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Purpose: To describe and evaluate a free, online tool for automatically segmenting
optical coherence tomography (OCT) images from different devices and computing
summary measures such as retinal thickness.

Methods: ReLayer (https://relayer.online) is an online platform to which OCT scan
images can be uploaded and analyzed. Results can be downloaded as plaintext (.csv)
files. The segmentation method includes a novel, one-dimensional active contour
model, designed to locate the inner limiting membrane, inner/outer segment, and
retinal pigment epithelium. The method, designed for B-scans from Heidelberg
Engineering Spectralis, was adapted for Topcon 3D OCT-2000 and OptoVue AngioVue.
The method was applied to scans from healthy and pathological eyes, and was
validated against segmentation by the manufacturers, the IOWA Reference
Algorithms, and manual segmentation.

Results: Segmentation of a B-scan took �1 second. In healthy eyes, mean difference
in retinal thickness from ReLayer and the reference standard was below the resolution
of the Spectralis and 3D OCT-2000, and slightly above the resolution of the AngioVue.
In pathological eyes, ReLayer performed similarly to IOWA (P ¼ 0.97) and better than
Spectralis (P , 0.001).

Conclusions: A free online platform (ReLayer) is capable of segmenting OCT scans
with similar speed, accuracy, and reliability as the other tested algorithms, but offers
greater accessibility. ReLayer could represent a valuable tool for researchers requiring
the full segmentation, often not made available by commercial software.

Translational Relevance: A free online platform (ReLayer) provides free, accessible
segmentation of OCT images: data often not available via existing commercial
software.

Introduction

Optical coherence tomography (OCT) allows for

the acquisition of cross-section pictures of the retina

(Fig. 1a). Since its invention, OCT images have
rapidly become an established medical tool, support-

ing clinicians’ diagnosis/decisions, and a fundamental

resource in scientific research.1 The key information
provided by these pictures, also called b-scans, is the
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measurement of the thickness of retinal layers that is
essential for detecting, monitoring, and guiding
treatment for many eye conditions, including glauco-
ma, diabetic retinopathy, macular edema, age-related
macular degeneration, macular hole, macular pucker,
central serous retinopathy, and vitreous traction.2

Currently, measurements can only be obtained using
proprietary software and are not available for export
or manipulation (Fig. 1b). This presents a limitation,
particularly in scientific research, as the availability of
this information is essential for the understanding of
structural changes of the retina in eye-related
pathologies.

To address this problem, segmentation algorithms
for the layers in OCT images have been published3–14

and some of these have been made freely available as
software/code: for example, the IOWA Reference
Algorithms v3.8.07 software, the Graph-Based Seg-
mentation,8 and the Retina Segmentation Toolbox.9

However, open segmentation remains inaccessible to
most clinicians and researchers due to lack of time,
skills, and resources to run, compile, or replicate
published algorithms/code.

ReLayer (https://relayer.online) is a free, online
platform designed to provide a solution to the
accessibility problem and to produce measurements
that are as accurate as those from the proprietary
software. This is achieved by introducing a novel,

cross platform, segmentation algorithm that is acces-
sible via web browsers. The platform can be used
simply by drag-and-dropping image files onto the
web-interface (Fig. 2). The analysis is run on Matlab
R2016a software (MathWorks, Natick, MA) installed
on the server. Results are visualized graphically and
are made available for download in comma-separat-
ed-value (.csv) format. ReLayer provides the segmen-
tation of inner limiting membrane (ILM), retinal
pigment epithelium (RPE), and inner segment/outer
segment (ISOS) layers. The retinal thickness, calcu-
lated as the distance from ILM to the interface
between the Bruch’s membrane (BM) and RPE, is
computed and visualized on the platform. Here we
evaluate the performance of this prototype system,
and compare speed, accuracy, and reliability against
other available methods, in scans from different
acquisition devices and in scans from patients and
healthy volunteers.

