analysis of the 1794 and 2539
genes that had 2445 and 4045 CpGs mapped to their promot-
ers in TCGA LUAD and TCGA LUSC respectively matched
TCGA BRCA and resulted in overrepresented hallmarks such
as KRAS signaling in LUSC ( Supplementary Table S3 ). This
is consistent with the fact that, while most CpGs were used
for estimating purities of samples in only one cohort, a con-
siderable number was used across two or three of the cohorts
included in this study (Figure 3 G). 

Beta adjustment using PureBeta’s estimates 

improves biological interpretability of DNA 

methylation data 

The final step in PureBeta is beta adjustment per CpG given
the calculated regressions and tumor purity estimates. This
step outputs one object with two different beta tables: one
representing values of tumor cells and another representing
the inferred values of normal cells as originally described by
Staaf and Aine ( 20 ). To illustrate that beta adjustment through
PureBeta is beneficial to biological inference, we applied the
entire PureBeta framework to the 82 SCAN-B TNBC cases
with dysregulated BRCA1 gene function (by promoter hyper-
methylation, n = 57, or pathogenic germline / somatic variants
referred to as null, n = 25) profiled by the MethylationEPIC
platform. However, since clinical subgroups and molecular
subtypes of breast cancer are important for disease progres-
sion and management ( 34 ), we posed the question whether
cohort subtype composition would influence the beta adjust-
ment. A first look of the proportions of clinical subgroups as
defined by ER and HER2 status in TCGA BRCA showed that
these were balanced between the regression and the estimation
sample sets after the 80 / 20 split (Figure 4 A) and that there was
no difference between subgroups in terms of purity estimate
performance (Figure 4 B), implying that the beta adjustment
step would not be affected. 

To see if the proportion of TNBC samples would affect the
adjustment outcome on SCAN-B TNBC, we devised a strat-
egy where four different approaches were compared (Figure
4 C). The approaches differed with respect to which data set
was chosen for calculating the regressions per CpG (the en- 
tire TCGA BRCA with 630 samples or only TCGA BRCA 

TNBC with 86 samples) and whether reference regressions 
were recalculated by adding beta values and purity estimates 
of SCAN-B TNBC with those of the reference cohort before 
proceeding to beta adjustment (referred to as refitting the re- 
gressions). As predicted, the adjustment performed with any 
approach pushed tumor beta values closer to 0 or 1, reducing 
values around 0.5 (Figure 4 D). This implies that adjusted beta 
values better reflect expected biological patterns of a binary 
methylation state as evidenced by the increasing separation 

between beta values of samples considered hypermethylated 

and null for BRCA1 with any of the approaches (Figure 4 E).
Of interest, inferred beta values of normal cells showed the 
reversed pattern and became more similar between BRCA1 

subgroups also with any of the approaches as exemplified by 
approaches using TCGA BRCA TNBC (Figure 4 F). Beta val- 
ues per CpG for both tumor and non-malignant cells can be 
seen in Supplementary Figure S6 . 

While all approaches showed an improvement from the 
original data, it was evident that subgroup composition mat- 
ters as the approaches using regressions from TCGA BRCA 

TNBC (approaches 3 and 4) outperformed those with all clin- 
ical subgroups included (approaches 1 and 2). While refitting 
regressions calculated from TCGA BRCA by adding SCAN- 
B TNBC information (approach 2) did improve beta adjust- 
ment when compared to without refitting (approach 1), this 
approach still did not achieve the improvement seen with the 
methods using only TNBC samples from the start (for in- 
stance the true single sample approach 3). Additionally, the 
approaches using TCGA BRCA TNBC (approaches 3 and 

4) showed that even regressions calculated from smaller co- 
horts (86 samples in this case) can perform well during beta 
value adjustment when (likely) a similar molecular subtype is 
analyzed. 

