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One molecular- based approach that increases potency and reduces dose- limited sequela 
is the implementation of selective ‘targeted’ delivery strategies for conventional small 
molecular weight chemotherapeutic agents. Descriptions of the molecular design and 
organic chemistry reactions that are applicable for synthesis of covalent gemcitabine- 
monophosphate immunochemotherapeutics have to date not been reported. The  covalent 
immunopharmaceutical, gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] was synthe-
sized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbo-
diimide phosphate ester intermediate which was  subsequently reacted with imidazole to 
create amine- reactive gemcitabine- (5′-phosphorylimidazolide) intermediate. 
Monoclonal anti- IGF- 1R immunoglobulin was combined with gemcitabine- 
(5′- phosphorylimidazolide) resulting in the synthetic formation of gemcitabine- 
 (5′-phosphoramidate)- [anti- IGF- 1R]. The gemcitabine molar incorporation index for 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- R1] was 2.67:1. Cytotoxicity Analysis – 
dramatic increases in antineoplastic cytotoxicity were observed at and between the 
gemcitabine- equivalent concentrations of 10−9 M and 10−7 M where lethal cancer cell 
death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), 
respectively. Advantages of the organic chemistry reactions in the multistage synthesis 
scheme for gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] include their capacity to 
achieve high chemotherapeutic molar incorporation ratios; option of producing an 
amine- reactive chemotherapeutic intermediate that can be preserved for future synthesis 
applications; and non- dedicated organic chemistry reaction scheme that allows substitu-
tions of either or both therapeutic  moieties, and molecular delivery platforms.
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Many conventional chemotherapeutics are capable of effec-
tively resolving B- CLL, but dose- limiting sequelae often 
compromise attaining this treatment objective. In field of 
clinical oncology, gemcitabine is primarily administered for 

the therapeutic management of various carcinomas includ-
ing non- small cell pulmonary carcinoma,[1–3] pancreatic 
carcinoma,[4–6] renal carcinoma,[7] urinary bladder carci-
noma,[8,9] breast cancer,[10–12] prostatic carcinoma,[13] and 
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ovarian carcinoma,[14,15] while preliminary investigations in-
dicated it may also be beneficial for the therapeutic manage-
ment of esophageal cancer and leukemia/lymphoma.[16–18] 
Gemcitabine in dual combination with fludarabine exerts 
synergistic antineoplastic properties.[18] The plasma half- 
life for gemcitabine is brief, which is in part due to it being 
rapidly deaminated resulting in the rapid excretion of the 
inactive metabolite into the urine.[19–21] Adverse haemato-
logical effects are some of the most common sequelae as-
sociated with gemcitabine administration with neutropenia 
having the highest case frequency (≤90%). Functioning as 
an antimetabolite class chemotherapeutic, gemcitabine (dFdc 
- or-  2,2- difluoro- 2- deoxycytidine; 2,2- difluorodeoxyribofura
nosylcytosine; dFdC) is a deoxycytidine analog that is trans-
formed into a triphosphorylated nucleotide ‘decoy’ that in 
turn replaces or substitutes for cytidine during DNA replica-
tion. A second mechanism of action responsible for the bio-
logical effect of gemcitabine is an inhibition and inactivation 
of ribonucleotide reductase biochemical activity resulting in 
an inability to synthesize deoxyribonucleotides necessary for 
DNA replication and repair. The ultimate biological effect of 
gemcitabine interference with DNA replication is the initia-
tion of apoptosis.

Objectives directed toward developing alternatives to 
conventional small- molecular- weight chemotherapeutics 
have motivated the identification of trophic receptors and 
cell- differentiating antigens that are overexpressed on the 
exterior surface membrane by neoplastic cell populations 
that regulate their vitality and growth rate. Surface mem-
brane CD19,[22] CD20,[23,24] CD30,[22] CD52,[25–27] and 
IGF- 1R[28] are a few of the antigenic sites that are uniquely 
or highly overexpressed in conditions of leukemia and 
lymphoma such as B- cell chronic lymphocytic leukemia 
(B- CLL). Similarly, many adenocarcinoma and carcinoma 
affecting the breast, prostate, intestine, ovary, or kidney over-
express the endogenous trophic receptors, EGFR, HER2/neu, 
IGF- 1R, and VEGFR on their exterior surface membranes. 
Monoclonal IgG binding at these sites can serve as a molec-
ular strategy for suppressing the biological integrity and 
function of neoplastic cell populations.[29] Most notable 
in this regard is neoplastic cell viability,[30,31] proliferation 
rate,[31,32] local invasiveness,[33] metastatic potential,[34,35] 
and chemotherapeutic resistance (e.g., P- glycoprotein 
co- expression).[33,36,37]

Endogenous trophic receptors or cell- differentiating anti-
gens that are uniquely or highly overexpressed on the exte-
rior surface membrane of neoplastic populations can also 
be utilized to facilitate the selective ‘targeted’ delivery of 
chemotherapeutic moieties. Synthesis of covalent gemcit-
abine immunochemotherapeutic provides the advantage of 
being able to facilitate and induce increased levels of che-
motherapeutic moiety deposition within the cytosol envi-
ronment of neoplastic cells. Such a process is facilitated by 

selective ‘targeted’ delivery[38] where a gemcitabine moi-
ety of the covalent immunochemotherapeutic becomes an 
apparently a poor substrate for MDR- 1 (multidrug resistance 
efflux pump)[39] and presumably for the rapidly deaminat-
ing enzymes, cytidine deaminase, or, after phosphorylation, 
deoxycytidylate deaminase. In contrast to covalent anthracy-
cline immunochemotherapeutics, a very limited number of 
published research investigations have described the molecu-
lar design, synthesis, and antineoplastic cytotoxic activity of 
covalent gemcitabine- ligand preparations and an even fewer 
number of reports have described production and evaluation 
of gemcitabine immunochemotherapeutics.

Covalent immunochemotherapeutics that possess proper-
ties of selective ‘targeted’ delivery have traditionally been 
synthesized utilizing the anthracyclines[38,40–64] where doxo-
rubicin[65–69] has been most commonly been utilized in this 
capacity while daunorubicin[70–72] and epirubicin[38,64,73,74] 
have also be employed but less frequently. Organic chemis-
try reactions for covalently bonding gemcitabine chemother-
apeutic to a biologically relevant peptide sequences or large 
molecular weight proteins have rarely been described.[75–77] 
Covalent biopharmaceuticals that possess properties of 
selective ‘targeted’ delivery most commonly utilize mono-
clonal IgG or fragments of IgG (e.g., F(ab’)2 or Fab’), and 
less frequently receptor ligands, peptide fragments of recep-
tor ligands, or synthetic ligands that recognize and physi-
cally bind to receptor complexes or unique antigenic sites 
expressed on the exterior surface membrane of cell popu-
lations.[38,64,67,68,75,78] Despite rather extensive familiarity 
with the biological effect of anti- HER2/neu and anti- EGFR 
on the vitality of cancer cell populations and its application 
in clinical oncology, there has correspondingly been sur-
prisingly little research devoted to the molecular design, 
organic chemistry synthesis, and potency evaluation of 
covalent gemcitabine immunochemotherapeutics.[75–77] 
Given this perspective, the molecular design and a series 
of organic chemistry reactions are described that can be 
implemented in a multistage regimen for synthesizing a 
covalent gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] 
immunochemotherapeutic. The optimized organic chemis-
try reaction regimens are more expedient (rapid) and con-
venient, which accounts for their high degree of flexibility 
that affords their application for the synthetic production of 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] and other 
analogous covalent immunochemotherapeutic agents. The 
organic chemistry reaction regimens as described from a 
methodology perspective are similar to those illustrated in 
previous research investigations that for the first time delin-
eated two different and separate organic chemistry reaction 
regimens for the synthesis of covalent gemcitabine immu-
nochemotherapeutics.[75,76] The organic chemistry reaction 
scheme utilized to synthesize covalent gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] immunochemotherapeutic 
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was founded on organic chemistry reaction regimens initially 
employed in synthesis regimens for the synthetic production 
of fludarabine- (5′-phosphoramidate)- [anti- IGF- 1R][79] and 
dexamethasone- (C21-phosphoramide)- [anti- EGFR]. The 
selection of anti- IGF- 1R immunoglobulin for the synthesis 
of gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] was 
based on the known overexpression of both IGF- 1R and 
EGFR by the human pulmonary adenocarcinoma (A549) 
and the dual sensitivity of this particular neoplastic cell type 
to both corticosteroids like dexamethasone and cortisol, 
in addition to many conventional small- molecular- weight 
chemotherapeutics.

1 |  MATERIALS AND METHODS

1.1 | Covalent gemcitabine 
immunochemotherapeutic synthesis
Stage- I: synthesis format for amine- reactive 
chemotherapeutic intermediates: Gemcitabine- 5′- 
methyl- dihydrogen monophosphate was formulated at a 
concentration of 3.85  ×  10−2  m in modified PBS buffer 
(phosphate 5.0  mm, NaCl 75  mm, EDTA 5.0  mm, pH 7.4) 
and reacted with 1- ethyl- 3- [3- dimethylaminopropyl]
carbodiimide at a 5:1 molar ratio. The Stage- I and Stage- II 
reaction mixture was then allowed to gently stir at 25 °C for 
10 to 15 min.

