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Coronary artery disease (CAD) is a common complication of type 2 diabetes mellitus (T2D). This case-control study was done to
identify metabolites with different concentrations between T2D patients with and without CAD and to characterise implicated
metabolic mechanisms relating to CAD. Fasting serum samples of 57 T2D subjects, 26 with (cases) and 31 without CAD
(controls), were targeted for metabolite profiling of 163 metabolites. To assess the association between metabolite levels
and CAD, partial least squares (PLS) analysis and multivariate logistic regression analysis with adjustment for CAD risk
factors and medications were performed. We observed a separation of cases and controls with two classes of metabolites
being significantly associated with CAD, including phosphatidylcholines, and serine. Four metabolites being independent
from the common CAD risk factors displaying best separation between cases and controls were further selected. Addition
of the metabolite concentrations to risk factor analysis raised the area under the receiver-operating-characteristic curve
from 0.72 to 0.88 (p = 0 020), providing improved sensitivity and specificity for CAD classification. Serum phospholipid
and serine levels independently discriminate T2D patients with and without CAD. Oxidative stress and reduced
antioxidative capacity lead to lower metabolite concentrations probably due to changes in membrane composition and
accelerated phospholipid degradation.

1. Introduction

Type 2 diabetes mellitus (T2DM) is a complex metabolic
disorder which is characterised by abnormal hepatic glucose
production, insulin resistance, and impaired pancreatic
insulin secretion [1, 2]. Chronic hyperglycaemia in T2DM
is associated with both microvascular and macrovascular
complications [3], and T2DM is a risk factor for coronary
macrovascular disease, autonomic dysfunction, heart failure,
and coronary microvascular disease [4].

Coronary artery disease (CAD) is the most common
macrovascular complication of cardiovascular disease with
an estimated prevalence of 6.9% in men and 6% among
women [5]. In 2012, an estimated number of 17.5 million
people died from CVDs, accounting for 31% of all global
deaths. Of these, an estimated 7.4 million were death due
to coronary heart disease. Patients with diabetes mellitus
experience a two- to fourfold increased risk of developing
CAD or peripheral artery disease (PAD) when comparing
with nondiabetic controls [6, 7]. Moreover, associated
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comorbidities of diabetes mellitus (CAD and hypertension)
and metabolic disorders (hyperglycaemia, dyslipidaemia)
can contribute to the alteration in diastolic and systolic
myocardial function [8]. The underlying mechanism(s)
behind the more probable development of coronary macro-
vascular complications (e.g., CAD and PAD) is still not fully
understood. There are several recognised risk factors for
CAD, many of them being of metabolic nature [9, 10]. These
risk factors include mainly age, gender, BMI, HbA1c, diabe-
tes duration, blood pressure, lipids, brain natriuretic peptide
(BNP), and albumin. However, the mechanism(s) cannot be
fully explained by the interaction of these risk factors [11].
Besides these well-known risk factors, glycerophospholipids
and sphingolipids which are mainly associated with lipopro-
tein particles contribute to atherogenesis and thus account
for the elevated risk of CAD [12, 13]. With the complete
mechanistic understanding, individuals being at the highest
risk of cardiovascular events could be identified and the
progression might be prevented [9, 10, 14, 15].

In search for biomarkers or algorithms predicting the risk
of developing cardiovascular disease (CVD), new technolo-
gies are applied and screening tools including multifaceted
parameters are made available [10, 16–19]. Metabolomics is
part of the “omics” research primarily related to the high-
throughput identification and quantification of endogenous
and exogenous small-molecule metabolites (<1.5 kDa) within
a biologic system [20]. The analysis of these metabolites in
body fluids like serum and plasma can be used as a promising
tool in the diagnostic of diseases [15, 21]. Thus, changes in
metabolite profiles are potential sources of biomarkers in
terms of reporting alterations in the body due to a disease
or drug therapy [14, 22, 23]. For instance, several studies
investigated metabolite profiles of subjects with CAD and
without CAD, reporting significant differences in acylcarni-
tines and amino acid concentrations between those two
groups of patients [9, 10, 17, 24]. However, these studies did
not analyse other classes of metabolites, such as phosphati-
dylcholines and sphingomyelins which play an important
role in membrane function [25], activation of enzymes, and
cellular signal transduction [26]. There are only a few studies
reporting differences in levels of phosphatidylcholines and
sphingomyelins [27–30], though not all subjects were T2D
patients in those studies.