Materials and Methods

Algorithm

The algorithm was designed to segment retinal
layers from 6-mm-wide macular B-scans acquired
with Heidelberg Engineering (Heidelberg, Germany)
Spectralis and exported as .tiff image files, the default

Figure 1. (a) A B-scan image from the test data set as exported from the Heidelberg Engineering Spectralis. (b) The same image scan
with the manufacturer’s segmentation of 11 layers obtained with the proprietary Heyex software and shown superimposed.
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export format. The algorithm was then adapted to
process 6-mm-wide scans exported in the same image
format from Topcon (Tokyo, Japan) 3D OCT-2000
and 3-mm-wide scans from OptoVue (Fremont, CA)
AngioVue devices. This was achieved by resampling
images from the two devices to match the axial and
lateral micrometer-to-pixel ratio of those of the
Spectralis. Exported images are 512 3 495 pixels
(width3 height) in size from the Spectralis, 5123 855
from the 3D OCT-2000, and 640 3 304 from the
AngioVue. Manufacturers report an approximate
axial micrometer-to-pixel ratio of 3.87, 2.59, and
3.05 lm, respectively, for the three devices, and an
axial resolution of 3.9, 5 to 6, and 5 lm.15–17 For
generalization, we describe the algorithm using
micrometers when possible.

The algorithm was developed using Matlab
R2016a software (MathWorks) with the Image
Processing Toolbox. The algorithm sequentially
attempts the identification of the three layers in a B-
scan, in order: ILM, RPE, and ISOS. The segmenta-
tion of each layer is a two-step process that restricts
the search space for the next layer (Fig. 3). In short,
the first step is the detection of a line representing the
initial guess for each layer, and is based on the
detection of nodal points laying over horizontal edges
in the image. The second step corrects each guess by

moving it closer to the edges showing in the image.
This is obtained using a novel technique based on the
active contour model.18,19 If the input to the
algorithm is a volume of multiple B-scans, the
algorithm analyzes each B-scan sequentially.

Detection of the Initial Guess
The initial guess was obtained through the

identification of 36 nodal points spanning the whole
width of the scan and connected with linear interpo-
lation. Due to the bright, linear, and quasi-horizontal
appearance of the retinal layers in the scans, these
points were selected from those of the horizontal
edges, conventionally defined by the magnitude of
vertically oriented gradients of intensity. To detect the
edges, the image was preprocessed using Gaussian
filtering (sigma ¼ 3 pixels, kernel size ¼ 6 pixels) to
remove noise (Fig. 4a), and then the magnitude of the
vertical component of the gradient was calculated
using the Sobel gradient operator.20 The result of this
operation was a new image of the same size of the
original one, where the value at each pixel was the
magnitude of the vertical gradient at the correspond-
ing location in the original image (Fig. 4b). Then, 36,
14-pixel wide columns (ci, i ¼ {1, . . ., 36}), equally
spaced and spanning the whole image-width, were
selected. The left and right halves of the first and last

Figure 2. The web interface of ReLayer: (a) the main page showing the area dedicated to the drag-and-drop of the scans or the
alternative browsing option and the button to launch the analysis. (b) The visualization of the results including the segmentation
superimposed on the scans and the interactive, three-dimensional visualization of the retinal thickness.
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columns, centered on the edges of the image, were
discarded. Then, all values in each column were
averaged across the rows to obtain 36 vertical profiles
of the averaged gradient (vpi) (Fig. 4c). The average
was used to weaken the impact of localized, vertical
gradients. These vertical profiles were analyzed to
identify their peaking values. The peaking values were
used in the selection of 36 points p(i), i¼ {1, . . ., 36},
centered in the middle of the respective column ci and
vertically located at the location of the peak. Peaks
were identified separately for the initial guesses of the
ILM, RPE, and ISOS, to obtain three sets of 36 nodal
points: pILM(i), pRPE(i) and pISOS(i), respectively (Fig.
5). Of the two highest peaks in each vpi, the one closer
to the top edge of the image was selected as pILM(i)
(Fig. 5a). The closest peak to the bottom of the image,
of those below the ILM and higher than half the
highest peak below the ILM, was defined as pRPE(i)
(Fig. 5c). To detect the points of the ISOS, each vpi
was multiplied by a gamma probability density

function (gpdf), with the origin shifted 20 lm above
the RPE, oriented toward the top of the image and
defined by the shape parameter k ¼ 1.84 and scale
parameter h¼ 58 lm. The resulting statistical mode of
such gpdf was approximately equal to 80 lm. The gpdf
was designed so that the multiplication vpi * gpdf
would strengthen the peaks of vpi close to the peak of
gpdf and cancel out peaks below or closer than 20 lm
to the RPE. Then, the points pISOS(i) were selected as
the highest peaks in the profiles vpi * gpdf (Fig. 5e). If
the algorithm could not identify any of these peaks,
the relative points for the initial guess were discarded.
Finally, the initial guesses for the ILM, RPE, and
ISOS were obtained by linear interpolation of the
identified nodal points pILM(i), pRPE(i), and pISOS(i).