Stages- II and III: synthesis format for covalent 
gemcitabine immunochemotherapeutics utilizing 
an amine- reactive chemotherapeutic intermediate: 
Monoclonal IgG fractions of anti- IGF- 1R (3.0  mg, 
2.0  ×  10−5  mmol: R&D Systems Inc., Minneapolis, MN, 
USA) devoid of molecular stabilizing agents and formulated 
in imidazole buffer (100  mm, pH 6.0) was combined at a 
1:50 molar ratio with the amine- reactive gemcitabine- 
(5′-phosphorylimidazolide) intermediate generated as the  
end product from the Stage- I synthesis reaction scheme. 
The Stage- II reaction mixture was then gently stirred 
continuously for 2 h at 25 °C to maximize the synthesis yield 
of the Stage- III covalent gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] immunochemotherapeutic end product. 
Residual unreacted gemcitabine- (5′-methyl-dihydrogen-
monophosphate) was removed from the covalent 
gemcitabine-  (5 ′-phosphoramidate)-  [ant i-  IGF- 1R] 
immunochemotherapeutic by serial microfiltration 
(MWCO  =  10- kDa) and buffer exchange utilizing 
conventional PBS (phosphate 100  m, NaCl 150  m, pH 
7.4). Note: The murine monoclonal anti- human IGF- I R 
detects less than 0.15% cross- reactivity or interference 
from recombinant human (rh) IGF- I, rhIGF- II, rhIL- 3 R α, 
rhIL- 9 R, and rhTGF- β RII. Binding avidity for anti- IGF- 
1R is approximately Ka = 6.6 to 10 × 105/mol.

1.2 | Molecular analysis and 
characterization of properties

1.2.1 | Relative non- covalently bound 
gemcitabine content
Detection of the relative amount of residual non- covalently 
bound gemcitabine contained in the covalent gemcitabine- 
(5′-phosphoramidate)-[anti- IGF- 1R] immunochemothera-
peutic Stage- III reaction end product was determined by 
analytical format high- performance thin- layer chromatog-
raphy (HP- TLC silica gel, 250 μm thickness, UV 254 nm 
indicator). Protein binding of gemcitabine to albumin in 
plasma is negligible (<5%) and substantially lower for puri-
fied immunoglobulin, which is complemented by the highly 
efficient elution and extraction of gemcitabine with a wide 
range of acidified mixed organic and aqueous liquid- phase 
systems.[80–85] Sensitivity of detecting residual unreacted 
gemcitabine by analytical HP- TLC following exhaustive 
removal by serial microfiltration was enhanced by evalu-
ating highly concentrated formulations of the Stage- III 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] end 
product and the application of standardized gemcitabine 
reference controls formulated at matched reference control 
concentrations. Individual silica gel HP- TLC plates were 
subsequently developed utilizing a mobile- phase solvent sys-
tem composed of propanol/ethanol/ddH20 (17:5:5 v/v ratio). 
Detection of residual unreacted gemcitabine in gemcitabine- 
(5′-phosphoramidate)- [anti- IGF- 1R] and standardized gem-
citabine reference controls following analytical HP- TLC 
development was subsequently determined by direct UV 
illumination. The total gemcitabine concentration within syn-
thesized gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] 
formulations following exhaustive serial microfiltration was 
equal to or greater than 10−4 m, which is well within the 
range of detection for gemcitabine[86] and analogous chemo-
therapeutic agents[87,88] by analytical scale HP- TLC analy-
sis. Complementary methods involve combining the covalent 
immunochemotherapeutic 1:5 v/v with cold methanol or 
cold chloroform:isopropanol (2:1 v/v) and measurement of 
free non- covalently bound chemotherapeutic in the resulting 
supernatant.

1.2.2 | Measurement of covalently bound 
gemcitabine
Total individual absorbance levels for gemcitabine-5’methyl- 
dihydrogen-monophosphate, immunoglobulin, and immu-
noglobulin in combination with gemcitabine-5’-methyl-
dihydrogen- monophosphate standardized reference 
controls in addition to gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] were measured at 235 nm. Concentrations of 
the immunoglobulin component contained within the Stage- III 
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gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] end prod-
uct and IgG standardized reference controls were measured 
at 660 nm utilizing a metal- dye complex reagent (660- nm 
Protein Assay, Pierce Thermo Scientific). Concentration of the 
IgG component within the Stage- III end product determined 
by measurements at 660 nm was then utilized to calculate the 
corresponding absorbance measured at 235 nm. Differences 
between the absorbance for gemcitabine- (5′-phosphoramide)- 
[anti- IGF- 1R] measured at 235 nm and the calculated 235- nm 
absorbance for the immunoglobulin content of gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] were then utilized to deter-
mine the total gemcitabine- equivalent concentration within the 
Stage- III covalent gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] immunochemotherapeutic end product.

1.2.3 | Mass- separation analysis for 
detection of polymerization and fragmentation
Covalent  gemcitabine-(5′-phosphoramidate)-[anti-IGF-1R] 
immunochemotherapeutic in addition to reference con-
trol anti- IGF- 1R immunoglobulin fractions formulated at a 
standardized protein concentration of 60 μg/mL was com-
bined 50/50 v/v with conventional SDS- PAGE sample prepa-
ration buffer (Tris/glycerol/bromophenol blue/SDS) without 
2- mercaptoethanol or boiling. Covalent gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] immunochemotherapeu-
tic, reference control IgG (0.9 μg/well), and a mixture of 
prestained molecular weight marker reference controls were 
then individually developed by non- reducing SDS- PAGE 
(11% acrylamide) performed at constant power of 100 V 2.5 
h at 3 °C.

1.2.4 | Detection analyses for 
polymerization and fragmentation
Covalent gemcitabine- (5′-phosphoramidate)-  [anti- IGF- 1R] 
immunochemotherapeutic following mass/size- dependent 
separation by non- reducing SDS- PAGE was equilibrated 
in tank buffer devoid of methanol. Mass/size- separated 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] immuno-
chemotherapeutic contained within acrylamide SDS- PAGE 
gels was then transferred laterally onto sheets of nitrocellu-
lose membrane at 20 volts (constant voltage) for 16 h at 2° to 
3 °C with the transfer manifold packed in crushed ice.

Covalent gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] immunochemotherapeutic laterally transferred 
onto nitrocellulose membrane was then equilibrated in Tris- 
buffered saline (TBS: Tris- HCl 0.1 m, NaCl 150 mm, pH 7.5, 
40 mL) at 4 °C for 15 min followed by an incubation period 
at 2° to 3 °C for 16 h in TBS blocking buffer (Tris 0.1 m, pH 
7.4, 40 mL) containing bovine serum albumin (5%) applied 
in combination with gentle horizontal agitation. Prior to fur-
ther processing, nitrocellulose membranes were vigorously 

rinsed in Tris- buffered saline (Tris 0.1 m, pH 7.4, 40 mL, 
n = 3).

Rinsed BSA- blocked nitrocellulose membranes devel-
oped for ligand-blot detection analyses were incubated with 
HRPO- Protein G conjugate (0.25 μg/mL) at 4 °C for 18 h 
on a horizontal orbital shaker. Nitrocellulose membranes 
following vigorously rinsing in TBS (pH 7.4, 4 °C, 50 mL, 
n = 3) were incubated in blocking buffer (Tris 0.1 m, pH 7.4, 
with BSA 5%, 40 mL). Blocking buffer was decanted from 
nitrocellulose membrane blots, which were again vigorously 
rinsed in TBS (pH 7.4, 4 °C, 50 mL, n = 3) before incubation 
with HRPO chemiluminescent substrate (25 °C; 5–10 min). 
Under dark conditions, chemiluminescent autoradiography 
images were acquired by exposing radiographic film (Kodak 
BioMax XAR, Eastman Kodak, Rochester, NY, USA) to 
nitrocellulose membranes sealed within transparent ultra-
clear resealable plastic envelopes.

1.3 | Gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] antineoplastic cytotoxic potency

1.3.1 | Multidrug- resistant pulmonary 
adenocarcinoma cell culture
The multidrug- resistant human pulmonary adenocarcinoma/
alveolar basal epithelial cell line (A549 derived in 1972 from 
a 58- year- old Caucasian male) was utilized as an ex vivo 
model for neoplastic disease. Characteristic features and bio-
logical properties of the pulmonary adenocarcinoma (A549) 
cell line include chemotherapeutic resistance and overex-
pression of membrane endogenous trophic receptors or anti-
gens including (i) epidermal growth factor receptor 1 (EGFR, 
ErbB1, HER1: 170–180 kDa); (ii) HER2/neu (EGFR2, 
ERBB2, CD340, HER2, MLN19, Neu, NGL, TKR1); (iii) 
insulin- like growth factor receptor type 1 (IGF- 1R, CD221, 
IGFIR, IGFR, JTK13, 320- kDa); (iv) interleukin- 7 recep-
tor (IL- 7 R); (v) β1- integrin (CD29, ITGB1, FNRB, GPIIA, 
MDF2, MSK12, VLA- BETA, VLAB, 110–130 kDa); and 
(iv) folate receptors (FR, 100- kDa). The EGFR trophic mem-
brane receptor is also overexpressed in non- small cell lung 
cancer (NSCLC) at a frequency of 40% to 80% and most 
commonly in squamous cell and bronchoalveolar carcinoma 
subtypes.[89] Other neoplastic cells that overexpress EGFR 
include Chinese hamster ovary cell (CHO = 1.01 × 105 
EGFR/cell), gliomas (2.7 to 6.8 × 105 EGFR/cell), epider-
moid carcinoma (A431 = 2.7 × 106/cell), and malignant 
glioma (U87MG = 5.0 × 105/cell).

Pulmonary adenocarcinoma (A549) populations were 
propagated until monolayers were ≥85% confluent in 150- 
cc2 tissue culture flasks containing F- 12K growth media 
supplemented with fetal bovine serum (10% v/v) and penicil-
lin–streptomycin at a temperature of 37 °C under a gas atmo-
sphere of carbon dioxide (5% CO2) and air (95%). Trypsin 
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or any other biochemically active enzyme fractions were 
not used to facilitate harvest of pulmonary adenocarcinoma 
(A549) cell suspensions for seeding of tissue culture flasks 
or multiwell tissue culture plates. Growth media were not 
supplemented with growth factors, growth hormones, or any 
other type of growth stimulant.