Moreover, there were several studies giving evidence that
metabolites are heritable in mice [31]. Shah and colleagues
strengthened this fact by demonstrating the heritability of
the metabolite profiles in human families with early onset
of CAD [32]. This could give a hint that CAD could be medi-
ated through metabolites to some extent such as acting as
regulatory signal in the control of blood pressure. These
metabolic “markers” could give information on involved
metabolic pathways which are affected by the disease and
help to identify individuals at high risk of the disease
and help to optimise screening procedures for the disease
as well as for the late complications [14].

In this study, we characterised 163 metabolite concen-
trations (acylcarnitines, amino acids, phosphatidylcholines,
and sphingomyelins) of 57 patients with T2D, including 26
cases with complications of CAD. Our goals were twofold.

First, we wanted to identify circulating metabolites dis-
criminating individuals with and without CAD. Second, we
aimed at characterising potential molecular mechanisms
related to CAD.

2. Material and Methods

2.1. Study Population. The participants of this study were
selected from inpatients at the Herz- und Diabeteszentrum
Nordrhein-Westfalen (HDZ NRW) in Bad Oeynhausen after
written informed consent. The study cohort included 61
patients who were diagnosed with T2DM according to actual
guidelines of the American Diabetes Association (ADA) and
the European Association for the Study of Diabetes (EASD).
All patients were in fasting state at sampling. Four patients
had to be excluded as three of them were reclassified as
having type 1 diabetes during recruitment and one having
diabetes because of total pancreatectomy. Overall, data on
57 patients with T2DM was available for the analysis.

All patients received oral antidiabetic medication which
included the use of either DPP-4 inhibitors (sitagliptin,
vildagliptin), sulfonylureas (glimepirides, glibenclamide),
thiazolidinediones (pioglitazone), biguanides (metformin),
GLP-1-analogon (exenatide), fast or long acting insulin, or
a combination of them. Insulin was set as leading compound
for classification on treatment as oral alone (oral antidiabetic
agent intake) or oral + insulin and insulin alone (insulin
therapy). As further medication, patients were taking
compromised antihypertensives (β-blocker, ACE inhibitors,
angiotensin II receptor antagonists, and anticoagulants) and
lipid-lowering agents (statins, fibrates). A case-control study
design was chosen to compare differences in metabolite con-
centrations and CAD. Thus, the participants were divided
into two groups according to having had a CAD in the past
or not. Participants qualified for the CAD group if they had
the diagnosis of a clinical vascular disease in at least one ves-
sel defined as a history of myocardial infarction, or a history
of coronary, carotid, or peripheral artery revascularisation, or
a history of myocardial ischaemia by an exercise stress test, or
a history of myocardial ischaemia with any cardiac imaging.
Standardised examinations and tests were applied to the study
participants including clinical biochemistry and detailed
investigation of further heart diseases or other complications
according to current medical guidelines.

2.2. Sampling. Blood was drawn after an overnight fast
(at least 8 hours) in the morning. Within 20min after sam-
pling, blood was centrifuged (3000×g, 4°C, 10min) for serum
collection, flash-frozen, and stored at −80°C until analysis.

2.3. Targeted Metabolomics Measurements. Metabolite detec-
tion and quantification was conducted in the Metabolomic
Platform of the Genome Analysis Center, Helmholtz Zentrum
München, using flow injection analysis triple quadrupole
mass spectrometry (FIA-MS/MS) and the AbsoluteIDQ™
p150 Kit (Biocrates Life Science AG, Innsbruck, Austria).
Out of 10 μL serum, 163 metabolites have been quantified,
including free carnitine, 40 acylcarnitines, 14 amino
acids, hexoses (sum), 15 lysophosphatidylcholines, 77
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phosphatidylcholines, and 15 sphingolipids. A detailed
description of the assay procedures and nomenclature
have been published previously [33, 34].