Discussion 

Epigenetic modifications are a fundamental and enabling 
characteristic in tumor formation. In the tumor microenviron- 
ment, malignant and non-malignant cells are intermixed, and 

different proportions of these cells can skew DNA methyla- 
tion data generated from bulk tumor tissue when cells differ 
regarding methylation states. To address this issue, the recent 
work by Staaf and Aine ( 20 ) proposed the adjustment of beta 
values of individual CpGs according to the tumor purity of 
a sample based on modeling the linear relationship between 

these two variables. In the original publication, beta adjust- 
ment was shown to e.g. clearly improve the separation be- 
tween the well-established gene expression PAM50 Basal and 

Luminal subtypes of breast cancer using only DNA methyla- 
tion data. However, important limitations that apply to their 
methodology include the need for tumor purity estimates of 
all samples involved and the need for a reasonably large sam- 
ple cohort for the chosen flexible mixture modeling algorithm 

to work. Together, these limitations render their method less 
applicable when one is interested in analyzing few samples. To 

circumvent the limitations for the Staaf and Aine ( 20 ) method- 
ology we developed PureBeta – a complete pipeline that al- 
lows for purity estimation and individual CpG adjustment of 
any number of samples from breast or lung cancer using only 
DNA methylation data as input through provided reference 
data. Importantly, PureBeta substantially enhances the work 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae146#supplementary-data
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Figure 4. Beta adjustment and cohort influence. ( A ) Proportion of breast cancer clinical subgroups based on ER and HER2 status in the TCGA BRCA 

cohort when split into two sets. ( B ) Distance between estimated and reference 1-purity values distributed by clinical subgroup of samples. ( C ) Overview 

of strategy for investigating the influence of cohort composition on beta adjustment. ( D ) Density of beta values from the original cohort and from tumor 
cells after adjustment for purity with the four methods in (C) showing a decrease in values around 0.5 (arrow). (E, F) Mean value per sample of original 
beta values, ( E ) adjusted beta values for tumor cells, and ( F ) adjusted beta values for inferred non-malignant background cells as calculated with 
approaches presented in (C). 
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f Staaf and Aine ( 20 ) by solving the need for external tumor
urity values and large sample sizes, which together consider-
bly extends the applicability of their original approach. 

PureBeta is a pipeline developed to estimate tumor purity
f samples and subsequently adjust their beta values, but it
s composed of three modules that can be run independently
endering it more flexible. By providing reference regressions
alculated in the first module for cancer types that are widely
tudied, our approach allows the purity estimation and beta
djustment modules to be applied to a single sample of inter-
st. The provided reference regressions also make this algo-
ithm less computationally demanding for users. In addition,
stimating purity directly from the DNA methylation data to
e adjusted removes the need for accompanying sequencing
ata for samples of interest, data that is not always avail-
ble. Most importantly, PureBeta showed high concordance
ith standard reference purities calculated from both WES

nd WGS. 
The three modules of PureBeta are intended to be run

equentially with chained outputs and inputs, but modules
an be integrated with equivalent estimates from other data
ources. For instance, the final beta adjustment step can be
performed based on purities obtained from other software in-
stead of estimates from our algorithm. Several methods exist
for estimating tumor purity from different biological data (e.g.
( 17–19 )), all of which with specific assumptions, model fit-
ting, and model selection through a comparison metric. Here
we used sequencing data to obtain reference tumor purities,
the current gold standard practice, despite methodological
benchmarking studies having reported poor concordance be-
tween different sequencing-based purity and ploidy estimation
models and pathologic estimations ( 35 ). As shown for two
discrepant TCGA BRCA samples, purity estimates calculated
with PureBeta can be more reasonable than those calculated
based on WES illustrating that the used reference data type for
purity estimation is not error free. In fact, for data sets with
both DNA methylation and sequencing data available, Pure-
Beta can be used for challenging cases to provide orthogonal
support on the suitable sequencing-based purity solution to
choose. Although PureBeta is more than just a tool for estimat-
ing purities from DNA methylation data, this particular step
was also benchmarked against estimates from other software
that use DNA methylation or other types of data as input. Our
method showed good concordance with the other approaches,
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but differences between them existed as evidenced by differ-
ences in the slopes of the linear models showing that e.g. In-
finiumPurify overestimates values at lower purities when com-
pared to PureBeta. 

