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In recent years, the mileage of the tunnels has substantially increased with the rapid

highway construction that led to increasing highway tunnels. Most studies on tunnel

accidents have mainly focused on the external environments, such as tunnel structure,

traffic volume, and lighting. In addition, although many studies on mental load of drivers

have been conducted for public roads, such studies for highway tunnels have been

limited. In this study, three scenarios with different front vehicle speeds (60, 45, and

30 km/h) in a two-lane long tunnel (one lane in each travel direction) were evaluated

using a driving simulator. The experiment involved 24 participants (14 men and 10

women) with an average age of 25.8 years and an average experience of 3.2 years. The

electroencephalogram (EEG) technology was used to collect the leading EEG indicators

during the driving simulation of the scenarios: α, β, and θ waves and the wave ratio,

(α + θ)/β. According to the β-wave energy measurements, the alertness of drivers was

the lowest at 45 km/h after adapting to the tunnel environment, indicating that the drivers

were more comfortable at this speed. This preliminary finding should help in determining

the speed limit in this type of tunnel.

Keywords: driver mental state, driving simulator, electroencephalogram, highway tunnel, car following

INTRODUCTION

The tunnel is an alternative solution for the roadway along rugged topography to overcome natural
conditions. Thus, road tunnels usually represent bottlenecks in the road network (Bassan, 2016).
The tunnels are at risk of hazard and intractable accidents. The severe accident rates and costs in
tunnels were often higher than those on the corresponding roads (Caliendo and De Guglielmo,
2012). Therefore, safety studies on driving in tunnels are necessary.

For general highways, many studies on mental load of drivers have been conducted using
electroencephalograph (EEG). These studies have made it possible to evaluate mental load and
behavior of drivers in tunnels. The studies have used different indicators, such as heart rate
variability, eye-tracking movements (Yang et al., 2019b, 2020d), and EEG. Using EEG to study
the mental state of drivers in a driving simulator is a mature technique, which was first used in
the 1980’s (Lemke, 1982; Torsvall, 1987). The accuracy and efficiency of this technology have been
demonstrated (Haak et al., 2008; Li et al., 2010; Borghini et al., 2012; Bashivan et al., 2016; Kim
et al., 2018). Many researchers have studied essential driver characteristics, such as driver sleepiness
(Resalat and Saba, 2015), drowsiness (Lin et al., 2005), fatigue (Jap et al., 2009; Arakawa et al., 2019),
alertness level (Kiymik et al., 2004), and cognitive load (Barua et al., 2017). Other studies have used
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EEG, as the effect of color scheme (Yang et al., 2020a), situation
awareness (Yang et al., 2020b), and the effect of directional signs
(Yang et al., 2020c). Other studies on brain activities, driver
aggressiveness, music and emotion, and EEG classification have
also been conducted (Fan et al., 2010; Liu et al., 2013; Lin et al.,
2014; Yang et al., 2018, 2019a; Zeng et al., 2018).

For tunnels, numerous studies have been conducted on
traffic safety. However, most studies have focused on tunnel
geometric characteristics and traffic volumes, tunnel illumination
and visibility (Miyake et al., 2019), accident zone locations
(Amundsen and Ranes, 2000; Ma et al., 2009), and safety
speed (Yan et al., 2019). The interesting study by Yan et al.
(2019) addressed driving risk levels in continuous tunnels, 250–
1,000m long and two lanes in each direction, using various
risk indicators. A naturalistic driving system equipped with
a road environment and driving-behavior data acquisition
system was used to collect the data in 130 tunnels on four
highways. The American Association of State Highway and
Transportation Officials (AASHTO) braking model and the
convex hull algorithm were used to predict the critical safety
speed and the critical time headway of each risk feature. In
contrast, this study was designed to predict the speed of car-
following that is most comfortable for the drivers using brain
waves and eye movements. Specifically, this study evaluated the
effect of a 1,800-m long tunnel on the EEG of drivers in a car-
following situation. Thus, this study complements the study by
Yan et al. (2019).