1.3.2 | Cell- ELISA detection of total external 
membrane- bound IgG-Immunoglobulin
Pulmonary adenocarcinoma (A549) cell suspensions were 
seeded into 96- well microtiter plates in aliquots of 2 × 105 
cells/well and allowed to form a confluent adherent mon-
olayer over a period of 24 to 48 h. The growth media content 
in each individual well was removed manually by pipette, and 
the cellular monolayers were then serially rinsed (n = 3) with 
PBS followed by their stabilization onto the plastic surface 
of 96- well microtiter plates with paraformaldehyde (0.4% in 
PBS, 15 min). Stabilized cellular monolayers were then incu-
bated in triplicate with gradient concentrations of covalent 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] immuno-
chemotherapeutic formulated at immunoglobulin- equivalent 
concentrations of 0.01, 0.1, and 1.0 μg/mL in tissue cul-
ture growth media (200 μL/well). Direct contact incuba-
tion between pulmonary adenocarcinoma (A549) cellular 
monolayers and gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] was performed at 37 °C over a 3- hour incubation 
period under a gas atmosphere of carbon dioxide (5% CO2) 
and air (95%). Following serial rinsing with PBS (n = 3), 
development of stabilized pulmonary adenocarcinoma 
(A549) monolayers entailed incubation with β- galactosidase- 
conjugated goat anti- mouse IgG (1:500 dilution) for 2 h at 
25 °C with residual unbound IgG removed by serial rins-
ing with PBS (n = 3). Final development of the cell- ELISA 
required serial rinsing (n = 3) of stabilized pulmonary adeno-
carcinoma (A549) monolayers with PBS followed by incu-
bation with nitrophenyl β- D- galactopyranoside substrate 
(100 μL/well of ONPG formulated fresh at 0.9 mg/mL in 
PBS pH 7.2 containing MgCl2 10 mm, and 2- mercaptoethanol 
0.1 m). Absorbance within each individual well was meas-
ured at 410 nm (630 nm reference wavelength) after incuba-
tion at 37 °C for a period of 15 min.

1.3.3 | Cell vitality stain- based assay for 
measuring cytotoxic antineoplastic potency
Individual preparations of gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] were formulated in growth media at final 
standardized gemcitabine- equivalent concentrations of 10−9, 
10−8, 10−7, 10−6, and 10−5 m. Each standardized gemcitabine- 
equivalent concentration of the covalent immunochemo-
therapeutics was then transferred in triplicate into 96- well 
microtiter plates containing pulmonary adenocarcinoma 

(A549) monolayers and growth media (200 μL/well). 
Covalent gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] 
immunochemotherapeutic was then incubated in direct con-
tact with pulmonary adenocarcinoma (A549) monolayer pop-
ulations for a period of 192 h at 37 °C under a gas atmosphere 
of carbon dioxide (CO2 5%) and air (95%). Following the 
initial 96- hour incubation period, and then again at 144- hour 
postinitial challenge, pulmonary adenocarcinoma (A549) 
populations were replenished with fresh tissue culture media 
with or without covalent gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] immunochemotherapeutic.

Antineoplastic cytotoxic potency of gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] was measured by removing 
all contents within the 96- well microtiter plates manually by 
pipette followed by serial rinsing of stabilized monolayers 
(n = 3) with PBS followed by incubation with 3- [4,5- dime
thylthiazol- 2- yl]- 2,5- diphenyl tetrazolium bromide vitality 
stain reagent formulated in RPMI- 1640 growth media devoid 
of pH indicator or bovine fetal calf serum (MTT: 5 mg/mL). 
During an incubation period of 3–4 h at 37 °C under a gas 
atmosphere of carbon dioxide (5% CO2) and air (95%), the 
enzyme mitochondrial succinate dehydrogenase was allowed 
to convert the MTT vitality stain reagent to navy- blue for-
mazone crystals within the cytosol of pulmonary adenocar-
cinoma (A549) cell populations (some reports suggest that 
NADH/NADPH- dependent cellular oxidoreductase enzymes 
may also be involved in the biochemical conversion process). 
Contents were then removed from each of the 96 wells in the 
microtiter plate, followed by serial rinsing with PBS (n = 3). 
The resulting blue intracellular formazone crystals were dis-
solved with DMSO (300 μL/well) and then spectrophoto-
metric absorbance of the resulting blue- colored supernatant 
measured at 570 nm using a computer- integrated microtiter 
plate reader.

2 |  RESULTS

2.1 | Covalently bound gemcitabine content
The Stage- I end product in PBS at pH 7.4 following exclu-
sive reaction of 1- ethyl- 3- [3- dimethylaminopropyl]carbo-
diimide (Ib) with gemcitabine monophosphate (Ia) at its 
5′- methyl- dihydrogen monophosphate group is a reactive 
gemcitabine phosphate carbodiimide ester intermediate (II) 
complex (Figure 1).[90a–90e] Addition of the reactive gem-
citabine phosphate carbodiimide ester intermediate to IgG 
formulated in imidazole buffer at pH 6.0 preferentially and 
specifically produces a transient Stage- II amine- reactive 
gemcitabine-5′- phosphorylimidazolide (III) intermediate 
(Figure 1).[90a–90e] The Stage- II amine- reactive gemcitabine-
5′-phosphorylimidazolide intermediate then was reacted in a 
highly preferential manner with the aliphatic ε- monoamine 
of lysine residue side chains within the amino acid sequence 
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of anti- IGF- 1R monoclonal IgG resulting in the synthesis of 
the gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] (IV) 
end product (Figures 1 and 2).[90a–90e] The relatively high 
molar ratio for gemcitabine monophosphate to 1- ethyl- 3- [3
- dimethylaminopropyl]carbodiimide (50:1) was utilized to 
both maximize production of the Phase I and Phase II inter-
mediates and maximally deplete residual 1- ethyl- 3- [3- dimet
hylaminopropyl]carbodiimide remaining within the reaction 
mixture. Preferential reaction with the ε- monoamine of lysine 
amino acid residues is attributed to their significantly greater 
basicity compared to aromatic amines such as those found at 
the C4 position of gemcitabine due to the mesomeric effect 
conferred by aromatic ring structures. The covalent phospho-
ramide bond structure is highly stable at 4 °C or in whole 
plasma or tissue culture media like environments containing 
5% plasma or 5% serum albumin[90f] in contrast to strictly 
aqueous buffer solutions devoid of biological proteins where 
at 37 °C, approximately a 12% total liberation rate occurs 
over a 100- hour period.[91] Compared to previous organic 
chemistry reaction regimens utilized to synthesize cova-
lent immunochemotherapeutics,[38,64,75,76,92] the Stage- I/
Stage- II reaction for gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] required a relatively short duration to mini-
mize hydrolytic decomposition of the amine- reactive 
phosphorylimidazolide intermediate (Figure 1).

Serial microfiltrations (MWCO = 10- kDa) of gemcit-
abine- (5′-phosphoramidate)- [anti- IGF- 1R] consistently yielded 
a Phase III covalent immunochemotherapeutic end prod-
uct that was devoid of any residual ‘free’ non- covalently 

bound gemcitabine detectable by standardized analytical 
HP- TLC (UV 254 nm) analysis of highly concentrated for-
mulations (Figure 3).[38,64,75,76,92] High concentrations of 
monoclonal IgG as a molecular component of the covalent  
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] immu-
nochemotherapeutic effectively quenched UV detection 
of any chemotherapeutic moiety at the application origin. 
Results from these analyses were highly analogous to find-
ings attained in previous investigations for covalent epirubi-
cin[38,64,92] and gemcitabine[75,76] immunochemotherapeutics 
that contained only ≤3–4% of the total chemotherapeutic 
content as non- covalently bound chemotherapeutic which 
cannot be removed by further serial applications of either 
microscale size exclusion column chromatography or micro-
filtration methodologies.[93]

Covalent bonding of gemcitabine to immunoglobulin 
during the synthesis covalent gemcitabine- (5′-phosphor-
amidate)- [anti- IGF- 1R] was validated through the interpre-
tations of HP- TLC analyses and pulmonary adenocarcinoma 
ex vivo tissue culture- based antineoplastic cytotoxicity. In 
the specialty of high- pressure column chromatography and 
HP- TLC analyses, mobile solvent phases are frequently 
used to separate small- molecular- weight pharmaceuticals 
from plasma proteins at extraction efficiencies that routinely 
approach 95% to 98% or higher.[38,64,75,76,92] Analysis of 
covalent gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] 
by HP- TLC analysis performed with matched standardized 
reference controls did not detect the presence of any ‘free’ 
non- IgG bound gemcitabine following exhaustive serial 

F I G U R E  1  Organic chemistry reaction 
format of the multistage synthesis scheme 
for gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R]. Stage- I – Reaction Scheme (Plate 
Row #1): reaction of the gemcitabine- 5′ 
monophosphate group (Ia) with 1- ethyl- 3- 
[3- dimethylaminopropyl]carbodiimide (Ib) 
to transiently form a reactive gemcitabine- 
5′- monophosphate carbodiimide ester 
intermediate complex (II); Stage- II – Reaction 
Scheme (Plate Row #2): rapid and spontaneous 
conversion of the transient Phase I reactive 
intermediate (II) to the Stage- II gemcitabine- 
5′-phosphorylimidazolide amine- reactive 
intermediate (III) in the presence of imidazole. 
Stage- III – Reaction Scheme (Plate Row 
#3): reaction of the Stage- II gemcitabine- 
5′-phosphorylimidazolide amine- reactive 
intermediate (III) with the ε- monoamine 
of lysine residues within the amino acid 
sequence of anti- IGF- 1R monoclonal IgG 
immunoglobulin resulting in the synthesis of 
a covalent gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] immunochemotherapeutic (IV)
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microfiltration.(Figure 3) Samples were measured spectro-
photometrically at 235 nm, and total IgG concentrations 
were specifically measured using a chemical- based assay. 
Based on the application of standardize reference control 
curves for both gemcitabine and IgG and the difference 
between the spectrophotometric absorbance at 235 nm and 
the chemical- based assay for IgG, it was possible to deter-
mine the molar concentration of both gemcitabine and IgG 
contained in purified gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] preparations. The last phase of validation 
was based on the delineation of the antineoplastic cytotoxic 
potency of covalent gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] against pulmonary adenocarcinoma (A549) 
cell populations. Mass spectrometry analysis (LC- MS- MS, 
MALDI TOF) and nuclear magnetic resonance (NMR) 
could potentially have been performed in an attempt to 
detect covalent bonding of gemcitabine to anti- IGF- 1R, but 
the detection of gemcitabine- peptides is difficult to convinc-
ing authenticate. A serious limitation and a source of false 
assumption associated with the application of these forms 
of instrumentation is that they cannot simultaneously estab-
lish purity. Although it might be possible to detect whether 
there might be some gemcitabine covalently bound to IgG 
in a preparation, mass spectrometry is not capable of also 
determining what percent of the total amount of chemother-
apeutic contained in a formulation is not in a ‘free’ non- 
protein bound form. Conversely, HP- TLC analysis can much 
more convincingly and efficiently be applied to simultane-
ously determine both purity and validating covalent bond 
formation between gemcitabine and IgG when applied in 
concert with appropriate standardized reference controls.