Each metabolite had to fulfil the following three criteria
to assure data quality [35, 36]: (1) average value of the coeffi-
cient of variance (CV) for the metabolite in the three quality
controls < 25%, (2) 90% of all measured sample concentra-
tions for the metabolite above limit of detection (LOD), and
(3) correlation coefficient between two duplicate measure-
ments of the metabolite in 144 reanalysed samples > 0 5.
Out of the 163 measured metabolites, 131 finally passed the
quality controls which resulted in a dataset including the
sum of hexoses (H1), 14 amino acids (AA), 24 acylcarnitines
(AC), 13 SMs, 34 diacyl PCs (PC aa), 37 acyl alkyl PCs
(PC ae), and 8 lysoPCs.

2.4. Statistical Analyses. The statistical analyses were per-
formed using the statistical package R (version 3.3.1,
http://www.r-project.org).

Descriptive characteristics are given as mean± standard
deviation (SD) (Table 1). Clinical characteristics of the study
participants were tested for significant difference using a
nonparametric Mann-Whitney U test. A p value smaller than
0.05 was considered as statistically significant.

For all analyses, to ensure comparability between dif-
ferent metabolite levels, the concentrations of metabolite
were natural-log transformed and standardized (mean=0
and SD=1) [37].

Partial least squares discriminant analysis (PLS-DA) was
applied to separate T2D patients with different T2D medica-
tion (i.e., insulin treatment and oral antidiabetic agents) as
well as the status of CAD.

Logistic regression analysis was conducted to assess the
differences in metabolite profiles discriminating indepen-
dently between subjects with CAD and subjects without
CAD. For adjustment in differences in baseline characteris-
tics, variables were chosen based on prior considerations of
their clinical relevance with respect to the risk of cardiovas-
cular events (CAD or CHD). Each metabolite was assessed
individually. To include potential confounders, we adjusted
for two sets of covariates: (1) age and sex as the crude model;
(2) age, sex, BMI, HbA1c, diabetes duration, triacylglycerols
(TG), LDL :HDL cholesterol ratio, systolic blood pressure
(SBP), diastolic blood pressure (DBP), albumin concentra-
tions, medication other than antidiabetic agents (i.e., antihy-
pertensives, lipid-lowering agents), and eGFR [38] as full
model. Oral antidiabetics and insulin were not included,
because both therapeutic regimens are equally distributed
throughout the groups. Smoking, alcohol use, and family
history of heart disease could not be used as predictor
variables due to lack or weakness of self-reported data.

Metabolites were selected by applying logistic regression
analysis, random forest, and a stepwise selection of logistic
regression methods. First, metabolites were selected if they
met the two following criteria: (1) significant in logistic
regression for every metabolite with adjustment for all

Table 1: Characteristics in patients with T2D under antidiabetic therapy (stratified by CAD status; CAD= cases, non-CAD= controls).