However, a few studies have been conducted on driver
behavior in tunnels. The literature shows that the pathological
discomfort of drivers strongly correlates with the accident
rate when driving in tunnels (Calvi and D’amico, 2013). The
behavioral training using virtual reality affects the self-evacuation
during a drill (Kinateder et al., 2013). Thus, more studies on
driver behavior in tunnels are needed. The novelty of this study
lies in the evaluation of the mental state of drivers to determine
the appropriate speed limit in a highway tunnel, which has not
been addressed in the literature. In the experimental scenarios,
the driver followed a car in front, which traveled at a specific
speed to simulate different speed limits. The EEG of drivers was
measured to determine the change in the mental state of drivers,
mainly those undesirable emotions, such as tension, depression,
and anger. The findings of this study might strengthen the
inference and analysis of the motivation and mechanism of the
lousy behavior of drivers and might provide a theoretical basis
for the prevention of tunnel traffic accidents.

EXPERIMENTAL DESIGN

Experimental Subjects
Drivers of similar ages were selected to avoid the influence of
age on driving. A total of 24 subjects were recruited for the
experiments (14 men and 10 women). Each participant was
in good physical condition, with no color weakness or color
blindness. The driving experience of the subjects varied. The
average age was 25.8 years, with an SD of 5.5 years. The average
experience was 3.2 years, with an SD of 3.7 years. Notably,
in previous driving simulation studies, this sample size was

considered enough to arrive at some preliminary conclusions,
especially using the EEG index. The number of participants used
in previous studies has ranged from 10 to 24 (Reed and Green,
1999; Risser et al., 2000; Godley et al., 2002; Philip et al., 2005;
Ingre et al., 2006).

Driving Simulator and EEG System
The experiment was carried out indoor in a driving simulator
cabin, eliminating the effects of weather, light, and noise on
the experimental results. The indoor illumination was 300 lx.
There is no noticeable light change in and out of the tunnel
in the simulator test, which avoids physiological changes due
to light changes, such as dim light that makes the pupils of
drivers enlarged after entering the tunnel. The wireless EEG
system and the driving simulator were used to collect the data
in the experiments, as shown in Figure 1. The hardware parts of
the driving simulator include the display, transmission, clutch,
cockpit, sensors, steering, throttle, brake, and seat. The EEG
acquisition part consists of the Enobio wireless EEG system,
which transmits 24-bit EEG data and accurately restores the
original EEG signal. Its bandwidth is 0–250Hz, the sampling rate
is 500 samples per second (sps), the resolution is 24 bits, i.e., 0.05
uv, and the noise is <1 uvrms (0–250 Hz).

The EEG test provides information concerning the dynamics
and simulated electrical brain activity, where brain cells
communicate through electrical impulses. An EEG can be used to
help detect potential abnormalities in the brain waves. The small
flat metal disks (i.e., electrodes) that are attached to the scalp
with wires analyze the electrical impulses of the brain and send
signals to a computer that records the results. The charges are
amplified and appear as a graph on a computer screen. The details
on the mathematical foundation of EEG can be found elsewhere
(Doschoris and Kariotou, 2017).

Experimental Scenarios
Experimental Road
The scene of this experiment was a long two-lane, second-class
highway tunnel (i.e., one lane in each travel direction).

FIGURE 1 | Experimental equipment.
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According to the highway technical standards by the
Standardization Administration of the People’s Republic of
China (Standardization Administration of the People’s Republic
of China, 2014), the length of the long highway tunnel ranges
from 1,000 to 3,000m. The tunnel length was set as 1,800m,
which is classified as a long tunnel. Also, this length would help
control the total time of the experiment to avoid driver fatigue.
The length of the experimental section was 2.2 km. Figure 2
shows a schematic diagram of the experimental highway tunnel.
The length of the section from the starting point to the tunnel
entrance was 200m, and the length from the tunnel exit to the
end point was 200m. The width of each lane was 3.75m, and
the total width of the cross-section was 7.5m (i.e., there was no
median). Figure 3 shows a schematic diagram of the internal
environment of the tunnel. A truck escape ramp existed on the
right-hand side of the traveled way, with a width of 1.8m. The
experiment was carried out in the driving simulator, where the
illumination was controlled as the indoor lighting (300 lx). There
was no specific noise interfering with the participants, apart from
the driving simulator sound.