2.2 | Molar incorporation index
The calculated gemcitabine molar incorporation index 
for covalent gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] was 2.67:1 utilizing the organic chemistry reac-
tion scheme to form a covalent phosphoramide bond at 
the 5′- methyl- dihydrogen- phosphate group of gemcit-
abine (Figure 1). Microfiltration (MWCO = 10- kDa) 
provided substantially greater yield levels for gemcitabine- 
(5′-phosphoramidate)- [anti- IGF- 1R] than did the removal 
of residual gemcitabine and unreacted chemical reagents by 
microscale size exclusion column chromatography.

2.3 | Mass- separation analysis for 
detection of polymerization and fragmentation
Molecular weight profile analysis of covalent gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] immunochemotherapeutics 
mass separated by SDS- PAGE in combination with ligand-
blot detection analyses and chemiluminescent autoradiogra-
phy recognized a single primary condensed band of 150 kDa 
between a molecular weight range of 5.0 kDa to 450 kDa 
(Figure 4) Profiles consistent with low molecular weight 
fragmentation (proteolytic/hydrolytic degradation) or large 
molecular weight IgG- IgG polymerization were not detected 
(Figure 4). The observed molecular weight of 150 kDa for 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] directly 
corresponds with the known molecular weight/mass of refer-
ence control anti- IGF- 1R monoclonal immunoglobulin frac-
tions (Figure 4). Analogous results have been reported for 
similar covalent immunochemotherapeutics.[38,41,64,75,76,92,94] 

F I G U R E  2  Bond structures generated 
during organic chemistry reactions utilized 
to synthesize different covalent gemcitabine 
immunochemotherapeutics. Legends: (Plate-1) 
gemcitabine- (5′-phosphoramidate)- [IgG] 
utilizing a heterobifunctional phosphate/
amine carbodiimide analog in the presence 
of imidazole; (Plate-2) gemcitabine- (C4- 
methylcarbamate)- [IgG] synthesized utilizing 
a heterobifunctional isocyanate/maleimide 
covalent bond forming reagent following IgG 
immunoglobulin prethiolation;[75] and (Plate-3) 
gemcitabine- (C2-methylhydroxylamide)- [IgG] 
synthesized utilizing a heterobifunctional 
amine- selective/photoactivated non- selective 
covalent bond forming reagent[76]
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A set of rainbow color- coded molecular weight mark-
ers were applied as standard reference controls that were 
developed by SDS- PAGE and laterally transfer onto nitro-
cellulose membrane in concert with covalent gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] immunochemotherapeutic. 
Rainbow color- coded molecular weight markers are not 
detectable by chemiluminescent autoradiography but can be 
detected by direct visual observation.

2.4 | Cell- ELISA total membrane IgG 
binding analysis
Total IgG in the form of gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] bound on the external surface membrane of 
adherent pulmonary adenocarcinoma (A549) monolayer pop-
ulations was detected and measured by cell- ELISA (Figure 5). 
Increases in gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] 
formulated at the standardized immunoglobulin- equivalent 
concentrations of 0.010, 0.10, and 1.00 μg/mL corresponded 
with progressive elevations in the total amount of membrane- 
bound IgG (Figure 5). Collectively results from cell- ELISA 
analyses validated the retained selective binding avidity of 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] for exter-
nal membrane IGF- 1R receptor sites highly overexpressed on 

F I G U R E  3  Evaluation of gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] by analytical HP- TLC for the detection of residual gemcitabine 
not covalently bound to anti- IGF- 1R immunoglobulin. Legends: (Lane-1) 
Stage- II gemcitabine- 5′- phosphorylimidazolide amine- reactive intermediate 
and (Lane-2) Stage- III covalent gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] immunochemotherapeutic following serial microfiltration 
(MWCO = 10- kDa). Standardized gemcitabine- equivalent concentrations 
of gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] and the gemcitabine- 
5′- phosphorylimidazolide amine- reactive intermediate were applied to 
HP- TLC plates (silica gel, 250- μm thickness, UV 254- nm indicator) and 
developed utilizing a propanol/ethanol/H20 (17:5:5 v/v) mobile phase. 
Identification of any residual gemcitabine or unreacted gemcitabine-
5′-phosphorylimidazolide in the Stage- III covalent gemcitabine- 
(5′-phosphoramidate)- [anti- IGF- 1R] immunochemotherapeutic was 
subsequently determined by direct UV illumination. High concentrations of 
monoclonal IgG as a molecular component of covalent of the gemcitabine- 
(5′-phosphoramidate)- [anti- IGF- 1R] immunochemotherapeutic effectively 
quench UV detection of any chemotherapeutic moiety at the application 
origin

1 2
F I G U R E  4  Characterization of the molecular weight profile for the 
covalent immunochemotherapeutic gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] relative to reference control anti- IGF- 1R monoclonal 
immunoglobulin fractions and conventional molecular weight standards. 
Legends: (Lane-1) gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R]. 
The covalent gemcitabine immunochemotherapeutic and monoclonal 
immunoglobulin fractions were size- separated by non- reducing SDS- PAGE 
followed by lateral transfer onto sheets of nitrocellulose membrane to 
facilitate detection with HRPO- Protein G conjugate. Subsequent analysis 
entailed incubation of membranes with a HRPO chemiluminescent 
substrate and the acquisition of autoradiography images. The known 
molecular weight for IgG is 150 kDa

1

Myosin 200-kDa

β-Galactosidase 117-kDa

Bovine Serum Albumin 75-kDa

Carbonic Anhydrase 43-kDa
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the exterior surface membrane of pulmonary adenocarcinoma 
(A549) monolayer populations (Figure 5).

2.5 | Antineoplastic cytotoxic potency
Nearly identical levels of antineoplastic cytotoxic 
potency were detected individually for gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] and gemcitabine against 
pulmonary adenocarcinoma (A549) populations when chal-
lenged with gemcitabine- equivalent concentrations at and 
between 10−9 m to 10−6 m over a 192- hour incubation period 
(Figure 6). Antineoplastic cytotoxicity of gemcitabine- 
(5′-phosphoramidate)- [anti- IGF- 1R] increased rather 
dramatically at and between the standardized gemcitabine- 
equivalent concentrations of 10−9 m, 10−8 m, and 10−7 m, 
which corresponded with lethal cancer cell death percentage 
values of 0.0%, 22.7%, and 93.1% (100%, 77.3%, and 6.9% 
residual survival), respectively (Figure 6). The antineo-
plastic cytotoxicity of gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] against pulmonary adenocarcinoma (A549) 
was at or near maximum levels when formulated at and 
between the standardized gemcitabine- equivalent concen-
trations of 10−7 m, 10−6 m, and 10−5 m, which correlated 
with non- viable percentage values of 93.1%, 92.6%, and 
92.5% (6.9%, 7.4%, and 7.5% residual survival), respec-
tively (Figure 6).

Gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] pro-
duced greater antineoplastic cytotoxicity against popula-
tions of pulmonary adenocarcinoma (A549) than did either 
gemcitabine- (C5--methylcarbamate)- [anti- HER2/neu][75] or 
gemcitabine- (C4- amide)- [anti- HER2/neu] against chemothe-
rapeutic- resistant mammary adenocarcinoma (SKBr- 3) apply-
ing comparable incubation periods (Figure 6).[76]

3 |  DISCUSSION

Several new classes of chemotherapeutic agents have been 
developed that have a high degree of potency, but their 
prominent physiological toxicity prevents or limits there 
systemic administration unless they are covalently bound 
to carrier molecules of a relatively large size and weight. 
Such requirements have motivated the development of sev-
eral covalent immunochemotherapeutics possessing moie-
ties that include (i) colicheamicins that promote DNA strand 
cleavage for CD22(+) lymphoma (ozogamicin- inotuzumab) 
and CD33(+) leukemia (ozogamicin- gemtuzumab, 2010 
withdrawn); (ii) monomethyl auristatin E (MMAE) tubu-
lin inhibitor for GP- NMP(+) melanoma, glioma, and 
breast cancer (MMAE- glembatumumab); or CD30(+) 
Hodgkin’s lymphoma, anaplastic large cell lymphoma 
(MMAE- brentuximab); and (iv) maytansines/maytansinoids 
tubulin inhibitors for HER1/neu(+) adenocarcinomas/car-
cinomas (emtansine- trastuzumab); CD44v6(+) metastatic 
squamous cell carcinoma of the head and neck (mertansine- 
bivatuzumab); CD56(+) ovarian carcinoma, small cell lung 
cancer, and multiple myeloma (mertansine- lorvotuzumab); 
and CanAg(+) colorectal cancer (mertansine- cantuzumab or 
ravtansine- cantuzumab).