Characteristic
CAD
n = 26

Non-CAD
n = 31 p valuea

Age (years) 70.0± 9.9 55.1± 13.2 1.01E-04

Males/females (n/n) 20/6 18/13

BMI (kg/m2) 31.4± 4.3 36.3± 8.7 0.054

Diabetes duration (years) 18.0± 12.7 11.5± 7.6 0.065

HbA1c (%) 7.81± 1.20 8.85± 1.80 0.156

Proinsulin (pmol/l) 14.7± 19.2 13.3± 7.4 0.146

C-peptide (pmol/l) 1519.2± 1202.9 1473.5± 939.0 0.654

SBP (mmHg) 129.5± 13.2 129.4± 13.8 0.949

DBP (mmHg) 70.5± 12.6 77.4± 10.4 0.013

TG (mg/dl) 215.2± 156.3 205.8± 141.2 0.423

Total cholesterol (mg/dl) 167.5± 39.4 189.1± 35.5 5.84E-03

HDL cholesterol (mg/dl) 38.6± 8.9 45.7± 24.8 0.251

LDL cholesterol (mg/dl) 95.1± 27.3 111.3± 35.7 0.018

Albumin (mg/l) 16.4± 36.6 25.9± 39.1 0.082

Creatinine (mg/dl) 1.33± 0.52 1.07± 0.50 0.012

Urea (mg/dl) 61.6± 42.5 42.9± 18.8 0.037

GFR (ml/min) 60.4± 23.2 79.8± 29.5 9.21E-03

Creatine kinase (U/l) 128.8± 79.3 174.4± 172.7 0.642

CRP (mg/dl) 1.51± 2.66 2.12± 4.84 0.438

Lp(a) (mg/dl) 22.8± 31.8 40.0± 51.7 0.494

BNP (pg/ml) 136.5± 178.5 30.9± 30.6 4.68E-06

Data shown as mean ± SD.
ap value for comparing patients with CAD and without CAD using Mann-Whitney U test.
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variables and (2) significant for the 30 most important
variables in random forest method where all 131 metabolites
and the variables served as covariates. Second, the chosen
metabolites were again selected with a stepwise selection
of logistic regression according to the Akaike information
criterion (AIC). The procedure was performed 100 times,
and metabolites that were chosen at least 40 times were kept
as the final markers.

To assess the logistic models for classification of cases
and controls by a different set of markers (clinical markers,
metabolite markers, and both kinds of markers), receiver
operating characteristic (ROC) analysis with leave one out
(LOO) cross-validation was conducted. LOOmethod ignores
one observation while using the model fitted to the remaining
observations to compute the predicted probability for the
ignored observation. The cross-validation, drawing of ROC
curve, and calculation of the area under the curve (AUC) were
performed in R using package bootstrap and ROCR [39],
respectively. The different model fits were compared by a
likelihood ratio test.

3. Results

3.1. Characteristics of Study Population. The CAD cases and
controls were well matched (Table 1). Thus, the characteris-
tics for clinical parameters between CAD cases and controls
were similar as they did not show significant differences in
diabetes duration, BMI, HbA1c, proinsulin, C-peptide, SBP,
TG, HDL cholesterol, albumin, creatine kinase, CRP, and
Lp(a) (p > 0 05). However, CAD cases were about 15 years
older and included fewer females than controls (Table 1).
Values for creatinine, urea, and BNP were significantly
higher, and levels for DBP, total cholesterol, LDL cholesterol,
and glomerular filtration rate (GFR) were significantly
lower in CAD patients compared with patients without
CAD (p < 0 05). However, patients with CAD tended to
show a longer duration of type 2 diabetes and a smaller
BMI compared to patients without CAD (p < 0 10). The
use of oral agents was similar in both groups (six patients
with CAD versus 11 patients without CAD), and patients
in both groups were more often treated with insulin (20
patients with CAD versus 20 patients without CAD). In
the group of CAD patients, lipid-lowering agents and
antihypertensives were more often prescribed compared to
non-CAD patients.

3.2. Differences in Metabolite Profiles Revealed by Partial
Least Squares Discriminant Analysis. Partial least squares
discriminant analysis (PLS-DA) showed a separation of the
subjects in two groups (Figure 1): patients with CAD had
lower metabolite levels compared to patients without CAD.
Considering the sex of the patients, males and females did
not show distinct differences in both cases and controls.
Moreover, with regard to medication intake, a weak separa-
tion could also be observed. In both CAD cases and controls,
the metabolite concentrations were lower and accordingly
higher in patients treated with insulin compared to patients
receiving oral antidiabetic medication.