Driving Speed and Traffic Flow
Both the mental state and the behavior of drivers were explored
in a vehicle-following situation. The independent variable
controlled in this study was a single factor, i.e., the speed
of the leader vehicle. The speed limit of the second-class
highway is normally set as 60 or 80 km/h, so this experiment
took a design speed of 60 km/h as the maximum speed limit.
The minimum speed limit zone was 30 km/h with increases
of 15 km/h increments up to a maximum of 60 km/h. Thus,
the three experimental scenarios in the following situations in
the long tunnel were set with the driving speed of the front
car set at 60 km/h (Scenario A), 45 km/h (Scenario B), and
30 km/h (Scenario C). Based on the United States Standards
(Transportation Research Board, 2010), an average traffic flow in
the steady-state of 700 passenger car units per hour (pcu/h) was
selected as the experimental traffic flow for all scenarios.

Experimental Process
Each subject needed to be familiar with the operation of
the driving simulator before starting the formal experiment.
The drivers followed the vehicle in front of them and drove
according to their everyday driving habits. When driving in a
tunnel, overtaking was forbidden. The experimental scenarios
were based on a fully balanced method that eliminated the
mutual interference of the testing sequence caused by various
experimental conditions. Experiments were carried out in the
morning, afternoon, and evening. The experiment was carried

out in a room with curtains closed and lights on to reduce the
influence of light. All participants were asked to have a good sleep
before the experiment to ensure that they were full of energy and
good mental state.

An example of the subject sequence was as follows: Subject
1 completed driving in Scenario A; after that, the driver rested
for a while and then drove the simulator in Scenarios B and C.
Then, Subject 2 would drive in the sequence of Scenarios C, A,
and B, while Subject 3 drives in the sequence of Scenarios A, C,
and B. The rest of the 21 subjects followed the same sequence
pattern of the three scenarios. The EEG data, such as α-, β-, and
θ-wave energy, were collected during the experiment. Thus, all 24
subjects participated in the investigation.

DATA PREPROCESSING

Filtering and Re-referencing
The filtering mainly filtered the useless part of the original EEG
data from 32 electrode locations and included two steps. The first
step was the low-pass filtering, which filtered the EEG waveform
with a frequency below 0.5Hz. The second step was the high-pass
filtering, which screened the EEG waveform with a frequency
above 40Hz (i.e., this frequency is commonly used for EEG pre-
analysis). The re-referencing is to use the average value of EEG
data on each electrode as a reference for calibration to prevent
the artifacts from affecting the overall EEG data.

Independent Component Analysis
Technology Denoising
The independent component analysis (ICA) is a data processing
technology widely used in many fields. The ICA technology

FIGURE 3 | Schematic diagram of the internal environment of the tunnel.

FIGURE 2 | Schematic diagram of the experimental highway tunnel.
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is mainly used to find and remove specific EEG artifacts after
filtering and re-referencing in EEGLAB.

EEG Energy Value Data Extraction
In this experiment, the data for the EEG energy value were
extracted in the α, β, and θ waves, and the wave ratio (α + θ)/β.

TABLE 1 | Characteristics of three types of electroencephalogram (EEG) rhythms

and a composite index.

EEG wave Frequency

(Hz)

Cognitive characteristics

α 8–13 A low-amplitude synchronous wave. The main

waveform is recorded in the awake and quiet

state. It is generally considered to be related to

the preparation of the brain.

β 13–30 A high-frequency, low-amplitude asynchronous

fast wave. It reflects the alertness state of the

brain, which can be seen when nervous or

excited, indicating that the cerebral cortex is in

an excited state.

θ 4–8 It belongs to the low-to-medium amplitude

slow wave, which appears when people calmly

relax and turn to sleep. It manifests the central

nervous system’s inhibitory state and is related

to working memory load.

