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Abstract: We propose a sensor design for measurement of large strains where direct application of a
fiber optic strain gauge is impossible due to the stiffness mismatch between the optical fiber and the
structure under test. The sensor design is based on a rhombus type compliant mechanism, which
functions to attenuate input strain and transfer it to the ends of the sensing beam with the mounted
optical strain gauge. We developed an analytical model of the sensor, which allows us to relate
actuation forces, input displacement/strain, and output strain. The analytical model was verified
with the finite element analysis and validated against an experimental prototype. The prototype
sensor was able to handle input strains exceeding ±2.5 × 105 µε. Potential application areas of the
proposed sensor include compliant elastomeric structures, wearables, and soft robotics.

Keywords: compliant mechanisms; optical fiber; strain; Fiber Bragg Gratings; large deformations

1. Introduction

In many applications it is necessary to measure strain or displacement on a part that
is relatively flexible or made of low modulus material. For example, measurements of
deformation on elastomeric mounts used in buildings, aircraft, and machinery, rubber
flexures, parts made of polymers, etc. These parts may undergo very large strains, in
the order of 10–30% (0.1− 0.3× 106 µε). Conventional resistive foil strain gauges are not
suitable for such applications due to the limited strain range (1–5%), and the fact that they
also create a stiffening effect by altering the local strain field at the location where they
are installed because their modulus is several times higher than that of the test article
material [1–4]. An alternative to foil strain gauges in situations with high strains is to use
extensometers, or non-contact techniques, such as digital image correlation systems [5–7].
These alternatives work well in many settings, but they are not suitable for applications with
difficult to access locations, restricted space, and large distances between the measurement
location and the data acquisition and processing equipment.

Fiber optic-based sensors are becoming very popular in a wide variety of applications,
including measurement of strain, vibration, temperature, humidity, magnetic fields, and
others [8–11]. In particular, fiber Bragg grating (FBG) sensors have become one of the
primary fiber optic measurement technologies [12–17]. Their growing popularity is due
to several advantages that they possess over traditional sensing technologies: (i) they
do not require electrical power, (ii) optical fiber serves as the sensing medium and the
signal transmission line, (iii) immunity to electromagnetic interference and ground loops,
(iv) capability of being multiplexed and deployed over very long distances, (v) high sensi-
tivity and resolution. FBG-based sensors are used for strain measurement in mechanical,
civil, aerospace, and biomedical applications.
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Fiber optic sensors also exhibit a stiffening effect on the test article. Considering a
typical silica glass optical fiber with a modulus of approximately 70 GPa, and fiber diameter
of 125 µm, which is actually larger than those of typical resistance foil strain gauges (10 GPa
and 60 µm), the FBG will tend to underestimate the strain due to its higher stiffness
compared to a typical resistance strain gauge [18]. Silica glass FBG sensors are also limited
by the amount of strain they can be subjected to, which is about 5–10 × 103 µε. An ideal
sensor for measurements of large strains on low modulus or low stiffness structures needs
to be highly compliant and be able to withstand large strains.

Rubber components are usually designed to be loaded in compression, but tension
strains can also occur. Rubber components are generally designed not to exceed tensile
strains above 30%, even though some research [19] suggests that microcavity or micro-
cracks can occur at tensile strains as low as 17% to 20%. From time to time, strains can reach
or exceed 50%, when sudden large motions or shocks are present, but such large strains are
rare. Current commercially available strain gages, capable of measuring rubber strains, are
typically usable for measuring strains up to 20%.

In this work we develop an FBG-based sensor that incorporates a compliant mech-
anism, which serves the purpose of attenuating the strain experienced by the structure
under test so as to bring it within the typical operating range of FBG sensors, and in
addition to that, reducing the stiffening effect and force feedback caused by the sensor itself.
Compliant mechanisms rely on elastic deformations of flexible hinges [20] for transferring
loads and motions between rigid parts or links [21]. Their advantages over traditional
mechanisms include high resolution of motions, absence of friction, low manufacturing
costs, and possibility of miniaturization. Their primary uses are in precision positioning
and instrumentation via amplification of motions or forces [22–28].