3.3. Identification of Significantly Associated Metabolites with
CAD. To further investigate the independent association of
metabolites and CAD, multivariate logistic regression analy-
sis was performed for each of the 131 metabolites with
adjustment for CAD risk factors, including age, sex,
BMI, HbA1c, diabetes duration, TG, LDL :HDL ratio, lipid-
lowering agents, SBP, DBP, antihypertensives, albumin, and
eGFR. We found 16 metabolites from three different classes
of metabolites (1 AA, 11 PCs, and 4 SMs) which significantly
differed between subjects with and without CAD (p < 0 05) in
the crude logistic regression model, for example, PC aa C36:1
(38.95± 9.40μM versus 50.84± 12.23μM, p = 0 020) and ser-
ine (99.92± 20.37μM versus 86.05± 18.89μM, p = 0 045)
(see Table S1 in Supplementary Material available online
at https://doi.org/10.1155/2017/7938216). For all metabo-
lites, patients with CAD had lower levels compared to those
without CAD (Table S1). In the full model, nine metabolites
were found significantly associated with CAD (Table S2).
Model fit information on coefficients, SEs, and p values
for the final full model for the 9 significantly related
metabolites is provided in Table S3. In addition, we subse-
quently employed two additional statistical methods, the
nonparametric random forest and the parametric stepwise
selection, to identify the most significant biomarker candi-
dates. The metabolite selection revealed four metabolites
(C0, serine, PC aa C36:1, and PC aa C38:3) showing the
most significant (p < 0 05) association with CAD (Table 2).
For the four selected metabolites, boxplots were drawn to
graphically demonstrate the differences in the metabolite
concentrations between CAD cases and controls (Figure 2).

3.4. Assessment of Model Fit and ROC Curves. In order
to assess the performance of the chosen model to the
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Figure 1: CADpatients separated fromnon-CAD subjects. PLS-DA
(partial least squares discriminant analysis) results are shown.
Subjects with CAD are depicted in yellow and subjects without
CAD in blue; medication intake is displayed as insulin therapy
(circle) or oral antidiabetic agent intake (triangle); sex differences
are highlighted in the size of the symbols: females (larger) and
males (smaller).
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data, a ROC curve was calculated (Figure 3). For this, two
different models were compared: (1) a model including the
clinical covariates only and (2) a model with the com-
bination of the four selected metabolites and the clinical
variables. The model with the clinical variables showed a

moderate discriminative capability (AUC=0.72). Both the
true and false positive rate improved when adding the
four metabolites to the clinical model (AUC=0.88), con-
firming the good performance of the chosen model to
the data (p = 0 020).

Table 2: ORs for the selected metabolites using logistic regression analysis in 57 T2D patients. Independent variables used in multiple logistic
regression analysis: sex, age, BMI, HbA1c, diabetes duration, SBP, DBP, antihypertensive, triacylglycerols, LDL :HDL ratio, lipid-lowering
agents, albumin, and eGFR. ORs are presented as change in concentrations per one SD.

Metabolite
CAD

Mean± SD
Non-CAD
Mean± SD OR (95% CI) p value

C0 52.17± 15.94 42.46± 11.72 6.97 [1.70; 61.93] 0.026

Serine 86.05± 18.89 99.92± 20.37 0.15 [0.01; 0.70] 0.045

PC aa C36:1 38.95± 9.40 50.84± 12.23 0.16 [0.02; 0.60] 0.020

PC aa C38:3 48.11± 13.40 64.26± 16.64 0.21 [0.04; 0.81] 0.045
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Figure 2: Boxplots of the four identified CAD-specific metabolites. The continuous horizontal line is the median. The lower boundary of the
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4. Discussion