Wave ratio -a An EEG composite index related to mental

fatigue, suggesting the higher ratio, the higher

the mental fatigue level.

aNot applicable.

Their characteristics are presented in Table 1. The specific
extraction process was as follows:

(a) Export the original data from the Enobio system and import
it into the EEGLAB toolbox. Perform filtering, sequencing,
and ICA preprocessing to remove unwanted frequency waves
and noise.

(b) Use EEGLAB to remove the artifacts that still existed
manually. The EEG signal after removing the artifacts is
shown in Figure 4. Y-axis represents the 32 channels of EEG.
The numbers−500, 0, 500, and 1,000 in the X-axis represent
−500, 0, 500, and 1,000ms at this marker time point. The
changing lines in the figure represent the change of EEG
collected from the participants. The marker 1–5 at the top of
the figure refers to the time when the EEG data were collected
from the participants. The markers are the specific points
used to collect EEG signals in the experiment. The other six
markers are not shown in the figure due to the size of the
window. The markers are set every 300m to collect the data
of drivers for the first 500ms and then 1,000ms, adding up
to 11 markers in this experiment. Then, MATLAB was used
to extract the EEG energy data (µv2), which correspond to
various frequency waves, into Excel files for analysis.

RESULTS AND DISCUSSION

Analysis of Repeated Measurement of
Variance
This analysis was based on the mean values of different speeds
and involvedMauchly’s sphericity test and the within-subject test.

FIGURE 4 | Sample electroencephalogram (EEG) waveforms after removing artifacts.
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Mauchly’s spherical hypothesis is used to test the autocorrelation
degree of each level in a group. The repeated measures ANOVA
is based on Mauchly’s sphericity test of each data. If the spherical
assumption is not satisfied, the Epsilon test should be used to
correct the error. According to Tables 2, 3, the significance of
all variables was >0.05, which satisfied the spherical assumption,
and thus, the Epsilon correction was not required.

The within-subject test aims to study the relationship between
each dependent variable and the speed change. The within-
subject tests refer to the comparison of the mean-variance among
the groups. There would be no significant difference in the mean
among the groups if p > 0.05. If the statistical significance
requirement is met, this proves that the speed change has a
substantial effect on the dependent variable. All the indicators
meet the spherical assumption. However, in terms of the speed
of the assumed sphericity, only the β-wave and the wave ratio
are rather significant but are still not <0.05. The indifference
assumption is accepted. Although all variables in the within-
subject effects were not significant, in the tests of the within-
subject contrasts shown in Table 4, the significance of the β-wave

TABLE 2 | Mauchly’s test of sphericity.

Variable (in

frontal lobe)

Mauchly’s

W

Approx.

Chi-Square

df Sig. Epsilon

Greenhouse-

Geisser

α-wave energy 0.785 2.423 2 0.298 0.823

β-wave energy 0.935 0.667 2 0.716 0.939

θ-wave energy 0.930 0.730 2 0.694 0.934

Wave ratio 0.659 4.170 2 0.124 0.746

energy and the wave ratio in the second measurement were 0.037
and 0.031, respectively, with a p-value<0.05. As noted, under the
quadratic relationship, the β-wave energy and the wave ratio are
related to the speed effect.

EEG Test Comparison During Driving
This test evaluates the significance of the changes in the EEG data
during the follow-up process under a car-following situation.
This test would help indicate whether the EEG data have changed
significantly during the entire driving process. When the distance
is 0, 100, 400, 600, 800, 1,200, 1,400, and 1,600m, the number
of contrasts is ≥2, and the significance of each indicator is
≤0.05, indicating that the energy value indicators are changed
significantly at these positions. In general, as the driving distance
changes, the changes in the EEG energy value are statistically
significant. Table 5 presents the results of the tests of contrasts
of the three EEG indicators, which show the significance of the
change in these indicators during the driving process.