In contrast to the anthracycline class of chemotherapeu-
tics,[38,40–63] a comparatively limited body of investigation 
has been devoted to the molecular design and optimization of 
organic chemistry reactions that can be utilized in synthesis 

F I G U R E  5  Detection of total IgG immunoglobulin in the form 
of gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] selectively bound 
to the exterior surface membrane of pulmonary adenocarcinoma. 
Covalent gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] 
immunochemotherapeutic formulated at gradient IgG immunoglobulin- 
equivalent concentrations was incubated in direct contact with 
triplicate monolayer populations of chemotherapeutic- resistant human 
pulmonary adenocarcinoma (A549) over a 4- hour time period. Total IgG 
immunoglobulin bound to the exterior surface membrane was then detected 
and measured by cell- ELISA
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F I G U R E  6  Relative antineoplastic cytotoxic potency of gemcitabine- 
(5′-phosphoramidate)- [anti- IGF- 1R] against chemotherapeutic- 
resistant pulmonary adenocarcinoma. Legends: (▲) gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R]; (●) gemcitabine chemotherapeutic; 
and (■) monoclonal anti- IGF- 1R IgG immunoglobulin formatted at 
matched standardized concentrations. Analyses of gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] and gemcitabine were performed in 
triplicate at gradient standardized (gemcitabine- equivalent) concentrations. 
Gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] and gemcitabine were 
bother separately incubated in direct contact with monolayer populations of 
chemotherapeutic- resistant pulmonary adenocarcinoma (A549) for a period 
of 192 h. Antineoplastic cytotoxic potency was measured using a MTT cell 
vitality assay relative to matched negative reference controls
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regimens for covalently bonding non- anthracycline small- 
molecular- weight chemotherapeutics to biologically relevant 
molecular platforms. Classical small molecular weight che-
motherapeutics that have been synthesized and become avail-
able commercially as covalent immunochemotherapeutics 
include (i) irinotecan metabolite SN38 that inhibits topoisom-
erase- I for CD74(+) multiple myeloma and chronic lympho-
cytic leukemia/CLL (SN38- milatuzumab); or CEA(+) lung, 
breast, and colorectal adenocarcinomas/carcinomas (SN38- 
labetuzumab); or EPG- 1(+) or TROP- 2(+) adenocarcinoma 
and carcinoma classified as triple- negative breast cancer, 
small- cell lung cancer, and colorectal cancer (SN38- hRS7 or 
IMMU132); and (ii) anthracyclines that inhibit topoisomer-
ase- II and nucleotide strand formation while promoting ‘free’ 
oxygen radical formation and chromatin histone eviction with 
efficacy against CD74(+) chronic lymphocytic leukemia and 
multiple myeloma (doxorubicin- milatuzumab).

Gemcitabine has been covalently bound to a relatively 
small array of biologically relevant molecular platforms such 
as peptide sequences and large molecular weight proteins, 
in addition to the pharmaceuticals, benzodiazepine,[95] and 
coumarin.[96] More frequently, gemcitabine has been cova-
lently bound to relatively low molecular weight platforms 
such as linoleic acid,[97] poly(lactic- co- glycolic) acid,[98] 
poly- l- glutamic acid (PGNa),[99] and polyethylene glycol[100] 
phospholipids (e.g., cardiolipin,[101] 1- dodecylthio- 2- decyl
oxypropyl- 3- phosphatidic acid,[102] and CO- 101[4]). A very 
limited number of investigations had previously described 
organic chemistry reaction regimens for covalently bonding 
gemcitabine to IgG,[75,76] or fragments of IgG (e.g., F(ab’)2 
and Fab’) or trophic receptor ligands (e.g., EGF EGFR) 
capable of functioning as large molecular weight platforms 
that afford properties of selective ‘targeted’ chemotherapeu-
tic moiety delivery. Some covalent gemcitabine biophar-
maceuticals have demonstrated significant antineoplastic 
potency against breast cancer in both ex vivo (MCF- 7 cell 
line) and in vivo (MCF- 7 xenographs) neoplastic disease 
models.[97] Gemcitabine can be covalently bound at its cyto-
sine C2- NH2 monoamine[59,95,103–105] to either a biologically 
relevant molecules or reagents in a manner that transiently 
creates a chemically reactive gemcitabine intermediate uti-
lizing organic chemistry reactions that are similar to those 
employed in molecular strategies for synthesizing covalent 
anthracycline immunochemotherapeutics (Figures 1 and 
2).[38,44,46,47,49–54,56,57,61] Gemcitabine has also been cova-
lently bound at its C2- NH2 monoamine group to the carboxyl 
group of a second biologically relevant molecular platform 
using a carbodiimide[98,100] or a combination of ethylchlo-
rocarbonate and triethylamine formulated in an anhydrous 
solvent system (tetrahydrofuran/THF or dimethylformamide/
DMF)[106] resulting in formation of an amide bond struc-
ture.[98,100] A somewhat unique synthesis method entails 
covalent bonding the C2- NH2 monoamine of gemcitabine 

to amine- reactive N-hydroxysuccinimide esters where UV- 
reactive analogs like succinimidyl 4,4- azipentanoate are then 
covalently bonded to a biologically relevant large molecular 
weight platform by exposure to UV light (354 nm: range 
320–370 nm) (Figures 1 and 2).[76] Alternatively, gem-
citabine at the C5- OH hydroxyl position can be covalently 
bound to phosphate groups utilizing benzoic anhydride for-
mulated in ethanol.[102] In this synthesis method, the C5- OH 
is initially protected with tert- butyldimethylsilyl chloride, 
which is then removed using tetrabutylammonium fluo-
ride,[102] while the C3- OH is protected with acetic anhydride 
in pyridine.[102] Gemcitabine at the C5- OH methylhydroxy 
position can also be covalently bound to isocyanate analog 
similar to N- [p- maleimidophenyl]isocyanate resulting in the 
formation of a carbamate group where the maleimide moiety 
subsequently forms a covalently bond at reduced cysteine sul-
phydryls or thiolated lysine amino acid residues found within 
biologically relevant peptide sequences or large molecular 
weight proteins (Figures 1 and 2).[75] Similarly, the central 
CH2- OH hydroxyl group between two phosphate groups can 
be reacted with a succinic anhydride in combination with 
4- dimethylamino- pyridine formulated in 1,2- dichloroethane 
to yield a succinyl- glycerol dimethyl ether.[101] In the pres-
ence of a carbodiimide, the succinyl- glycerol dimethyl ether 
analog reacts with protected gemcitabine [4- N- 3O- bis(tert
- butoxycarbonyl)- gemcitabine] where the shielding group 
is subsequently removed with trifluoroacetic acid (TFA) in 
dichloromethane.[101] Gemcitabine at the C5 CH2- OH meth-
ylhydroxyl can be covalently reacted with a carboxyl group 
utilizing a carbodiimide in combination with dimethylamino-
pyridine formulated in N,N-dimethylformamide.[99]

The multistage organic chemistry reaction scheme imple-
mented to synthesize gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] represents a notable departure from 
those previously described for preparation of covalent 
gemcitabine- ligand preparations.[39,95,99,102,105,107,108] 
Organic chemistry reaction regimens utilizing EDC for 
covalently bonding gemcitabine monophosphate to immu-
noglobulin or other biologically relevant protein have to 
date not been previously described. Initially, the multistage 
organic chemistry reaction scheme results in the generation 
of a transient Stage- I gemcitabine- (5′-phosphoryl) carbo-
diimide ester- reactive intermediate that in the presence of 
imidazole is rapidly transformed into a more stable Stage- II 
gemcitabine- 5′- phophor ylimidazole amine- reactive inter-
mediate (Figure 1). For mulation of gemcitabine- 5′- methyl-
dihydrogen-phosphate at a relatively large molar excess to 
the carbodiimide serves to promote (i) maximal yield of the 
Stage- II amine- reactive gemcitabine intermediate, (ii) max-
imal and rapid carbodiimide reagent depletion within an 
aqueous- based buffer system, and (iii) substantially lower 
ultimate risk of IgG-IgG polymerization. In Stage- III of the 
multistage organic chemistry reaction scheme implemented, 
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the Stage- II gemcitabine- 5′- phophorylimidazole amine- 
reactive intermediate forms a covalent phosphoramide bond 
at the 5′-methyl-dihydrogen-phosphate group of gemcitabine. 
In the presence of anti- IGF- 1R, the covalent bond with the 
ε- monoamine group of lysine residues within the amino acid 
sequence results in the formation of a 5′-phosphoramidate 
bond structure and production of a covalent gemcitabine- 
(5′-phosphoramidate)- [anti- IGF- 1R] immunochemother-
apeutic end product (Figure 1).[109,110] Optimum results 
are attained when amine (R- CH2- NH2

+ of lysine), and less 
frequently carboxyl (R- CH2- CO2

− of glutamate), hydroxyl 
(R- CH2- OH of serine), or sulphydryl (R- CH2- SH of cystine) 
chemical groups associated with amino acid residues within 
the sequence of IgG or trophic ligands are (i) relatively abun-
dant (e.g., protein sulphydryl R- SH groups are frequently not 
abundant) and (ii) physically available (subject to minimal 
steric hindrance phenomenon).