We examined the metabolic profiles of type 2 diabetic
patients either having a history of CAD or not. Although
the number of 57 subjects was rather small, we could demon-
strate that serummetabolic profiles were independently asso-
ciated with CAD after adjustment for multiple clinical
covariates. Würtz et al. published results of an NMRmetabo-
lomics approach on three population-based cohorts (The
National FINRISK Study, Southall and Brent Revisited
(SABRE) Study, and British Women’s Heart and Health
Study) revealing elevated concentrations of phenylalanine
and monounsaturated fatty acids and lower concentrations
of omega-6 fatty acids and docosahexaenoic acids as being
associated with a higher future risk of a cardiovascular
event [10]. Our approach was not by NMR but by flow injec-
tion analysis mass spectrometry; thus, we identified rather
small components in contrast to metabolic intermediates.
Recently, Sutter et al. analysed the lipidome of CAD patients
in comparison to acute MI patients and healthy controls and
identified a series of glycerophospholipids and sphingolipids
as being lower in the CAD and MI group compared to
healthy controls. Furthermore, they were able to prove that,
within a group, statin therapy does not influence the level
of the glycerophospholipid and sphingolipid profile [30].
Nevertheless, we included HDL : LDL ratio and presence of
lipid-lowering substances of any kind to our regression
model. By using plasma lipidomics, Meikle et al. found

reduced plasmalogen levels in patients with stable and unsta-
ble CAD including a 30% of diabetics patients in the CAD
groups, confirming the concept of these metabolites being
involved in the clinical setting of CAD [40].

We found nine metabolites being significantly different
in type 2 diabetic patients with CAD compared to those with-
out CAD after adjustment for multiple clinical covariates,
comprising free carnitine, seven PCs, and serine. Subsequent
metabolite selection using random forest and stepwise selec-
tion analysis revealed four metabolites (C0, serine, PC aa
C36:1, and PC aa C38:3) being the most significantly differ-
ent between cases and controls. Optimal composition and
content of both classes of phospholipids, including PCs,
phosphatidylethanolamines (PEs), lysoPCs, and PE-based
plasmalogens, are of tremendous importance for maintaining
cellular integrity and optimal membrane function [25]. They
act in the activation of enzymes, and they are involved in
biological signal transduction across the membrane [41].
To this regard, metabolic products of those phospholipids
may serve as second messenger in the regulation of cellular
function [26]. In addition, phospholipids are highly relevant
in key processes such as cell survival, inflammation, and oxy-
gen stress, which are key drivers of vascular diseases [42, 43].
Variations in the content and composition of phospholipids
in the membrane are proposed to be associated with cardiac
disorders and heart failure as they are related to membrane
damage [44]. Phospholipids are metabolised in the heart,
and their metabolisation is higher in T2D. Thus, CAD even
lowers the free PC content.

There is evidence that changes in circulating phospho-
lipid levels might be associated with the pathology of T2D,
dyslipidaemia, and cardiovascular disease [30, 45, 46]. For
this reason, changes in serum phospholipid levels may be
linked to cardiac dysfunction resembling alterations in their
biosynthesis and degradation due to membrane defects.

4.1. Phosphatidylcholines. Phosphatidylcholines are the deter-
minant phospholipids in the mammalian heart. They are
synthetised via the cytidine diphosphate (CDP) pathway
which requires choline and consists of three enzymatic
steps [47]. The phosphatidylcholine biosynthesis is regulated
by the uptake of choline, energy status of the target tissue,
and the modulation of rate-limiting enzymes [48]. Our study
showed that several phosphatidylcholines were lower in type
2 diabetic subjects with CAD. These findings suggest that the
myocardial membrane was damaged resulting in alterations
in phospholipid content and composition. To compensate
this defect, phosphatidylcholines are uptaken from circula-
tion in an increased way and serum phosphatidylcholine
levels get lower. This is in accordance with the results of
Lin and colleagues who reported lower circulation levels of
PC 16:0 and PC 18:2 in patients with silent myocardial
ischaemia as a consequence of coronary heart disease closely
linked to CAD. They justified the lower phosphatidylcholine
levels as a result of insufficient supply of ATP and CTP
which is coherent with the reduced production of energy
in T2D. Furthermore, they observed changes in the mem-
brane, concluding that these alterations originated from
ischaemia which caused changes in myocardial enzymes
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Figure 3: Comparison of sensitivity and specificity with and
without the four metabolites. ROC curves and measures of model
fit (AUC) are presented for (1) model with clinical parameters (sex,
age, BMI, HbA1c, diabetes duration, SBP, DBP, antihypertensives,
TG, LDL :HDL ratio, lipid-lowering agents, albumin, and eGFR;
dashed line) and (2) model combining the four selected metabolites
and the clinical model (solid line).
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leading to cell membrane damage [28]. Bodi et al. also
reported a decrease in fatty acids after ischaemia and a trend
towards a downregulated extraction of fatty acids immedi-
ately after ischaemia [49]. Low levels of PC plasmalogens
have been shown to be associated with oxidative stress,
which is common in diabetes and pronounced in diabetes
plus CAD [50]. Moreover, significant reductions in choline-
containing compounds suggesting a kind of “ischaemic
memory” were detected [49]. This might explain the lower
levels of phosphatidylcholines in our CAD group.