EEG Topography in Three Following
Scenarios in the Tunnel
Figure 5 shows the EEG topographic maps of the three waves for
different speeds. The color in the topographic map (from yellow
to dark blue) indicates the activation level of the brain wave.
The bluer the color, the less active it is. Intuitively, under the
scenarios of the α-wave and β-wave at 45 km/h, the blue area of
the EEG topographic map is larger than that at 30 and 60 km/h,
indicating that the mental state of drivers at 45 km/h is more
stable than at other speeds. Notably, the depth of the color in the
map represents the visualized EEG activity, which directly reflects
the activity of drivers at each following speed. However, the map
cannot be used for the quantitative analysis.

TABLE 3 | Tests of within-subject effects.

Variable (in

frontal lobe)

Inspection type assumed Type III sum of squares Df Mean

squares

F Sig. Partial eta squared

α-wave energy Sphericity 610055.9 2 305027.9 0.705 0.505 0.060

β-wave energy Sphericity 1507640.6 2 753820.3 2.722 0.088 0.198

θ-wave energy Sphericity 2307488.3 2 1153744.1 0.127 0.881 0.011

Wave ratio Sphericity 0.898 2 0.449 1.865 0.179 0.145

TABLE 4 | Tests of within-subject contrasts.

Variable

(in frontal lobe)

Speed Type III sum of squares Df Mean square F Sig. Partial eta squared

α-wave energy Linear 252919.3 1 252919.3 0.457 0.513 0.040

Quadratic 357136.6 1 357136.6 1.146 0.307 0.094

β-wave energy Linear 213979.4 1 213979.4 0.663 0.433 0.057

Quadratic 1293661.2 1 1293661.2 5.593 0.037 0.337

θ-wave energy Linear 166878.0 1 166878.0 0.021 0.887 0.002

Quadratic 2140610.2 1 2140610.2 0.210 0.656 0.019

Wave ratio Linear 0.013 1 0.013 0.038 0.848 0.003

Quadratic 0.885 1 0.885 6.102 0.031 0.357
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TABLE 5 | Tests of contrasts of different speeds for various driving distances.

Variable

(in frontal lobe)

Speed

(km/h)

Comparison distance (m) Sig.

First

distance

Second

distance

α-wave 60 100 400 0.049

α-wave 60 400 600 0.048

α-wave 30 100 1,000 0.033

θ-wave 45 0 400 0.019

θ-wave 45 100 400 0.021

θ-wave 45 200 400 0.040

θ-wave 45 400 600 0.008

θ-wave 45 400 1,200 0.017

θ-wave 45 400 1,600 0.012

θ-wave 45 400 1,800 0.016

θ-wave 30 0 1,200 0.042

θ-wave 30 100 400 0.034

θ-wave 30 100 1,000 0.038

θ-wave 30 100 1,200 0.003

θ-wave 30 100 1,600 0.033

θ-wave 30 400 800 0.041

θ-wave 30 600 1,200 0.023

θ-wave 30 800 1,000 0.048

θ-wave 30 800 1,200 0.002

θ-wave 30 800 1,600 0.041

θ-wave 30 1,200 1,400 0.014

θ-wave 30 1,200 1,700 0.025

(α + θ) / β 30 0 1,200 0.034

(α + θ) / β 30 100 1,200 0.014

(α + θ) / β 30 800 1,200 0.037

(α + θ) / β 30 1,200 1,400 0.008

(α + θ) / β 30 1,200 1,600 0.036

Change in EEG Energy During Driving
The statistical analysis of the change in EEG shows the
significance of the β-wave energy and the wave ratio. The second
measurements are 0.037 and 0.031, respectively, with p-value
<0.05. These results indicate that driving psychology varies
for different vehicle-following conditions in the tunnel. The
changes of the four EEG indicators during the driving process
are described in the following. The unit of EEG wave energy is
µv2, which represents the intensity of the three brain waves.

