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Editorial 

Achievements and challenges in normal tissue response modelling for proton therapy 

Normal Tissue Complication Probability (NTCP) models are used to 
describe the relationship between the dose distribution to critical organs 
at risk and the development of a given radiation-induced side effect 
[1–3]. For head and neck cancer (HNC), NTCP models are typically 
based on multivariate logistic regression, which in addition to dose/ 
volume based predictors may include variables related to baseline data 
as well as patient- and disease related factors. The model based approach 
(MBA) for selecting patients to proton therapy makes use of NTCP 
models to identify patients where proton therapy can be beneficial in 
terms of reduced side effects. The criterion for qualifying for proton 
therapy (or for inclusion into a clinical trial) is based on a reduction in 
NTCP (ΔNTCP) with protons compared to photons, and where the 
severity of the side effect of interest is reflected in a predefined threshold 
value. A detailed description of the methodology has previously been 
published [4,5], and the MBA has been accepted as a method to select 
patients to proton therapy by the Dutch health authorities. A wide range 
of NTCP models for common acute and late side effects after radio-
therapy for HNC have been developed and are currently in use in the 
Netherlands [6,7]. The clinical experience with the MBA for selection of 
patients to proton therapy in HNC was recently reported by Tambas 
et al. [8]. By applying a ΔNTCP threshold of 5 % for grade III and 10 % 
for grade II side effects, 35 % of the patients were selected for protons. 
Predominantly, patients qualifying for proton therapy had locally 
advanced pharyngeal cancers, and were selected on the basis of the 
estimated reduction in NTCP for xerostomia and dysphagia. The authors 
reported the MBA to be time-consuming, especially during the learning 
curve period, but still clinically feasible. 

The use of MBA in clinical practice requires the availability of NTCP 
models with high predictive power. During NTCP model development 
challenges such as missing data, multicollinearity, selection of relevant 
predictors and identification of non-linear relationships between the 
outcome and continuous variables are addressed in order to create well- 
fitted models [9]. The apparent performance of an NTCP model will 
usually be overly optimistic. To avoid overfitting of the data internal 
model validation is recommended, preferably by applying bootstrapping 
procedures where all steps in model development are repeated on 
several randomly sampled data sets. Discrimination and calibration are 
then assessed in both the original and bootstrap samples after which the 
model is corrected for optimism [9,10]. Despite this, the model’s pre-
dictive power is typically reduced when used in new patients. However, 
validation of previously published NTCP models on own patient cohorts 
with model adjustments may improve prediction and is a prerequisite 
before clinical implementation of the model of interest. 

Recently, a previously published NTCP model for dysphagia [11] 
was externally validated in a Danish patient cohort [12] and in the 
current volume of this journal, Kalendralis et al. [13] report the results 
from an external validation of an NTCP model for grade II dysphagia in 
270 HNC patients. Both studies applied the closed testing procedure 
[14], which is an automated method that evaluate to what degree an 
NTCP model needs to be adjusted in order to improve performance when 
applied in the new patient cohort. The results from the external vali-
dation in the above mentioned studies differed, in the Danish patient 
cohort, updating the intercept resulted in a significant improvement in 
the model performance, whereas re-estimation of model coefficients 
significantly improved the performance in Kalendralis et al. [13]. 

The implementation of the MBA is challenging for several reasons. It 
requires prospective patient follow-up with continuous data collection 
for NTCP model development and validation, as well as patient registries 
for assessment of potential clinical benefits. Regular validation of the 
NTCP models is needed to ensure reliable models that are adjusted to 
changes in patient cohorts, treatment regimens and treatment tech-
niques. Thus, the MBA is a resource-intensive methodology, and 
implementation in small centers with a limited number of patients may 
be challenging. 

Furthermore, uncertainties in the NTCP models (i.e. predictor co-
efficients) as well as uncertainties in the actual delivered dose distri-
butions could have a substantial impact on the accuracy of patient 
selection in the MBA. As shown in Bijman et al. [15], dose uncertainties 
could result in a selection accuracy as low as 60 %. In proton therapy, 
the clinically used constant relative biological effectiveness (RBE) factor 
of 1.1 is an additional pitfall [16]. It is becoming widely recognized that 
the RBE is not constant, but depends on parameters such as tissue α/β, 
dose and fraction sizes, as well as spatially varying depending on the 
linear energy transfer (LET), which represents radiation quality [17]. 
Preclinical evidence of the variable RBE effect is solid, but the proof of 
clinical impact remains statistically weak [18]. 