Relative effectiveness of the multistage organic chem-
istry reaction scheme implemented for the synthesis of 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] is in part 
demonstrated by attainment of a 2.67:1 gemcitabine:IgG 
molar incorporation index. Such qualities are further substan-
tiated by comparative experimental results from analogous 
synthesis methods in related investigations where 1- ethyl- 3
- [3- dimethylaminopropyl]carbodiimide in combination with 
imidazole has been used to covalently bond fludarabine,[79] 
dexamethasone- C21- phosphate, and other phosphorylated 
pharmaceutical analogs to monoclonal IgG fractions. The 
gemcitabine:IgG molar incorporation index of 2.67:1 for 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] was com-
paratively greater or equivalent to values obtained in previous 
investigations utilizing other covalent bond forming agents 
for the synthesis of covalent immunochemotherapeutics such 
as (i) gemcitabine- (C5- methylcarbamate)- [anti- HER2/neu] 
(Gem:IgG = 1.1- to1);[75] (ii) gemcitabine- (C4- amide)- 
[anti-  HER2/neu] (Gem:IgG = 2.78–1);[76] (iii) epirubicin- 
(C3- amide)- [anti- HER2/neu] (Epi:IgG = 0.275–1);[38] (iv) 
epirubicin- (C3- amide)- [anti- EGFR] (Epi:IgG = 0.407–
1);[38] and (vi) epirubicin- (C13- imino)- [anti- HER2/neu] 
(Epi:IgG = 0.400–1).[64]

In addition to the option of modifying the classical vari-
ables of temperature and concentration (molar excess) and 
extending the reaction time duration to enhance efficiency 
of chemical reactions, there are several other parameters 
that likely contributed to the gemcitabine:IgG molar incor-
poration index for gemcitabine- (5′-methyldihydrogen-
phosphoramide)- [anti- IGF- 1R] such as the (i) lack of a 
requirement for prethiolation of peptide sequences or large 
molecular weight proteins; (ii) potentially greater chemical 
reactivity of carbodiimide analogs compared to other previ-
ously applied covalent bond forming reagents; (iii) imidazole- 
selective enhancement of carbodiimide reagent phosphate 
reactivity; and (iv) formation of a covalent bond with an 

available phosphate at the 5′- methyl-dihydrogen-phosphate 
position in contrast to a phosphate (Ar- PO4

−), carboxyl 
(Ar- CO2

−), amine (ArNH2
+), or sulphydryl (Ar- SH) chem-

ical group located directly on an aromatic ring structure 
(Figures 1 and 2). The latter quality reduces both the degree 
of steric hindrance phenomenon at the C2 monophosphate 
group of gemcitabine and reduces the influence of the five or 
six electron orbital clouds above the plane of aromatic ring 
structures that often modify the chemical properties of phos-
phate and other functional groups. Complementing the effec-
tiveness of the organic chemistry reactions, the final yield 
of gemcitabine- (5′-phosphoramidate)- [anti- IGF1R] was 
substantially improved by implementing both a multistage 
organic chemistry reaction scheme (in preference to a single- 
phase ‘mixed’ regimen) in concert with serial microfiltrations 
(MWCO 10- kDa) instead of microscale column chromatog-
raphy for separation and purification of the Stage- III covalent 
gemcitabine immunochemotherapeutic end product.

The organic chemistry reactions utilized in the multistage 
synthesis regimen for gemcitabine- (5′-methyldihydrogen-
phosphoramide)- [anti- IGF- 1R] have several distinct advan-
tages and attributes. Most notable in this regard is the (i) 
comparatively rapid individual and collective duration for 
Stage- I, Stage- II, and Stage- III reactions; (ii) relatively 
reaction efficiency; (iii) high yield of covalent gemcitabine 
immunotherapeutic end product (IgG- based determination); 
(iv) option of producing a stable Stage- II gemcitabine- 5′-
phosphorylimidazole amine- reactive inter mediate that can 
withstand short- to- long- term preservation for future utiliza-
tion; (v) flexibility of allowing substitution of other biolog-
ically relevant molecular platforms in place of anti- IGF- 1R; 
(vi) flexibility of non- dedicated organic chemistry reactions 
that allow substituting other chemotherapeutic agents or 
pharmaceuticals in place of gemcitabine; (vii) low to moder-
ately low level of technical difficulty; and (viii) the require-
ment of marginal dependence on access to advanced forms of 
laboratory instrumentation. Biologically relevant molecular 
platforms utilized for the purpose of selectively ‘targeting’ 
the delivery of chemotherapeutic moieties should ideally pos-
sess one or more characteristics that facilitate and promote; 
(i) binding avidity that is restricted to unique or highly over-
expressed ‘sites’ on the exterior surface membrane of a given 
cell type; (ii) binding avidity that blocks or mimics physical 
interactions of endogenous trophic ligands with their corre-
sponding membrane receptors (e.g., suppresses trophic ligand 
binding at cell membrane receptor sites); (iii) binding avid-
ity that inhibits or enhances the biological function of a cell 
membrane- associated receptor sites or biochemically active 
enzyme (e.g., suppresses membrane trophic receptor activity 
or function); and/or (iv) transiently or permanently reduces 
expression density of membrane trophic receptors (e.g., 
induced declines in surface membrane expression through 
mechanisms of IgG- induced receptor- mediated endocytosis, 
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thereby promoting internalization into the cytosol environ-
ment). Other highly desirable attributes of molecular plat-
forms applied to facilitate properties of selective ‘targeted’ 
delivery are (vi) innately large molecular weight/size suffi-
cient enough (e.g. >60- kDa) to prolong plasma pharmacoki-
netic profiles of chemotherapeutic moieties due to delayed or 
prevention of excretion by glomerular filtration (renal plasma 
clearance); and (vii) ability in vivo to stimulate complemen-
tary endogenous host immune responses such as antibody- 
dependent cell cytotoxicity (ADCC), complement- mediated 
cytolysis (CMC), and opsonization/phagocytosis.

The endogenous trophic membrane receptors, EGFR 
(anti- EGFR), HER2/neu (anti- HER2/neu), IGF- 1R (anti- 
IGF1R), and VEGFR (anti- VEGFR), are uniquely or highly 
overexpressed by an array of neoplastic adenocarcinoma and 
carcinoma cell types and can be induced to internalize by 
mechanisms of receptor- mediated endocytosis in response 
to binding of receptor ligands or IgG. Interestingly, some 
haematopoietic neoplasias like chronic lymphocytic leuke-
mia also express IGF- 1R,[28] and this receptor represents 
a site of interest on the external surface membrane for the 
purpose of facilitating selective ‘targeted’ delivery of che-
motherapeutics or other pharmaceutical agents. Similar to 
monoclonal anti- HER2/neu (Herceptin) and anti- EGFR 
(cetuximab) immunoglobulin fractions on neoplastic ade-
nocarcinoma and carcinoma cell types, both anti- CD20 
(rituximab, ofatumumab) and anti- CD52 (alemtuzumab) 
disrupt growth and vitality of leukemia and lymphoma cell 
types. Both anti- CD20 (rituximab, ofatumumab)[24,30] and 
anti- CD52 (alemtuzumab)[25] are effective against B- cell 
chronic lymphocytic leukemia (B- CLL) cell populations. 
Simultaneous anti- CD20 (rituximab) in combination with 
cyclophosphamide–doxorubicin–vincristine–prednisone 
(CHOP) increases survival over CHOP alone in conditions 
of high- grade lymphomas.[111] Unconventional chemothera-
peutic agents that have been incorporated as pharmaceutical 
moieties within covalent immunochemotherapeutics with 
efficacy against hemopoietic cancer cell types include mer-
tansine (maytansinoid analog) in the form of lorvotuzumab- 
mertansine (anti- CD56 for multiple myeloma). Alternatively, 
bivatuzumab- mertansine, cantuzumab- mertansine, and 
trastuzumab- emtansine (T- DM1) are effective against meta-
static head and neck cancer (anti- CD44), colorectal cancer 
(anti- CanAg), and HER2/neu- positive adenocarcinomas/car-
cinomas (anti- HER2/neu), respectively.

The covalent immunochemotherapeutic gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] possesses several distinct 
attributes with regard to chemical composition and molecu-
lar structure. Most prominent in this regard are the following 
characteristics: (i) specific activity greater than 1:1 based on 
a calculated gemcitabine:IgG molar incorporation index of 
2.67:1; (ii) covalent bonding of gemcitabine to anti- IGF- 1R 
through the generation of a 5′-phosphoramidate bond 

structure that at least theoretically provides a relatively high 
level of bioavailability for the gemcitabine moiety within 
the acidic microenvironment of the phagolysosome follow-
ing internalization by mechanisms of selective ‘targeted’ 
IgG- induced receptor- mediated endocytosis; (iii) retained 
biological activity as a function of detectable gemcitabine- 
(5′-phosphoramidate)- [anti- IGF- 1R] binding avidity for 
IGF- 1R complexes that are overexpressed on the external 
surface membrane of pulmonary adenocarcinoma (A549) 
that in turn facilitates selective ‘targeted’ gemcitabine deliv-
ery; and (iv) the absence of any ‘foreign’ chemical group 
being introduced or added into the molecular structure and 
chemical composition of gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] during the course of implementing organic 
chemistry reaction regimens for the synthesis of a 5′-phos-
phoramidate bond structure in a manner that substantially 
decreases the probability of inducing a humoral immune 
response or type I immune hypersensitivity reactions.

Neoplastic cell types known to be relatively sensitive to 
the biological activity of gemcitabine include pancreatic 
carcinoma,[4,112] ovarian carcinoma,[14,15] small- cell lung 
carcinoma,[113] non- small cell lung carcinoma,[2] neuro-
blastoma,[114] and leukemia/lymphoid[102,115] populations. 
Similarly, human promyelocytic leukemia,[18,39,102] T- 4 lym-
phoblastoid clones,[102] glioblastoma,[39,102] cervical epithe-
lioid carcinoma,[102] colon adenocarcinoma,[102] pancreatic 
adenocarcinoma,[4,5,100,102] pulmonary adenocarcinoma,[102] 
oral squamous cell carcinoma,[102] and prostatic carci-
noma[59] have been found to be sensitive to gemcitabine and 
covalent gemcitabine- (oxyether phopholipid) preparations. 
Gemcitabine has also been administered in combination with 
paclitaxel, carboplatin, and cisplatin following anthracy-
cline failure in the treatment of metastatic breast cancer.[11] 
Within the various cell types of breast cancer, mammary car-
cinoma (MCF- 7/WT- 2′)[102] and mammary adenocarcinoma 
(BG- 1)[102] are known to be relatively resistant to the anth-
racyclines,[11] gemcitabine, and gemcitabine- (oxyether pho-
pholipid) chemotherapeutic preparations.