α-Wave Energy in the Frontal Lobe
The change in the α-wave energy in the frontal lobe for different
driving speeds is shown in Figure 6. The X-axis is the distance the
driver reached in the tunnel, and the Y-axis is the magnitude of
the α-wave energy. As noted, as the driver drives in the tunnel, the
energy value of the α-wave of the EEG decreases when the driver
enters the first 100m. When the α-wave energy decreases, the
drowsiness of the driver is reduced, and the cognitive resources
increase (Schier, 2000). This corresponds to the concentration
of attention when entering the tunnel (Klimesch et al., 1998;
Wang et al., 2015). As the driving distance increases, the α-wave

energy increases two times and also decreases two times. The
first increase occurs when the driver enters the middle of the
tunnel, reaching the highest point at 400m, and during 600–
800m, the α-wave energy fell rapidly. This trend indicates the
distracted and concentrated process of drivers (from distraction
to concentration). Then, during the driving process, the α-wave
energy increases, but it does not recover to the level at 400m.
This trend might be due to that the driver is reaching the exit
of the tunnel, where the driver is relieved when driving out of
the tunnel without the tension of following other cars in the
tunnel. However, the driver is still concentrating along with the
highway driving conditions. After the driver enters the tunnel
environment, the adaptation to the tunnel environment and the
process of focusing attention have kept his level of drowsiness at
a low level. As the driver enters the exit of the tunnel at 1,800m,
the driving task ends. The attention level of drivers drops rapidly.

β-Wave Energy in the Frontal Lobe
The change in the β-wave energy in the frontal lobe for different
driving speeds is shown in Figure 7. The X-axis is the distance
the driver reached in the tunnel, and the Y-axis is the magnitude
of the β-wave energy. As noted, the β-wave energy still shows
the same effect as the participants drove in the first 0–400m,
i.e., the decline-increasing process when entering the tunnel. The
increase in the β-wave represents an increase in the alertness
level (Eoh et al., 2005). When the driver enters the tunnel, the
alertness level first decreases and then increases. This reveals a
distractive pattern of the drivers who enter the tunnel. In the first
100m, drivers are distracted (due to the pressure of the tunnel,
the environment, or the changing environment). However, in the
next 100m, the drivers regain their alertness when they adapt to
the tunnel environment. After 400m, the β-wave energy (i.e., the
alertness level of drivers) is the lowest at 45 km/h. Then, from 800
to 1,600m, the β-wave energy at 45 km/h is decreased steadily in
contrast to the oscillation of the other two brain wave energies at
the other speeds. This indicates that after adapting to the tunnel
environment, the driver is more comfortable at 45 km/h.

θ-Wave Energy in the Frontal Lobe
Figure 8 shows the change in the θ-wave energy in the frontal
lobe for different driving. The θ-wave energy does not show
significance in the repeated measures ANOVA. The X-axis is
the distance the driver reached in the tunnel. The Y-axis is the
magnitude of θ-wave energy. Its unit is µv2. In the contrast tests,
compared with the energy of the other two speeds, the θ-wave
energy value at 30 km/h had changed significantly between most
of the distances. At the three speeds, the θ-wave energy value
of drivers still maintained a descent-rise at 400m at the tunnel
entrance, but at 45 km/h, the fall is not apparent. At 400m, the
θ-wave energy is higher than the other two speeds. Because the
driver alertness level decreased when the θ-wave energy increased
(Åkerstedt et al., 1991), the driver alertness decreased at the
entrance. As noted, the θ-wave energy for 30 km/h is higher than
that for the other two speeds during the distance from 800 to
1,400m, but after that, the θ-wave energy is less than that for the
other speeds. This trend is similar to the α-wave energy where
the θ-wave energy at 45 km/h does not recover to the level of
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FIGURE 5 | EEG topographic maps of the three waves of drivers for different speeds.

FIGURE 6 | Change in α-wave energy in the frontal lobe for different driving

speeds.
FIGURE 7 | Change in β-wave energy in the frontal lobe for different driving

speeds.
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400m. This might also be due to the relief of drivers, as noted in
the analysis of the α-wave energy. At 60 km/h, the θ-wave energy
also has a descent-rise, presumably indicating that the driver is
attentive to the tunnel entrance.