The attraction of proton therapy is its potential reduction of 
morbidity in patients by better sparing of healthy tissue, however, at the 
same time there is concern of toxicity in critical organs at risk if the 
effective dose delivered is higher than expected at the distal edge of a 
beam. In addition, proton beams are less robust against anatomical 
changes occurring throughout the course of treatment. In particular, for 
HNC patients, tumor shrinkage or changes in the filling of air cavities/ 
sinuses may result in deviations from the planned dose distribution. For 
HNC involving the skull base, these effects could lead to substantial 
increase in biological response in adjacent brain tissue. Kitpanit et al. 
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found an overall risk of brain necrosis after proton therapy to be 7 % (at 
2-year follow-up in 234 patients), of where the majority (5 %) presented 
in the temporal lobes [19]. The implementation of different dose con-
straints during proton planning was suggested to mitigate risk for these 
patients. Based on radiographic changes in 9/60 nasopharyngeal car-
cinoma patients treated with proton therapy, versus 20/506 patients 
treated with photon-based intensity modulated radiation therapy, 
Zhang et al. estimated the RBE for radiographic changes in the temporal 
lobe to be 1.18 [20]. Engeseth et al. found that 17 % of 127 patients had 
radiation-induced brain image changes (asymptomatic) following pro-
ton therapy of skull base HNC [21], with a statistical significant asso-
ciation to volumes receiving high doses in combination with increased 
LET [22]. Contrary, Niemierko et al. found no correlation between brain 
necrosis and LET in 50 HNC patients treated with protons [23]. 

As a consequence of existing uncertainties, strategic choices of beam 
configuration to avoid positioning of beams in organs at risk is imple-
mented in proton therapy. This practice comes with somewhat unknown 
clinical impact, and at the very least represents a limitation during 
treatment planning. In addition, dose reporting for patient records and 
studies may be inappropriate and is a limiting factor for accumulating 
clinical evidence. In fact, phenomenological modeling based on in-vitro 
experiments have demonstrated that most dose/volume based indices 
used to evaluate tolerance doses are underestimated for a wide range of 
diagnoses when using an RBE of 1.1 [24], including for HNC [25]. 
Furthermore, a standardized reporting of LET is lacking, and can diverge 
by an order of magnitude depending on how the LET is defined (i.e. 
track-averaged, dose-averaged, LET spectrum or not mentioned) [26]. 
Clinical studies may further be obscured by the noise level of retro-
spective study designs, origin of e.g. necrosis, voxel-based analysis and 
assumptions of independence, creating a need for large multi-center and 
multi–country studies to reach the required effect size. Wagenaar et al. 
recently discussed how the number of HNC patients required to 
conclude on a toxicity relation of mean dose times dose-averaged LET 
would be unfeasibly high [27]. Choice of study design, selection of pa-
tients at risk of high dose and LET may be key, and new concepts such as 
e.g. dose-LET volume histogram [28] can be useful predictors. In addi-
tion, Yang et al. recently estimated empirical RBEs for mandible 
osteoradionecrosis in HNC patients treated with pencil beam scanning 
protons versus photon-based volumetric modulated arc therapy, using a 
case-matched cohort design. Depending on dose cut-off, the estimated 
RBEs were 1.24–1.58 at moderate dose levels [29]. Evidently, there is a 
need for conventions and development of appropriate methods for 
clinical studies of proton RBE, and to harmonize LET collection across 
centers [30]. 

The direct application of photon-based NTCP models in proton 
treated patients can lead to imprecise morbidity predictions, due to 
substantially different model parameters across the modalities [31,32]. 
From pre-clinical modeling data, the low α/β values typical of brain 
tissues have been shown to increase the RBE [33]. Toxicities and NTCP 
in proton therapy are also more affected by α/β variations compared to 
photon-based therapy, and thereby have increased sensitivity to inter-
patient variability in α/β [34]. Not only the RBE but also NTCP depend 
on α/β, and the relative NTCP as function of α/β does not simply scale 
with the RBE. Dependency of RBE on α/β should therefore not be 
interpreted independently of NTCP. 

In summary, the contribution of Kalendralis et al. [13] in the current 
volume is an important achievement within a research area that is 
essential for the further expansion of the scientifically founded in-
dications of proton therapy. 
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