Several variables associated with cancer cell biol-
ogy directly influence the degree of selective ‘targeted’ 
delivery and antineoplastic cytotoxic potency evoked 
by chemotherapeutic moieties in gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] and other analogous 
covalent immunochemotherapeutics.[38,64,75,76,92] Covalent 
bonding gemcitabine to a biologically relevant large molec-
ular weight platform possessing binding avidity for a 
membrane- associated site uniquely or highly overexpressed 
by a neoplastic cell type provides an opportunity for simul-
taneously achieving selective ‘targeted’ chemotherapeu-
tic moiety delivery in addition to establishing a molecular 
mechanism for maximizing therapeutic efficacy and potency. 
Absolute uniqueness of membrane expression determines 
how selectively ‘targeted’ a chemotherapeutic moiety is 
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delivered. In addition, density of membrane expression and 
the rate at which such sites are replenished following inter-
nalization by mechanisms of receptor- mediated endocytosis 
ultimately determines the fraction of total chemotherapeutic 
(dose) that becomes (i) selectively deposited on the exterior 
surface membrane and (ii) concentrated by accumulation 
within the cytosol of ‘targeted’ neoplastic cell populations. 
Such variable therefore ultimately influences the extent of 
antineoplastic cytotoxic potency attained. Trophic membrane 
receptors like EGFR, HER2/neu, IGF- 1R, and VEGFR rep-
resent one class of ‘targets’ that can facilitate selective che-
motherapeutic delivery because frequently they are uniquely 
overexpressed by many neoplastic cell types. Overexpressed 
membrane antigens relevant to treatment of leukemia and 
lymphoma include the cell- differentiating proteins CD19 
and CD20 are similar examples that are not known to pos-
sess binding avidity for any known endogenous tropic ligand, 
despite CD20 being known to also undergo internalization 
by mechanisms of receptor- mediated endocytosis.

In instances when monoclonal IgG, IgG fragments 
(Fab’, F(ab’)2) or receptor ligands (e.g., EGF) are uti-
lized to produce a covalent immunochemotherapeutic like 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] that has 
selective binding avidity for an endogenous membrane tro-
phic receptor known to be internalized by mechanisms of 
receptor- mediated endocytosis,[116–119] such molecular 
delivery platforms substantially increase transmembrane 
active transport of chemotherapeutic moieties. A beneficial 
consequence of this biological phenomenon is the capacity 
to increase intracellular chemotherapeutic concentrations to 
levels 8.5×[118] to >100×[117,119] higher than those attain-
able by simple passive diffusion of conventional small- 
molecular- weight chemotherapeutics from the extracellular 
fluid compartment across intact cell membranes following 
intravenous injection at clinically relevant dosages. Although 
specific data for IGF- 1R receptor- mediated endocytosis are 
somewhat limited for pulmonary adenocarcinoma (A549), 
other neoplastic cell types like Lewis lung carcinoma (H- 
59: highly metastatic subcell linage with a hepatic propen-
sity) and mammary adenocarcinoma (MCF- 7) are known to 
internalize membrane IGF- 1R receptors by mechanisms of 
receptor- mediated endocytosis at a rate of ≅2.1 × 104/cell 
(54%) and ≅4.5 × 104/cell (45%) within a 1- hour IGF incu-
bation period.[120] Related investigations have demonstrated 
that metastatic multiple myeloma is capable of internaliz-
ing approximately 8 × 106 molecules of anti- CD74 mono-
clonal antibody per day.[121] Given this perspective, three 
of the most critically important numerical variables related 
to cancer cell biology that determines the antineoplastic 
cytotoxic potency of covalent immunochemotherapeu-
tics like gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R], 
gemcitabine- (C5- methylcarbamate)- [anti- HER2/neu],[75] 
g e m c i t a b i n e -  ( C 4 -  a m i d e ) -  [ a n t i -  H E R 2 / n e u ] , [ 7 6 ] 

epirubicin- (C3- amide)- [anti- HER2/neu],[38] epirubicin- (C3- 
amide)[anti- EGFR],[38] and epirubicin- (C13- imino)- [anti- 
HER2/neu][64] are the (i) expression density of the external 
membrane- associated endogenous trophic receptor ‘targets’ 
relative to normal healthy tissues and organ systems; (ii) 
rate of internalization by mechanisms of receptor- mediated 
endocytosis; and (iii) rate that receptors on the external sur-
face membrane are replenished following internalization by 
receptor- mediated endocytosis. Furthermore, it is vitally 
important that the external membrane- associated sites chosen 
to facilitate selective ‘targeted’ chemotherapeutic delivery be 
able to functionally undergo phenomenon identical or analo-
gous to receptor- mediated endocytosis to avoid simple ‘coat-
ing’ of the external surface of cancer cell membranes. Such 
a prerequisite is relevant when the chemotherapeutic moi-
ety exerts a mechanism of action that is entirely dependent 
upon their ability to modify biological functions of molec-
ular entities residing within the cytosol or nucleus to exert a 
cytotoxic effect. Such a prerequisite would not be a require-
ment for anticancer agents that instead alter or disrupt the 
physical integrity of cancer cell membranes or the function 
of complexes that are an integral component of membrane 
structures.

Despite the inhibitory characteristics of anti- HER2/neu, 
anti- EGFR, anti- IGF- 1R, and similar monoclonal immuno-
globulin- based modalities on the function of membrane 
trophic receptors, they primarily in vivo suppress only pro-
liferative growth and vitality of cancer cells while being 
almost invariably incapable of evoking cytotoxic activ-
ity sufficient to independently resolve successfully most 
aggressive or advanced forms of neoplastic disease.[122–138] 
Inability of most immunoglobulins that have binding avid-
ity for trophic membrane receptors to exert significant cyto-
toxic efficacy in vivo coincides with detection of increases 
in cell- cycle G1- arrest, cancer cell transformation into states 
of apoptosis resistance,[123] and preferential selection for 
resistant subpopulations.[124,128] In addition, this scenario 
can be further complicated by frequent reversal of tumor 
growth inhibition[124] and relapse trophic receptor overex-
pression[122] upon cessation and withdrawal. Greater levels 
of antineoplastic cytotoxicity are attainable when antitrophic 
receptor IgG is utilized in dual combination with conven-
tional chemotherapeutics or other cancer treatment modal-
ities.[139–141] Development of resistance has also been 
detected for monoclonal IgG with binding avidity for cell 
differentiation proteins such as anti- CD20 (veltuzumab, ofa-
tumumab) and anti- CD52 (alemtuzumab). Mechanisms of 
resistance associated with monoclonal IgG fractions with 
binding avidity for these and other membrane- associated 
cell differentiation antigens are attributed to (i) accelerated 
rates of receptor- mediated endocytosis prior to ADCC/CMC/
opsonization,[142,143] (ii) monocyte/macrophage CD20/CD52 
‘shaving’ or trogocytosis,[144] and (iii) immune evasion as a 
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consequence of immunosuppressive mediators liberated from 
cancer cell populations.[145,146] Interestingly, ofatumumab 
has been approved for B- CLL resistant to alemtuzumab and 
fludarabine.

In an ex vivo tissue culture environment, most types of 
therapeutic monoclonal IgG with binding avidity for over-
expressed trophic membrane receptors evoke very limited or 
a total lack of selective antineoplastic cytotoxicity or even a 
detectable degree of induced inhibition of vitality or viabil-
ity.[38,67,68,71,78,94] Multiple reasons contribute to this obser-
vation, but some of the most prevalent in this regard include 
the (i) relatively low concentration of endogenous trophic 
ligands present in conventional tissue culture media (e.g., 
5% to 10% bovine serum); (ii) relatively brief incubation 
periods employed to access efficacy and potency (e.g., 3 to 
8 days); and (iii) the absence of any influence from activation 
of directed host immune responses. In an in vivo environ-
ment, monoclonal IgG fractions including anti- HER2/neu, 
anti- EGFR, and anti- IGF- 1R with binding avidity for trophic 
membrane receptors produce detectable declines in neoplas-
tic cell proliferation and vitality. However, monoclonal IgG 
bound to antigenic sites on the external surface membrane 
of neoplastic cells can also selectively induce activation of 
‘targeted’ host immune responses that can produce a signifi-
cant cytotoxic effect. Most notable in this regard is antibody- 
dependent cell cytotoxicity (ADCC), complement- mediated 
cytolysis (CMC), and opsonization/phagocytosis which 
serve as the primary mechanism by which anti- CD20 and 
anti- CD52 attain efficacy against leukemia neoplastic disease 
states.

The covalent bonding of gemcitabine or other small- 
molecular- weight chemotherapeutics to biologically rele-
vant molecular platforms that have a relatively large size 
(e.g., IgG MW = 150- kDa, EGF MW = 6.05- kDa) imparts 
several distinct characteristics that serve as beneficial attri-
butes that often are not recognized or appreciated. Besides 
serving as a means for facilitating selective ‘targeted’ deliv-
ery of chemotherapeutic moieties, the immunoglobulin 
component (IgG MW 150- kDa) of covalent immunoche-
motherapeutics has a total combined molecular weight 
that is substantially larger than most conventional small- 
molecular- weight chemotherapeutics (gemcitabine MW 
263.198- Da; fludarabine MW 365.212- Da; dexamethasone 
MW 392.461- Da). Due to this physical property, covalently 
bound moieties in biopharmaceuticals like the immunoche-
motherapeutics, gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R], fludarabine- (5′-phosphoramidate)- [anti- IGF- 1R], 
or dexamethasone- (C21-phosphoramide)- [anti- EGFR] ulti-
mately do not selectively bind to, nor do covalent immu-
nopharmaceuticals (MW 150,000- Da) extensively diffuse 
passively across intact external surface membrane structures 
of normal healthy cell populations residing within tissues 
and organ systems. The asset of selective ‘targeted’ delivery 

associated with covalent immunochemotherapeutics is there-
fore attributed to, and heavily dependent upon both the selec-
tive binding avidity and relatively large molecular weight 
(size) of the IgG component.