Several different types of compliant mechanisms have emerged over time: lever
type [29–31], bridge type [32–34], and Scott-Russell type [35,36]. In this work, we employ
the rhombus mechanism with elastic flexures, which is related to the bridge type mecha-
nisms. Mechanism geometry that follows topology of a rhombus allows realization of a
generous range of amplification/attenuation ratios, while keeping compact dimensions.
Integration of compliant mechanism serves the purpose of attenuating displacement and
reducing the stiffness that is added onto the test article by the sensor. The FBG strain
gauge is attached on the sensing beam connected to the output terminals of the compliant
mechanism. The resulting sensor design is suitable for measurement of in-plane, uniaxial
deformations along the line, connecting input terminals of the compliant mechanism.

In the following section we present the details of analytical modeling that is used
for design purposes and verify it against the finite element model. Then, we present
experimental data obtained from evaluation of the prototype sensor and provide some
concluding remarks.

2. Materials and Methods

The sensor design investigated here consists of the rhombus-type compliant mecha-
nism, which transfers the motion and loads onto the elastic U-shaped beam, which houses
the FBG strain sensor. The schematics of the sensor and the rhombus mechanism employed
in this work are shown in Figure 1. The strain sensor is attached to the test article via the
input terminals of the rhombus mechanism. The motion of the input terminals is attenuated
at the output terminals of the mechanism and transferred to the motion of the ends of
the sensing beam. In this configuration, the sensing segment of beam is subjected to pure
bending load in addition to the tensile or compressive force. The mechanism attenuates the
input displacement and amplifies the input force that is transferred to the beam.

In order to relate the input displacement to the strain developed on the surface of the
sensing beam, it is necessary to know the relationship between displacements and forces at
input and output terminals of the mechanism.
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Figure 1. Schematic of the sensor with the U-shaped beam and the rhombus-type mechanism:
(a) Overall view of the sensor including the compliant mechanism and the sensing beam; (b) Plan
view of the rhombus mechanism; (c) Plan view of the sensing beam and the optical strain sensor.

Analytical Model

In this work we adopt the modeling approach for a rhombus-type mechanism pre-
sented by Li et al. [37]. The approach is based on representation of the generalized beam
flexures using the beam constraint models developed by Awtar et al. [38] Utilizing symme-
try for simplification of the analysis, we consider a quarter of the rhombus mechanism as
shown in Figure 2.
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Figure 2. Geometry of the rhombus mechanism: (a) View of the full mechanism; (b) Quarter-
mechanism and the corresponding geometric parameters.

This represents a beam flexure with distributed compliance, as shown in Figure 3. The
flexure consists of two flexible segments of length L f = aL, where parameter a describes
the extent of compliance and L is the total length of the flexure. The thickness of flexible
segments is Tf . The middle segment of the flexure is considered to be thick enough so
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that it can be treated as rigid. In order to facilitate analysis, it is convenient to work with
non-dimensional forces, moments, and displacements [37]:

mz =
MzL
EI

, fpx =
FpxL2

EI
, fpy =

FpyL2

EI
, ux =

Ux

L
, uy =

Uy

L
(1)

where E is the modulus of elasticity, I is the second moment of area of the cross-section, Ux
and Uy are axial and transverse displacements of the tip in the local coordinates aligned
with the axis of the flexure, and θz is the slope at the end of the flexure. According to [37,38],
the bending and axial deformations for the generalized flexure are expressed as:[

fpy
mz

]
=

[
k0

11 k0
12

k0
21 k0

22

][
uy
θz

]
+ fx

[
k1

11 k1
12

k1
21 k1

22

][
uy
θz

]
, (2)