Active Contour Model
The second step in the analysis was based on a

modified version of the established technique known
as ‘‘active contour model’’ or ‘‘snake,’’18 frequently
used in computerized image analysis for the segmen-

Figure 3. Flowchart of the sequence of operations performed by the algorithm.

Figure 4. (a) Example B-scan processed with the Gaussian filter for noise removal; (b) processed with Sobel gradient operator for edge
detection; (c) divided in 36 columns to obtain 36 vertical profiles of the of the averaged gradient. In red, the vertical profile vp6 obtained
averaging the values across the rows of the sixth column.

4 TVST j 2019 j Vol. 8 j No. 3 j Article 25

Ometto et al.



Figure 5. (a) The vertical profile vp6 and the nodal point pILM(6). The vertical coordinate of the point is identified by the high peak in vp6 closest
to the top of the image; (b) the 36 nodal points pILM of the initial guess for ILM. (c) The vertical profile vp6 and the nodal point pRPE(6). The vertical
coordinate of the point is identified by the high peak in vp6 below ILM and closest to the bottom margin of the image; (d) the 36 nodal points
pRPE of the initial guess for RPE. (e) The vertical profile vp6 (in red), the gpdf starting 20 above the RPE (in black), the profile of vpi * gpdf (in blue), and
the point pISOS(6). The vertical coordinate was obtained as the highest peak of vpi * gpdf; (f) the 36 nodal points pISOS of the initial guess for ISOS.
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tation of contours in images. Briefly, the model
iteratively deforms a line (the initial guess) so that it
adheres to the boundaries in an image. This is
achieved by solving an energy minimization problem
governed by the image energy Eimage that pulls the
points of the line toward lines and edges in the image,
and the internal energy of the lineEinternal, interpret-
able as the stretching-bending capabilities of the line,
which resists the deformation. This model has the
advantage of being robust to noise and discontinued
boundaries but requires priors, such as an initial guess
and the weights/parameters defined by the user. The
total energy of the contour Etot that is minimized
through the iterations is given by:

Etot ¼
Z 1

0

k � Eimage v sð Þ;wline;wedge

� �
þ Einternal v sð Þ; a; bð Þds;

where vi, i = {1, . . ., 512} are the points of the
contour across the width of the image, wline, wedge and
k are user-assigned weights that define the impact of
lines and edges in the calculation of Eimage, and the
impact of Eimage in the calculation of Etot, while a andb
are parameters that control the amount of stretch and
curvature of the contour. The proposed algorithm
used a modified version of the conventional two-
dimensional model that restricts the deformation of
the line to the vertical dimension, by allowing the
points in the line to move only upwards or
downwards. This was achieved by removing horizon-
tal components from the conventional formulation of
the minimization problem, reducing its dimensionality
and therefore the complexity of the computation. This
modified, one-dimensional active contour model was
used three times by the algorithm, one for each of the
initial guesses. The parameters used are shown in
Table 1. The active contour models of ILM and ISOS
shared the same parameters. Different parameters
were used for the RPE to make the contour ‘‘stiffer’’,
allowing less sharp bends to reflect the cross-sectional
morphology of the layer. At the end of the 50th

iteration, the deformed initial guess represented the
final segmentation.