A beneficial attribute determined by the relatively large size 
of IgG molecule or other relatively large molecular platform 
is a presumed degree of steric hindrance phenomenon that 
reduces accessibility of covalently bound chemotherapeutic 
or other pharmaceutical moieties to P- glycoprotein[52,147–149] 
while functioning as a non- selective transmembrane efflux 
‘pump’ (MDR- 1: multidrug resistance protein).[39] As 
P- glycoprotein is commonly responsible for mediating che-
motherapeutic resistance among many different neoplastic 
cell types,[147,150–154] selective ‘targeted’ delivery of che-
motherapeutic moieties represents a molecular- based strat-
egy for increasing potency and efficacy. Similar in concept, 
the relatively large molecular weight of IgG is of sufficient 
physical size to effectively delay or prevent renal excretion 
of a chemotherapeutic or other pharmaceutical moieties by 
glomerular filtration (MWCO 60- kDa). Delaying or prevent-
ing renal excretion of a chemotherapeutic/pharmaceutical 
moiety in effect prolongs its plasma pharmacokinetic profiles 
(e.g., IgG = 150- kDa), increases plasma concentrations, and 
reduces acute burdens on biochemical metabolizing path-
ways and excretory processes.

The covalent gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] immunochemotherapeutic was only slightly less 
potent than gemcitabine at the chemotherapeutic- equivalent 
concentration of 10−9 m, and much less potent at 10−8 m 
while both produced maximal antineoplastic cytotoxicity 
that was essentially equivalent to approximately 0% residual 
survival (100% antineoplastic cytotoxicity) of pulmonary 
adenocarcinoma (A549) at and between the concentra-
tions of 10−7 m, 10−6 m, and 10−5 m (Figure 6). Although 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] was more 
potent against pulmonary adenocarcinoma (A549) than either 
gemcitabine- (C2- methylcarbamate)- [anti- HER2/neu],[155] 
or gemcitabine- (C2-methylhydroxylamide)- [anti- EGFR][76] 
against mammary adenocarcinoma, each of these three cova-
lent gemcitabine immunochemotherapeutics at the lower 
range of chemotherapeutic- equivalent concentrations exerted 
lower levels of ex vivo potency than did gemcitabine when 
evaluated utilizing a tissue culture- based neoplastic disease 
model over a relatively brief incubation period. Given these 
observations, it is critically important to acknowledge that 
the major research objectives were to (i) develop a covalent 
immunochemotherapeutic that can serve as a molecular strat-
egy for the selective ‘targeted’ delivery of gemcitabine and 
(ii) validate the applicability of the multistage organic chem-
istry reaction scheme for the synthesis of covalent immu-
nochemotherapeutics or other covalent biopharmaceutical 
agents. Achieving a higher margin of safety through a com-
bination of selective ‘targeted’ delivery and inhibition of the 



   | 393Coyne and narayanan

passive diffusion of gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] across the intact external membranes of normal 
healthy cells in turn allows increasing clinical gemcitabine- 
equivalent dosages to levels that are above those recommended 
for gemcitabine. Comparatively higher levels of antineoplas-
tic potency for gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] likely could have been attained if an alternative 
human cancer cell type or a relatively chemotherapeutic- 
resistant cancer cell line had been selected as an ex vivo can-
cer model. The evaluation of the ex vivo efficacy of the vast 
majority of covalent immunochemotherapeutics reported to 
date have utilized non- chemotherapeutic- resistant popula-
tions of neoplastic cell types both to validate proof of concept 
and determine antineoplastic cytotoxic potency. Exceptions 
are chemotherapeutic- resistant metastatic melanoma M21 
(covalent daunorubicin immunochemotherapeutics synthe-
sized using antichondroitin sulfate proteoglycan 9.2.27 sur-
face marker)[68,71,156]; chemotherapeutic- resistant mammary 
carcinoma MCF- 7AdrR (covalent anthracycline- ligand che-
motherapeutics utilizing epidermal growth factor (EGF) or 
an EDF fragment)[157]; and chemotherapeutic- resistant mam-
mary adenocarcinoma (SKBr- 3) populations (epirubicin- anti- 
HER2/neu and epirubicin- anti- EGFR, gemcitabine- anti- HER
2/neu),[38,64,75,76,92] and chemotherapeutic- resistant pulmo-
nary adenocarcinoma A549 (fludarabine- (C2-methylhydroxy-
phosphoramide)- [anti- IGF- 1R]).[79]

A high degree of probability exists that in vivo, 
gemcitabine-  (5 ′ -phosphoramidate ) -  [ant i -  IGF1R], 
gemcitabine- (C2- methylcarbamate)- [anti- HER2/neu],[155] 
and gemcitabine- (C2-methylhydroxylamide)- [anti- EGFR][76] 
would provide planes of antineoplastic cytotoxic potency 
that would be at least equivalent to, if not surpass that of 
gemcitabine chemotherapeutic due to several contribut-
ing parameters. More specifically, under in vivo condi-
tions, it is anticipated that the antineoplastic cytotoxicity 
of gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] would 
be further complemented by the attributes and advantages 
of (i) enhanced pharmacokinetic profiles; (ii) greater cyto-
sol concentrations within ‘targeted’ cancer cell populations 
over time, all in collective concert with; and (iii) stimula-
tion of the endogenous host immune responses of antibody- 
dependent cell cytotoxicity (ADCC), complement- mediated 
cytolysis (CMC), and opsonization/phagocytosis subsequent 
to formation of membrane IgG–antigen complexes. Given 
this perspective, the covalent immunochemotherapeutic, 
gemcitabine- (5′-phosphoramidate)- [anti- IGF- 1R] represents 
a potential molecular strategy for enhancing potency and 
effectiveness of the gemcitabine chemotherapeutic moiety 
relevant to the naturally low response rates and chemother-
apeutic resistance detected in many neoplastic cell types 
that highly overexpress membrane trophic receptors and 
P- glycoprotein, while at the same time simultaneously pro-
viding a greater margin of safety.

In addition to the potential for gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] to function as an effective 
anticancer agent, its chemical composition and molecular 
configuration in concert with the organic chemistry reactions 
implemented in the development of a multistage synthesis 
regimen can all collectively serve as a prototype reference 
template that can guide future development of other covalent 
immunochemotherapeutics or analogous biopharmaceutical 
agents. Relevant examples in this regard include synthesis 
regimens for decitabine- (5′-phosphoramidate)- [anti- CD19], 
clofarabine- (5′-phosphoramidate)- [anti- CD20], and cytar-
abine-(5′-phosphoramidate)-[anti- CD52], cladribine- (5′-
phosphoramidate)- [anti- CD19], or 5- azacitidine- (5′-phosph
oramidate)- [anti- CD20] which each have a phosphorylated 
chemotherapeutic moieties. Covalent immunochemothera-
peutics of this type would possess properties of selective ‘tar-
geted’ delivery and be capable of exerting efficacy against 
various adenocarcinomas, carcino mas, or certain forms of 
leukemia and lymphoma.[158–160] Importantly, it should be 
noted that in clinical oncology, the basic principles of phar-
macology imply that the property of selective ‘targeted’ che-
motherapeutic delivery is in general a more valuable quality 
than potency when the margin of safety is high because of the 
option for modifying therapeutic dosage.

4 |  CONCLUSION

The molecular strategy of selectively ‘targeting’ the deliv-
ery of pharmaceutical agents including conventional small- 
molecular- weight chemotherapeutics has the potential of 
affording increases in potency while simultaneously mini-
mizing exposure of normal tissues and healthy organ systems. 
Molecular design and the corresponding organic chemistry 
reactions that can be employed to covalently bond gemcit-
abine to a monoclonal IgG or other biologically relevant 
peptide sequence or large molecular weight protein molecule 
have not previously been described in published reports. 
Attributes of the organic chemistry reactions scheme for the 
synthesis of the Stage- III gemcitabine- (5′-phosphoramidate)- 
[anti- IGF- 1R] end product include (i) a relatively brief reac-
tion time for synthesizing the Stage- III end product from the 
Stage- II amine- reactive intermediate; (ii) option of generat-
ing a stable Stage- II gemcitabine amine- reactive intermediate 
if an anhydrous Phase I and II solvent system is applied (e.g., 
DMSO, DMF); (iii) flexibility of utilizing other phosphate 
pharmaceutical analogs; (iv) ability to substitute other bio-
logically relevant protein fractions in place of anti- IGF1R; 
and (v) comparatively low level of dependency on advanced 
forms of instrumentation. Physical and functional attributes of 
the final Stage- III gemcitabine- (5′-phosphoramidate)- [anti- 
IGF- 1R] end product are (i) gemcitabine chemotherapeutic 
molar incorporation index of 2.67:1; (ii) lack of any ‘foreign’ 
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or artificial chemical groups introduced into the final Stage- 
III end product; (iii) retained IGF- 1R binding avidity; (iv) the 
absence of any detectable IgG–IgG polymerization or low 
molecular weight fragmentation. The lack of any 5- carbon 
or 6- carbon ring structures inserted into gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] end product during the 
course of implementing the organic chemistry reactions in 
the multistage synthesis regimen reduces the probability of 
inducing subsequent host humoral immune responses.

Covalent gemcitabine immunochemotherapeutics poten-
tially can provide a spectrum of desirable attributes that are 
not possible with conventional small- molecular- weight che-
motherapeutic agents. Most important in this regard is their 
ability to promote or facilitate (i) selective and continual 
pharmaceutical deposition on the exterior surface membrane 
of neoplastic cells; (ii) progressive pharmaceutical accumu-
lation within the cytosol/intracellular compartment of neo-
plastic or immune cell populations to concentrations that are 
8.5× to 100× greater than can be attained by simple passive 
diffusion; (iii) reducing the effectiveness of chemothera-
peutic resistance mechanisms (e.g., P- glycoprotein); (iv) 
potential opportunity to attain synergistic or additive anti-
neoplastic cytotoxicity in a single covalent immunochemo-
therapeutic; (v) reduced innocent pharmaceutical exposure 
of normal tissues and healthy organ systems; (vi) prolonga-
tion of plasma pharmacokinetic profiles; and (vii) reduced 
burden on metabolizing pathways and excretion processes. 
Given these perspective, the covalent gemcitabine- (5′-
phosphoramidate)- [anti- IGF- 1R] immunochemotherapeu-
tic represents a potential molecular strategy for enhancing 
potency and effectiveness of a chemotherapeutic moiety rel-
evant to the naturally low response rates and frequency of 
resistance detected in many neoplastic cell types that over-
express IGF- 1R trophic membrane receptors.
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