ux =
fpx

k33
+
[

uy θz
][ g0

11 g0
12

g0
21 g0

22

][
uy
θz

]
+ fpx

[
uy θz

][ g1
11 g1

12
g1

21 g1
22

][
uy
θz

]
, (3)

where k33 =
6
(

L
Tf

)2

a , and the coefficients k and g were originally derived in [38], and are
provided here for convenience in the Appendix A. The ends of the flexure are fixed, hence
the angular displacement (slope) θz is zero, which simplifies Equations (2) and (3) to [37]:

fpy = k0
11uy + fpxk1

11uy (4)

ux =
fpx

k33
+ uy

2g0
11 + fpxuy

2g1
11 (5)
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Figure 3. Beam flexure with distributed compliance.

The input terminal will be activated by an input force Fact, and the output terminal
will experience a resistive force Fext due to the presence of the U-shaped sensing beam with
the FBG sensor. The schematic of relationships between displacements and forces acting on
the terminals of the rhombus mechanism is shown in Figure 4.

This allows us to develop the following transformations between displacements and
forces in local and global coordinates [37]:[

Xout
Yin

]
=

[
cos α − sin α
sin α cos α

][
Ux
Uy

]
(6)

[
Fpx
Fpy

]
=

[
sin α cos α
cos α − sin α

][
Fact
Fext

]
(7)
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Note that in the relationships provided above, Fact represents half of the actual force
applied to the rhombus input terminal, as it is assumed that the input force will be divided
equally between both sides of the rhombus. Hence, given the input force Fact and the
resistive force Fext, one can use Equations (1) and (7) to compute forces fpx and fpy, then
determine ux from Equation (5) and uy from Equation (4) as:

uy =
fpy

k0
11 + fpxk1

11
(8)

Having obtained deformations ux and uy, it is possible to compute displacements
Yin and Xout using Equations (1) and (6). The resistive force Fext will depend upon the
deformation and geometry of the sensing beam mounted on the rhombus mechanism.
We proceed with analysis of the U-shaped sensing beam, the ends of which will undergo
displacements Xout.

As shown in Figure 5a, the ends of the sensing beam are attached to the output
terminals of the rhombus mechanism and undergo the same displacement Xout. We can
consider half of the sensor structure for analysis due to symmetry. The goal here is to
develop a relationship between the displacement at the ends of the beam mounted at the
output terminals of the mechanism and the strain generated at the location of the FBG
sensor mounted on the upper surface of the beam. In addition to that, it is necessary to
determine the counteracting force Fext generated by the beam due to that deformation. Since
we considered a quarter of the rhombus mechanism for computing its displacements, the
force acting at each end of the beam is Fb = 2Fext. The relationship between the force Fb and
displacement δx = Xout at the end of the beam can be obtained via Castigliano’s theorem.

Displacement δx is related to the strain energy stored in the beam according to:

δx =
∂U
∂Fb

=
∂(U1 + U2 + U3)

∂Fb
, (9)

where U1, U2, and U3 are the terms representing the strain energy stored in the three
segments of the sensing beam, as shown in Figure 5b. The strain energy in the first (vertical)
segment will contain contributions from bending and transverse shear:

U1 = Ub
1 + Uts

1 =

L1∫
0

M2
1

2EI
ds +

L1∫
0

cV2
1

2AG
ds =

L1∫
0

F2
b s2

2EI
ds +

L1∫
0

cF2
b

2AG
ds, (10)
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where A is the area of the cross-section, E is the elastic modulus, G is the shear modulus, I
is the second moment of area, and c = 1.2 is the transverse shear correction coefficient for
rectangular cross-section. Strain energy stored in the curved segment can be expressed as:

U2 =

π
2∫
0

M2
2

2AEe
dθ +

π
2∫
0

c(Fb cos θ)2

2AG
Rbdθ +

π
2∫
0

(Fb sin θ)2

2AE
Rbd−

π
2∫
0

M2(Fb sin θ)