Evaluation

The method was tested against the manufacturer’s
segmentation for scans acquired from healthy eyes with
the Spectralis and AngioVue. The segmentation from
the Spectralis was obtained from .vol files exported
from a version of the Heyex software (Heidelberg
Engineering) enabled for RAW data export. The
segmentation from the AngioVue was obtained from
the .xml files exported from the device. The manufac-
turer’s segmentation of scans from healthy eyes
acquired with the Topcon device was not available,
and the method was evaluated against a manual
segmentation by an expert clinician (XL). The manual
segmentation was aided by a custom tool created for
the purpose with Matlab. The tool allowed the clinician
to select points on the scans and interpolated them with
polynomial fitting lines. The test scans were obtained
from three data sets of volunteers and one data set of
patients, each acquired with one of the three devices for
previous studies. Volunteers underwent a visit from a
clinician to exclude any pathology. The fourth data set
included randomly selected patients with a range of
known retinal pathology. The first data set included 48
raster scans acquired with Spectralis from 48 healthy
eyes of 24 volunteers (protocol approved from the
NRES East Midlands Ethics Committee, Ref: 14/EM/
1163).21 The second data set consisted of 18 raster scans
acquired with the 3D OCT-2000 from 18 healthy eyes
of nine volunteers (protocol approved from the City
University of London Ethics Committee, Ref: OPT/
PR/16-17/36). The third data set included 15 raster
scans from 15 healthy eyes of 15 volunteers acquired
with the AngioVue (protocol approved from the
Humanitas Gavazzeni Hospital Ethics Committee,
Ref: 253-17 GAV).22 The fourth data set included 19
raster scans acquired with Spectralis from 19 eyes of 19
patients in presence of known retinal pathology
(including macular edema, age-related macular degen-
eration, previous choroidal neovascularization) (proto-
col approved from the NRES East Midlands Ethics
Committee, Ref: 14/EM/1163).21 From each raster scan
of a volunteer, a single B-scan was randomly selected
and used for the evaluation. The two segmentations
from the Spectralis and AngioVue underwent a check
by a clinician (GM) to identify any visible errors and,
with the manual segmentation of the Topcon scans,
were used as the Reference Standard (RS) for testing.
In the data set of patients with macular edema, one of
the five central B-scans was randomly selected for the

Table 1. Weights and Parameters of the Active
Contours Models

ILM ISOS RPE

k 0.8 0.8 0.4
wline 0 0 0
wedge 30 30 10
a 0.3 0.3 1
b 102 102 104
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analysis from each raster scan to capture structural
changes. Here, the RS was obtained as the average of
two manual segmentations by two clinicians (GM and
XL). Areas of the scans where either clinician was
unable to identify the layer were excluded from the
analysis. On these scans, the RS was compared to the
segmentation results of the proposed algorithm as well
as to the segmentation from the manufacturer (Heidel-
berg Engineering) and from the IOWA Reference
Algorithms. The full segmentation from IOWA was
obtained from the XML files created during the
segmentation. The mean absolute distance (MAD)
was chosen to quantify the difference between RS and
the tested segmentation for the three layers. The layer
here defined as RPE was compared to the BM
identified by the Spectralis to reflect the different
notations. Retinal thickness, obtained as the distance
between ILM, ISOS, and RPE (or BM in the
Spectralis), was also measured. Finally, the microme-
ter-to-pixel ratios provided by the manufacturers were
used to convert measurement in pixels to micrometers.
This conversion allowed the evaluation of the MAD,
revealing meaningful segmentation differences when the
calculated distance was higher than the resolution of
the device. MAD values for retinal thickness were
calculated for each scan and compared across algo-
rithms using mixed effects models. All statistical
calculations were performed in R (R Foundation for
Statistical Computing, Vienna, Austria).

Results

Mean time to segment a single B-scan was
completed in 0.94 seconds (standard deviation [SD]
0.15) when running on a desktop computer with an
Intel (Santa Clara, CA) Core i5-6500 CPU @ 3.20

GHz and 16 MB of RAM memory. The online
processing may take longer as images need to be
uploaded to the server and can vary depending on the
workload of the server, the number of clients
connected at the time of processing, and the size of
the volume to be processed. For these reasons, the
total execution time for a volume can range between
approximately 30 seconds to 2 minutes.