PureBeta is not free from limitations. If instead of using
the provided reference set users would like to generate ref-
erence regressions from their own cohorts, the algorithm will
require more samples to robustly delineate populations per
CpG. Still, as shown for TCGA BRCA TNBC, references can
be calculated from data sets with < 100 samples and used for
purity estimation and beta adjustment successfully. PureBeta’s
performance is, however, influenced by cohort composition of
reference and target samples, a question that had not been ex-
plored in the original work by Staaf and Aine ( 20 ). To partly
address this issue, we added the refitting option of recalcu-
lating regressions including beta values and purity estimates
of samples to be adjusted before performing the final beta
adjustment. Original DNA methylation data and purity es-
timates for the three TCGA cohorts are available in FigShare
to be used by PureBeta in refitting mode. As shown through
comparing the four approaches of different reference data and
refitting option combinations, even if a subgroup of interest
is represented in the reference cohort, the methylation signal
needed to derive encompassing linear models and adjust beta
values might be diluted by samples of other subgroups. There-
fore, users of PureBeta should aim to use data similar to the
samples of interest for calculating the reference regressions. In
addition, users can and should resort to regression refitting in
at least two situations: (i) if subgroups of interest are know-
ingly under sampled or (ii) if the subgroup proportion in the
reference data is unknown but samples of interest are avail-
able in a large enough number to potentially alter the linear
regression modeling (illustrated by approach 2). Finally, Pure-
Beta was not designed for, and may thus not be appropriate
for, samples at the edges of the purity distribution such as can-
cer cell lines composed only of tumor cells. 

We showed that CpG availability and use by PureBeta vary
depending on cohort and sample analyzed. Analyses of DNA
methylation data are often performed on the most varying
CpGs in terms of beta values, and PureBeta follows this estab-
lished practice. The beta variance cutoff was optimized using
the three cohorts and adding more CpGs did not improve pu-
rity estimates significantly. Still, PureBeta offers the user the
option of setting different cutoffs if that would suit their own
data sets better. Another common procedure in DNA methy-
lation studies is to discard CpGs located on the X and Y sex
chromosomes as they are differentially methylated in males
and females. However, excluding such CpGs did not change
the pipeline outcome in LUAD and LUSC. This is presumably
because beta values of male and female samples are likely as-
signed to different linear regressions given the inherent differ-
ences in chromosome copy and gene silencing between sexes.
Consequently, CpGs in the X and Y chromosomes were kept
in the reference regression sets provided with PureBeta. In gen-
eral, CpGs used by PureBeta to estimate purities seemed to
be connected to genes involved in tumor processes such as
the epithelial to mesenchymal transition as evidenced by the
GSO analyses. However, only focusing on CpGs located in
gene promoters as explored in this study is an oversimplifica-
tion of the complexity and importance of DNA methylation in
tumorigenesis. Much of the variation observed in beta values
is likely not directly related to the regulation of specific tu-
mor suppressor or oncogenes but involved instead in genome
regulation and integrity through affecting e.g. transposable el- 
ements and enhancers ( 36 ,37 ). 

Irrespective of the scope chosen, be it on a gene or whole 
genome level, the ability to define purer (i.e. more binary) 
methylation states as done with PureBeta could help investi- 
gations of biology and epigenomic changes between different 
subgroups of any cancer type. PureBeta can also aid in con- 
trasting malignant and non-malignant cells / tissue by provid- 
ing inferred beta values of normal cells as a proxy for the nor- 
mal background state of samples (see ( 20 ) for further elabora- 
tion), data that would have to be otherwise collected for each 

patient. PureBeta’s ability of enhancing methylation levels was 
exemplified through the biological representation of somatic 
DNA methylation events in BRCA1 in the SCAN-B TNBC 

cohort. The same cohort was used to showcase that PureBeta 
performs well also on DNA methylation data obtained from 

the newer MethylationEPIC platform despite reference regres- 
sions being calculated from the older HumanMethylation450,
a testament to the continued usability of our tool in the fu- 
ture. Finally, as these widely used Illumina arrays are released 

with backwards compatibility, the amount of DNA methyla- 
tion data generated with them and made publicly available 
through initiatives such as TCGA indicates the potential for 
extending PureBeta to any cancer type, even rarer ones with 

lower number of samples collected. Taken together, PureBeta 
provides researchers with a tool that can assist in furthering 
our understanding of pure methylation phenotypes in cancer,
as well as of the contribution of the tumor microenvironment 
to observed (bulk) methylation profiles in cancer. 

Data availability 

Most data underlying this article are available from The Can- 
cer Genome Atlas initiative and can be retrieved through 

the Genomic Data Commons Data Portal at https://portal. 
gdc.cancer.gov . Other data are available from Gene Expres- 
sion Omnibus at https://www.ncbi.nlm.nih.gov and can be ac- 
cessed with the accession number GSE148748. PureBeta is 
freely available under the GPL-3.0 license as an R package 
in GitHub at https:// github.com/ StaafLab/ PureBeta and refer- 
ence data is available in FigShare at https:// doi.org/ 10.6084/ 
m9.figshare.26272864 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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