2AE
dθ, (11)

where Rb is the centroidal radius, M2 = Fb(L1 + Rb sin θ), and the eccentricity is computed as:

e = Rb −
hb

ln
(

Rb+0.5hb
Rb−0.5hb

) , (12)

where hb is the thickness of the beam cross-section. The strain energy stored in the horizontal
segment of the beam is expressed as:

U3 =

L3∫
0

(M′2)
2

2EI
ds +

L3∫
0

F2
b

2AE
ds, (13)

where M′2 = Fb(L1 + Rb). Integrating and substituting in Equation (9), we obtain:

δx = Fb

[
L3

1
3EI

+
cL1

AG
+

(
0.5πL2

1 + 2L1Rb + 0.25πR2
b

2AEe
+

πRb
4AE

− 4L1 + πRb
2AE

+
cπRb
4AG

)
+

L3(L1 + Rb)
2

EI
+

L3

AE

]
(14)
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where hb is the thickness of the beam cross-section. The strain energy stored in the hori-

zontal segment of the beam is expressed as: 

𝑈3 = ∫
(𝑀2

′ )2

2𝐸𝐼
𝑑𝑠

𝐿3

0

+  ∫
𝐹𝑏

2

2𝐴𝐸
𝑑𝑠

𝐿3

0

, (13) 

Figure 5. U-shaped sensing beam attached to the rhombus mechanism: (a) Front and top views of
the mechanism and the sensing beam; (b) Schematic of the half-beam used in the model: (1)—vertical
segment, (2)—curved segment, (3)—horizontal segment.

Equation (14) allows us to compute force Fb given displacement δx at the end of the
sensing beam. Due to interdependency of deformations and forces in the sensor structure,
we adopt an iterative procedure for computing the response of the sensor. The schematic
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of the procedure is presented in Figure 6. Computations typically converge after only
3–4 iterations so the computational cost is very low.
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Figure 6. Iterative procedure for computing response of the sensor.

The sensing beam will undergo relatively large deformations, causing geometric
nonlinearity. Therefore, it is necessary to compute its vertical deformation at the location
of the FBG sensor, which affects the bending moment and, consequently, the strain at
that location. The horizontal segment of the beam is by far the largest contributor to this
deformation; hence, we only consider this segment to simplify the analysis. We use the
Castigliano’s theorem and apply a fictitious force Fy in the vertical direction at the end of
the sensing beam connected to the output terminal of the rhombus mechanism, as shown
in Figure 7.
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The strain energy stored in the third (horizontal) segment then becomes:

U3 =

L3∫
0

(
M′′

2
)2

2EI
ds +

L3∫
0

F2
b

2AE
ds, (15)

where M′′
2 = Fb(L1 + Rb) + Fy(s + Rb). Integrating and substituting into δy = ∂U3

∂Fy

∣∣∣
Fy = 0

yields:

δy =
Fb(L1 + Rb)

(
L2

3 + 2L3Rb
)

2EI
(16)

Finally, the strain on the top surface of the sensing beam is computed as:

εxx =
0.5Fb

(
L1 + Rb + δy

)
hb

EI
− Fb

AE
(17)

We now proceed to verification of the developed analytical model via finite element
modeling and present experimental results.

3. Results
3.1. Verification with Finite Element Analysis

In order to verify the derived analytical model, we employed finite element models
built using COMSOL Multiphysics commercial software with the Structural Mechanics
module. Several realizations of possible sensor geometries were considered with L = 50 and
25 mm, a = 0.15 and 0.35, and angle α = 10◦ and 15◦. The material of the rhombus mechanism
and the sensing beam was considered to be a generic ABS plastic with an elastic modulus
E = 2.0 GPa and Poisson’s ratio ν = 0.35. The model utilized elements with quadratic
Lagrange discretization. The sensing beam and flexible hinges of the mechanism were
meshed using mapped meshing, while the parts undergoing mostly rigid body motions
were meshed with tetrahedral elements. Details of the mesh are provided in Figure 8a. One
of the input terminals of the mechanism was fixed, while the input force was applied to
the other terminal in the direction of the line between two input terminals as shown in
Figure 8b. The finite element analysis was run, including the geometric nonlinearity.