In healthy volunteers, the clinical validation of the
segmentation by the manufacturers did not identify
any errors in the scans from the Spectralis, while some
were identified in the segmentation of the RPE and
ISOS layers from the AngioVue, but were considered
minor. Table 2 shows the resulting MAD in pixels and
in micrometers between layers segmented by ReLayer
and RS for the three devices in scans from healthy
eyes. The mean difference in calculated retinal
thickness (SD) was 3.45 lm (0.83), 3.63 lm (2.39),
and 6.16 lm (3.41), respectively for the Spectralis, 3D
OCT-2000, and AngioVue. These values were lower
than the resolution of the Spectralis and the 3D OCT-
2000 (3.9 and 5–6 lm, respectively) and slightly above
the declared resolution of the AngioVue (5 lm). This
means that the mean difference of the proposed
segmentation and the RS is negligible for the
measurement of the retinal thickness from the first
two devices under evaluation. Similarly, the compar-
ison of individual layers revealed a mean difference
below the resolution of all three instruments, with the
exception of the RPE layer segmented on AngioVue
scans, where the mean difference resulted slightly
above its resolution. Results of the segmentation are
shown for random samples of the three data sets in
Figure 6. By inspection, no major differences could be
identified between the proposed method and the
segmentation used as the RS.

Table 2. Distance Between the Proposed Segmentation and the RS, and Difference of the Calculated Thickness
for the Three Devices

Acquisition Device

Depth
Resolution,

lm

MAD

Thickness
(RPE-ILM) ILM RPE ISOS

Heidelberg Engineering
Spectralis

3.87 0.92 (0.32) pixels 0.89 (0.21) pixels 0.88 (0.32) pixels 1.03 (0.40) pixels
3.59 (1.24) lm 3.45 (0.83) lm 3.41 (1.24) lm 3.97 (1.55) lm

Topcon
3D OCT-2000

5–6 1.40 (0.92) pixels 0.85 (0.19) pixels 1.17 (0.48) pixels 1.38 (0.31) pixels
3.63 (2.39) lm 2.21 (0.51) lm 3.02 (1.25) lm 3.58 (0.80) lm

OptoVue
AngioVue

5 2.02 (1.11) pixels 0.69 (0.10) pixels 2.04 (1.17) pixels 1.45 (0.37) pixels
6.16* (3.41) lm 2.11 (0.30) lm 6.21* (3.60) lm 4.41 (1.11) lm

Mean distance values above the resolution of the instrument are marked with an asterisk (*). SD values are reported in
parenthesis.
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Figure 6. The segmentation results from RS (green) and from ReLayer (dashed red) in a random subset of the test images from healthy
subjects for images acquired with: (a) Heidelberg Engineering ‘‘Spectralis,’’ (b) Topcon 3D ‘‘OCT-2000,’’ and (c) OptoVue ‘‘AngioVue.’’
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Table 3 shows the results of the comparison
between ReLayer, Spectralis, and IOWA algorithms
against the RS in scans acquired with Spectralis from
eyes with pathology. All thickness measurements
obtained with the three different segmentation algo-
rithms showed an average difference with RS that was
greater than the published resolution of the device
(3.9 lm). All individual layers identified by IOWA
deviated from the RS in a measure that was on
average greater than the resolution of the device. The
mean distance between the segmentation from Spec-
tralis and RS was below the resolution and, therefore,
negligible only for segmentation of the ILM. The
mean distance between the segmentation from Re-
Layer and the RS was negligible for both ILM and
RPE layers. However, calculated SD values showed a
greater variation around the average distance between
ReLayer and RS than between the other two
algorithms and RS, particularly for the RPE and
ISOS. MAD average value for the retinal thickness
obtained with ReLayer on each scan showed no
statistically significant differences from IOWA (P ¼
0.973, 0.05 6 0.23 lm maximum error-difference).
However, both ReLayer and IOWA showed signifi-
cantly lower MAD values compared with Spectralis
(P , 0.001, 1.88 6 0.23 lm and 1.83 6 0.23 lm
maximum error-difference, respectively). Examples of
the segmentation results from the three algorithms
and RS are shown in Figure 7 on selected areas to
highlight their behavior in presence of pathological
changes. See Supplementary Figure S1 for the
segmentation results on the whole data set.