4.1.1. Serine. Although being a nonessential amino acid,
serine is of importance in various biosynthesis pathways like
glycine, cysteine, and tryptophan generation, as well as
phosphoglyceride-synthesis. Serine is essential in the delivery
of C1 fragments in the tetrahydrofolate metabolism. Serine is
involved in purine and pyrimidine metabolism as well as in
immune reactivity in terms of production of immunoglobu-
lins and antibody synthesis. Besides these functions, serine
and threonine are hot spots for O-linked β-N-acetylglucosa-
mination [51]. Endo et al. were able to show that increased
oxidative stress is associated with increased levels of serine
in a mouse model being tolerant to increased oxidative
stress by manipulating aldehyde dehydrogenase 2 function.
Increased serine concentrations are thus in close relation
to protect from increased oxidative stress, which in turn is
enhanced by high glucose concentrations [52]. Whether the
decreased serine concentrations detected in our CAD cohort
are in relationship to a decreased reserve of antioxidative
capacity or decreased phospholipid synthesis needs to be
evaluated in future studies.

4.2. Strengths and Limitations. The limitation of the present
study is limited sample size; thus it is not possible to ade-
quately confirm and retrospectively explore subgroups; the
study is set up as an explorative approach to identify
metabolites being associated with CAD in diabetes.
Further investigation in larger samples or cohorts—even
prospectively—will provide the detection of more subtle
metabolic changes and sufficient precision in the estimates
of the utility of each marker to allow for appropriate relative
weighting of each component. Furthermore, we did not
include patients with acute coronary syndrome. Because of
the long recovering period our patients experienced, changes
in other metabolite profiles, such as in levels of acylcarnitines
or branched chain amino acids as recently associated with
CAD by Shah and colleagues, could be neutralised [9].

The strengths of our study are as follows: (1) we have
taken great care to evaluate clinical CAD confounders by
using a robust clinical model with adjustment for lipids,
medication, and kidney function amongst others. (2) We
used a high-throughput molecular technology, allowing the
detection of various different metabolites. Despite that, the
quantification of the serum concentrations of these metabo-
lites needs specialised centres and many laboratories might
not have these capabilities [24]. Apart from that, the
metabolite profiles show an interindividual and biological
variability by race and other demographics [11], for example.
Although investigations of determinants of this variability

are ongoing, multiple measurements over time may be
needed to improve the accuracy of the exact measure of
the metabolite concentrations. In addition, sampling specific
tissues would be an advantage as they serve as proximal
sources of metabolites, enables the localisation of metabolic
changes, and may help to gauge the sensitivity and specificity
of the signature of metabolic profiles in serum. However, this
would be difficult to conduct as this is an invasive procedure.

5. Concluding Remarks

In summary, our findings provided evidence that serum
phospholipid levels as well as serine levels independently
changed in the presence of CAD. Oxidative stress, which is
increased in T2D, leads to profound changes in the content
and composition of biological membranes and accelerated
phospholipid degradation, resulting in lower metabolite
levels of PCs and serine. These findings may help to better
understand underlying mechanisms of disease, improve
stratification of patients at high risk, and optimise screening
and diagnosis for the disease and complications. However,
this work has to be considered as a pilot for future studies.
Accordingly, the performance of more and larger scale
metabolomics studies in a prospective setting will help to
confirm our findings and to identify new biomarkers for
cardiovascular disease.
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