First, we compare input and output displacements at the terminals of the mechanism
between analytical and finite element models in Figure 9. One can clearly observe that
predictions from both models are in reasonably good agreement.

We also compared normal strain predicted by the analytical model and the average
strain from the finite element model at the top surface of the sensing beam. Results are
shown in Figure 10.

It is evident that for longer flexure (larger L), the relationship between the input
force and the output strain is strongly nonlinear. Shorter flexures result in an input force–
output strain relationship that is much closer to the linear one. One can observe that
the analytical model and the FE model are generally in good agreement, with somewhat
larger discrepancies for case 3, which combines shorter flexures with smaller compliant
segments (a = 0.15) and a smaller angle α. Next, we discuss the experimental validation of
the analytical model.
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Figure 9. Input and output displacements at the terminals of the rhombus mechanism: (a) Case 1:
L = 50 mm, a = 0.15, α = 15◦; (b) Case 2: L = 50 mm, a = 0.35, α = 15◦; (c) Case 3: L = 25 mm, a = 0.15,
α = 10◦; (d) Case 4: L = 25 mm, a = 0.35, α = 15◦.
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Figure 10. Normal strain on the sensing beam: (a) Case 1: L = 50 mm, a = 0.15, α = 15◦; (b) Case 2:
L = 50 mm, a = 0.35, α = 15◦; (c) Case 3: L = 25 mm, a = 0.15, α = 10◦; (d) Case 4: L = 25 mm, a = 0.35,
α = 15◦.

3.2. Experimental Validation

Sensor prototypes were manufactured using the Stratasys Objet260 Connex3 3D printer
and the RGD-5131-DM material that simulates engineering plastics. The material was
characterized to determine the modulus of elasticity in bending via a 3-point beam bend-
ing test on an MTS servo-hydraulic test frame following ASTM D790-17 standard [39].
The obtained value of the elasticity modulus in bending was 2.406 ± 0.019 GPa. This
value was subsequently used in the analytical model for comparing its predictions with
experimental results.

The rhombus mechanisms and sensing beams were printed separately and then as-
sembled and joined using an epoxy adhesive. The prototypes have the following geometric
parameters: rhombus arm length L = 50 mm, angle α = 15◦, and parameter a = 0.15. The
thickness of the sensing beam is 1 mm, its width is 5 mm, the length of vertical segments
is 10 mm, the centroidal radius of the curved segment is Rb = 5 mm, and the length of the
horizontal segment is 103.5 mm. We employed T10 FBG strain sensors from Technica Opti-
cal Components. These sensors are based on a standard single mode fiber with polyimide
coating and a gauge length of 10 mm. Strain and temperature sensitivity are quoted by the
supplier as 1.2 pm/µε and 10 pm/◦C. The FBG gauges were glued onto the sensing beams
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of both prototypes, using a cyanoacrylate adhesive such that the gauge was located at the
midspan of the sensing beam.

One of the prototypes was carefully aligned and mounted on two Thorlabs XR-50P
linear translation stages. The other prototype was set aside in the immediate vicinity to
be used for compensation of the strain changes due to thermal effects. LUNA Hyperion
si155 optical interrogator with ENLIGHT software was used to collect the data from FBG
strain sensors. The experimental prototype mounted on the translation stages is shown in
Figure 11.
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Figure 11. Photo of the protype mounted on motion stages.

During the experiment, the distance between the input terminals was changed man-
ually, using linear translation stages with an accuracy of ±0.02 mm. The origin for the
measurement of input displacement was set using a caliper to represent the undeformed
configuration of the sensor based on its 3D model. In practice, this could be done using a
template for the specific sensor geometry which will depend on the rhombus arm length
and the angle. The collected experimental data is compared with predictions from the
analytical model and FEA results in Figures 12 and 13. Here, both the analytical and FE
models utilized the experimentally obtained value of elastic modulus (2.406 ± 0.019 GPa.)
We show the mean value and the 95% confidence interval obtained from four full loading
and unloading cycles performed during the experiment.