Wave Ratio in the Frontal Lobe
The wave ratio has been demonstrated in the repeated measures
ANOVA to illustrate the significance of change with speed.
Figure 9 shows the change in the wave ratio in the frontal lobe
for different driving speeds. The X-axis is the distance the driver
reached in the tunnel, and the Y-axis is the magnitude of the wave

FIGURE 8 | Change in θ-wave energy in the frontal lobe for different driving

speeds.

FIGURE 9 | Change in the wave ratio in the frontal lobe for different driving speeds.

ratio. As noted, the drop-rise effect occurred during 0–200m.
From 0 to 600m, the ratio of the three following car speeds is
almost the same, but at 600m, the ratio at 45 km/h started to rise,
drops at a distance between 1,200 and 1,600m, and then sharply
rises at 1,700m. After the jump, the ratio decreases again. After
1,200m, the ratio for 45 km/h is in the neutral position relative to
the other two speeds (although a sudden jump occurs at 1,700m)
and then returns to around 5 at the exit. The increase in the wave
ratio as driver fatigue increases (Cao et al., 2014) indicates that
the fatigue value for 45 km/h is generally in the neutral position
during tunnel driving. The ratio is not much different from that
of the other two speeds.

CONCLUSION

This study has evaluated three simulated driving scenarios in a
long highway tunnel with different speeds of the front vehicle.
The EEG technology was used to provide information about the
dynamics and simulated electrical brain activity of subjects. Based
on this study, the following comments are offered:

1. The analysis of the EEG energy data showed that the driver
had the lowest alertness level and the best driving experience
at 45 km/h. The wave ratio showed that the fatigue value
for 45 km/h was generally in the middle and was not much
different from the other two speeds. The study experiments
involved a specific two-lane tunnel (i.e., one lane in each
direction), which is 1,800m long, and participants with an age
range of 20–30 years. Since the tunnel length and the age of
participants would affect the optimum speed of the tunnel,
the preliminary finding that the 45 km/h is an appropriate
speed applies only to the two-lane highway tunnels with
lighting/sound and participants similar to those used in this
study. Also, this finding is likely to apply to the tunnels
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in China, which exhibit similar conditions and may not be
transferrable to other countries.

2. The results showed that the EEG energy of drivers had
a falling–rising effect during tunnel driving. Since the
environmental illuminance of the experiment was controlled,
there was no interference in the dark adaptation process in
vision. The analysis of the α, β, and θ waves revealed a similar
effect in the EEG index when driving in the middle and the
rear end of the tunnel. Researchers have recently studied the
sustained attention and the attention behavior in distracted
driving (Wang et al., 2013; Pallavi and Harish, 2016; Ding
et al., 2019; Karran et al., 2019), especially the reduction and
oscillations of the α-wave energy and the increase in the θ-
wave energy (Klimesch et al., 1998; Wang et al., 2015). It
could be speculated that the trends of these wave energies were
related to the attention–concentration behavior of drivers
during tunnel driving.

3. The results of the study showed different psychological
reactions of drivers at different speeds. For the three speeds
of 60, 45, and 30 km/h, the drivers had a better driving
experience at a moderate speed (i.e., 45 km/h) when following
the front car. A falling-rising effect on the three brain waves
was also found. This findingmight contribute to the analysis of
driving behavior in the tunnel using physiological indicators.
Furthermore, the conclusion of this study may help set the
index weight when modeling the car-following behavior from
the psychological state of drivers. Also, the finding might
strengthen the inference and analysis of the motivation and
mechanism of lousy behavior of drivers and might provide a
theoretical basis for the prevention of tunnel traffic accidents.

4. This study has some limitations. The error of the EEG
data process was relatively large, and the test scene
was too restrictive. In addition, it was necessary to
study the speed variable only due to the experimental
conditions. Future studies might consider more complex
driving scenarios involving a broader selection of speeds
and various physiological indicators, such as ECG and skin
electricity, which can be combined to study driver behavior
more comprehensively. In addition, the effect of different
tunnel lighting and noise levels can be explored.
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