The input strain in Figure 13 is computed as the ratio of input displacement to the
distance between the centers of the input terminals, which in this case was 35.88 mm. We
must note that only the input terminals of the mechanism should be glued to the test article,
while the output terminals should not be adhered to the test article. From the data plotted
in these figures, one may observe that the analytical model prediction is very close to the
experimental data in the positive range of input displacements, which result in positive
strain measured on the sensing beam. In the negative range of input displacements (com-
pression of the sensor), the analytical model predicts higher magnitude of strain than what
is observed in the experiment and the difference between them increases for larger com-
pressive input strains. Strain obtained from the FEA model of the experimental prototype
appears to have a larger discrepancy with experimental data than the analytical model.



Sensors 2022, 22, 3987 13 of 17Sensors 2022, 22, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 12. Input displacement vs. strain measured on the sensing beam, analytical prediction-solid 

line, experimental data-dotted line. 

 

Figure 13. Input strain vs. strain measured on the sensing beam, analytical prediction-solid line, 

experimental data-dotted line. 

The input strain in Figure 13 is computed as the ratio of input displacement to the 

distance between the centers of the input terminals, which in this case was 35.88 mm. We 

must note that only the input terminals of the mechanism should be glued to the test arti-

cle, while the output terminals should not be adhered to the test article. From the data 

plotted in these figures, one may observe that the analytical model prediction is very close 

to the experimental data in the positive range of input displacements, which result in pos-

itive strain measured on the sensing beam. In the negative range of input displacements 

(compression of the sensor), the analytical model predicts higher magnitude of strain than 

what is observed in the experiment and the difference between them increases for larger 

compressive input strains. Strain obtained from the FEA model of the experimental pro-

totype appears to have a larger discrepancy with experimental data than the analytical 

model. 

Note that the sensor response is nonlinear and is similar to what is depicted in Figure 

12 because the geometric configuration is the same. Ideally, it is desirable to have a sensor 

with a linear response through the entire operational range for simplicity of data, but in 

this case nonlinear calibration will be necessary. It is possible to fit a quadratic polynomial 

to the experimental data using the least squared error approach, which results in the fol-

lowing expression: 𝜖𝑥𝑥−𝑒𝑥𝑝
𝑏𝑒𝑎𝑚 = 3.814𝑌𝑖𝑛𝑝

2 + 69.67𝑌𝑖𝑛𝑝 + 0.04137, where Yinp is the input dis-

placement in mm, and R2 = 0.9993. Similarly, the analytical model can also be very well 

fitted with a quadratic function 𝜖𝑥𝑥−𝑎𝑛
𝑏𝑒𝑎𝑚 = 2.928𝑌𝑖𝑛𝑝

2 + 81.92𝑌𝑖𝑛𝑝 + 2.399, and R2 = 0.9988. 

Figure 12. Input displacement vs. strain measured on the sensing beam, analytical prediction-solid
line, experimental data-dotted line.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 12. Input displacement vs. strain measured on the sensing beam, analytical prediction-solid 

line, experimental data-dotted line. 

 

Figure 13. Input strain vs. strain measured on the sensing beam, analytical prediction-solid line, 

experimental data-dotted line. 

The input strain in Figure 13 is computed as the ratio of input displacement to the 

distance between the centers of the input terminals, which in this case was 35.88 mm. We 

must note that only the input terminals of the mechanism should be glued to the test arti-

cle, while the output terminals should not be adhered to the test article. From the data 

plotted in these figures, one may observe that the analytical model prediction is very close 

to the experimental data in the positive range of input displacements, which result in pos-

itive strain measured on the sensing beam. In the negative range of input displacements 

(compression of the sensor), the analytical model predicts higher magnitude of strain than 

what is observed in the experiment and the difference between them increases for larger 

compressive input strains. Strain obtained from the FEA model of the experimental pro-

totype appears to have a larger discrepancy with experimental data than the analytical 

model. 

Note that the sensor response is nonlinear and is similar to what is depicted in Figure 

12 because the geometric configuration is the same. Ideally, it is desirable to have a sensor 

with a linear response through the entire operational range for simplicity of data, but in 

this case nonlinear calibration will be necessary. It is possible to fit a quadratic polynomial 

to the experimental data using the least squared error approach, which results in the fol-

lowing expression: 𝜖𝑥𝑥−𝑒𝑥𝑝
𝑏𝑒𝑎𝑚 = 3.814𝑌𝑖𝑛𝑝

2 + 69.67𝑌𝑖𝑛𝑝 + 0.04137, where Yinp is the input dis-

placement in mm, and R2 = 0.9993. Similarly, the analytical model can also be very well 

fitted with a quadratic function 𝜖𝑥𝑥−𝑎𝑛
𝑏𝑒𝑎𝑚 = 2.928𝑌𝑖𝑛𝑝

2 + 81.92𝑌𝑖𝑛𝑝 + 2.399, and R2 = 0.9988. 

Figure 13. Input strain vs. strain measured on the sensing beam, analytical prediction-solid line,
experimental data-dotted line.

Note that the sensor response is nonlinear and is similar to what is depicted in Figure 12
because the geometric configuration is the same. Ideally, it is desirable to have a sensor
with a linear response through the entire operational range for simplicity of data, but in
this case nonlinear calibration will be necessary. It is possible to fit a quadratic polynomial
to the experimental data using the least squared error approach, which results in the
following expression: εbeam

xx−exp = 3.814Y2
inp + 69.67Yinp + 0.04137, where Yinp is the input

displacement in mm, and R2 = 0.9993. Similarly, the analytical model can also be very well
fitted with a quadratic function εbeam

xx−an = 2.928Y2
inp + 81.92Yinp + 2.399, and R2 = 0.9988.

Overall, it can be stated that the analytical model provides fairly accurate predictions of the
sensor response, particularly for the extensional range of sensor input motion.

In addition, we performed error analysis on to determine the amount of uncertainty
when the strain measured on the beam is mapped back to determine the strain applied at
the input terminals. Results are plotted in Figure 14. The maximum amount of uncertainty
in the measured input strain is determined to be 3.51% with respect to the total range of
input strain.
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It is important to note that the strain transferred from the sensing beam to the FBG
sensor is affected by the bonding geometry and material properties of the beam, the optical
fiber and its coating, and the adhesive. In practice, if bonding is performed manually, it is
difficult to control the bonding thickness and other parameters with very tight accuracy.
According to studies, the strain transfer rate can be about 70–80% [18,40,41]. However,
determination of the exact value of the strain transfer rate is not important for this sensor
design. The simple reason for this is that for each manufactured sensor, its strain output
must be calibrated to the input strain to obtain the resulting mapping function. In addition,
this is necessary for the purpose of being able to backout the input strain/displacement
from the strain measured by the FBG gauge on the sensing beam. This calibration process
takes care of variability in the strain transfer rates from the sensing beam to the FBG.

In order to implement compensation of thermally induced strains, it is necessary to
include an additional FBG on an unloaded part of the structure, for example on the top
surface of one of the output terminals of the rhombus mechanism. Alternatively, thermal
effects could be compensated by placing an additional FBG on the bottom surface of the
sensing beam, which will constitute a typical configuration commonly used for measuring
bending strains with thermal compensation. We discuss the effects of geometric design
parameters on the behavior of the sensor next.

4. Discussion

Here, we consider the effects of the rhombus angle α and the parameter a on the sensor
behavior. For the sake of this discussion, we leave all properties and other parameters
(e.g., geometry of the sensing beam) the same as what has been used for the experimental
prototypes. The range of input force values in the analytical model was between −1.75 N
to 1.75 N in all cases presented here. The plots of the resulting strain on the sensing beam
are plotted versus the corresponding input displacements in Figure 15. From the data
plotted in these figures, it is clear that lower values of parameter a result in stiffening of the
sensor, as evident from smaller range of input displacements for a = 0.1 compared to a = 0.3.
The range of resulting strains with a = 0.1 is significantly smaller (almost twice as small)
compared to cases with a = 0.3.
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Angle α mostly affects strain attenuation, as evidenced from changes in the slope of
the curves plotted in these figures. Higher values of angle α result in lower compliance
of the mechanism, reduced attenuation ratio, and larger strain on the sensing beam. It
needs to be mentioned that larger values of parameter a result in longer flexible segments
of the rhombus arms, thus resulting in higher compliance of the mechanism and stronger
nonlinearity of the input–output strain relationship. Reducing the arm length values will
generally result in lower compliance, but higher linearity of the sensor behavior is evident
from Figure 10. The design of the sensor based on the rhombus compliant mechanism shall
be tailored to allow the required range of input strain, external dimensions, and material to
fit a particular application.

5. Conclusions

In this work we proposed and evaluated a fiber optic-based sensor for measuring
large strains that utilizes a rhombus-type compliant mechanism. The purpose of the
rhombus mechanism is to attenuate the input motion and transfer it to the ends of sensing
beam with the mounted FBG strain gauge. We developed an analytical model that allows
one to quickly and easily predict performance of a sensor design given specific values
of geometric parameters and hence optimize the design for a particular application, e.g.,
input strain/displacement range, desired dimensions, etc. The prototype manufactured
and tested in this work was able to handle input strains exceeding ±2.5 × 105 µε with
measurement uncertainty of approximately 3.5%.

The disadvantage of the proposed sensor is that its input–output strain characteristic
is nonlinear due to inherent kinematics of the rhombus mechanism. Hence, each sensor
will require careful calibration prior to being deployed in an application. The advantage of
the proposed sensor design is that it allows us to reduce the stiffening effect and the force
feedback from the sensor onto the structure being tested. The main possible application
area for this type of sensors would be situations where the structure under test is very
compliant, experiences large quasi-static strains, and direct adhesion of an FBG strain gauge
is impossible due to stiffness mismatch between the optical fiber and the structure. This is
particularly relevant to parts and devices made of rubber or shape-memory polymers and
has potential applications in soft robotics and prosthetics.
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Appendix A

Coefficient matrices for the terms in Equations (2) and (3):[
k0

11 k0
12

k0
21 k0

22

]
=

1
a(3− 6a + 4a2)

[
6 −3
−3 3− 6a + 4a2

]
(A1)

[
k1

11 k1
12

k1
21 k1

22

]
=

1

5(3− 6a + 4a2)
2

[
3
(
15− 50a + 60a2 − 24a3) −a

(
15− 60a + 84a2 − 40a3)

−a
(
15− 60a + 84a2 − 40a3) a

(
15− 60a + 92a2 − 60a3 + 40

3 a4
) ] (A2)

[
g0

11 g0
12

g0
21 g0

22

]
=

1

10(3− 6a + 4a2)
2

[
−3
(
15− 50a + 60a2 − 24a3) a

(
15− 60a + 84a2 − 40a3)

a
(
15− 60a + 84a2 − 40a3) −a

(
15− 60a + 92a2 − 60a3 + 40

3 a4
) ] (A3)

[
g1

11 g1
12

g1
21 g1

22

]
=

a3

175(3− 6a + 4a2)
3[

2
(
105− 630a + 1440a2 − 1480a3 + 576a4) −

(
105− 630a + 1440a2 − 1480a3 + 576a4)

−
(
105− 630a + 1440a2 − 1480a3 + 576a4) (

105− 630a + 1560a2 − 2000a3 + 1408a4 − 560a5 + 1120
9 a6

) ] (A4)
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