Discussion

In healthy eyes, the segmentation from ReLayer
was as accurate as that from the manufacturer in

scans obtained from the Heidelberg Engineering
Spectralis and as reliable as a manual segmentation
by a clinical expert in scans from the Topcon 3D
OCT-2000. The calculated thickness differed from the
RS by 3.59 and 3.63 lm on average; these values are
below the resolution of both instruments and
compatible with measured repeatability of acquisition
devices.23 The mean difference of the segmentation,
evaluated for individual layers, was also below the
resolution, meaning that further improvements would
not be beneficial. When compared with the segmen-
tation from the OptoVue AngioVue, the thickness
calculated by the proposed method differed by 6.16
lm, 1.16 lm above the published resolution of the
device. However, small segmentation errors were
noted by the clinician when evaluating the RS
segmentation from the AngioVue. These imperfec-
tions could have contributed to this difference and
represented a limitation in the assessment of the
method for this particular device. The brighter
appearance of scans taken with this device could
have also affected the segmentation by slightly
changing the behavior of the proposed algorithm,
which is based on the gradient between brighter/
darker areas in the image. However, this could be an
instance where using the same cross-platform seg-
mentation algorithm would be particularly beneficial,
providing a more homogeneous approach to the task.
In short, these results indicate that the proposed
segmentation was correct and within expected levels
of measurement variability of that obtained from the
devices.23

The evaluation on scans from eyes with pathology
revealed nonnegligible differences between all three
segmentation methods and the RS. MAD of the
proposed method from the RS was lower than that
seen in Spectralis and IOWA. In addition, greater

Table 3. Distance Between the Three Segmentation Algorithms and the RS in the Data Set of Scans From
Pathological Eyes

Algorithm

MAD

Thickness (RPE-ILM) ILM RPE ISOS

ReLayer 2.18 (0.98) pixels 0.37 (0.15) pixels 0.75 (0.69) pixels 1.09 (1.60) pixels
8.44* (3.80) lm 1.45 (0.59) lm 2.89 (2.69) lm 4.21* (6.19) lm

Heidelberg Engineering 4.07 (0.67) pixels 0.85 (0.19) pixels 1.56 (0.53) pixels 1.50 (0.43) pixels
15.74* (2.61) lm 2.55 (0.64) lm 6.06* (2.06) lm 5.80* (1.68) lm

IOWA 2.23 (0.42) pixels 1.60 (0.14) pixels 1.57 (0.40) pixels 1.24 (1.02) pixels
8.64* (1.64) lm 6.19* (0.55) lm 6.09* (1.56) lm 4.82* (3.93) lm

Mean distance values above the resolution of the instrument (3.97 lm) are marked with an asterisk. SD values are
reported in parenthesis.
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variation demonstrated by greater SD values suggests
that segmentation errors by ReLayer were larger in
some areas of these scans. Errors by the proposed
algorithm could be due to its design, which is based
on several hard thresholds. Alternatively, errors could
be caused by isolated edges extending across multiple
A-scans and trapping the segmentation into local
minima. These results reflect the different behaviors
of the three methods rather than identifying one to be
superior. Segmentation discrepancies with the RS
larger than the resolution show that a single,
generalizable algorithm capable of accurately seg-
menting layers in both healthy and pathological scans
is still an open challenge. These findings support ideas
of using disease-specific algorithms in the presence of
ocular conditions.6,24 This problem will be addressed
by ReLayer with future introduction of variations of
the algorithm to the platform, customized to address
individual conditions. The comparison of the MAD
average for the calculated retinal thickness showed a
similar deviation from the RS for ReLayer and

IOWA, which was smaller than Spectralis. Notably,
the maximum error-difference was below the resolu-
tion of the instrument.

Execution time is generally slower than the
segmentation provided by the manufacturers and
IOWA but is still fast enough to allow the analysis of
raster scans in a clinical setting, for example during a
patient’s consultation. ReLayer is at the very early
stages of its development and improvements are
planned in the near future. Execution time can and
will be improved considerably by translating the code
into a compiled language. In addition, we plan to
move our service to cloud computing, allowing for
users all over the world to use the software at the
same time, with no negative impact on performance

ReLayer is fully automatic, free, and has no
requirements other than the access to a web browser.
The intuitive drag-and-drop of the scans, the 3D
visualization of the thickness profile, and the down-
load of the coordinates of all segmented layers in .csv
files, make results easily accessible. For these reasons,

Figure 7. Segmentation results on six selected areas depicting structural changes from six of the pathological scans used for testing.
The RS is shown in green where both clinicians could identify the layer. ReLayer segmentation is represented by a dashed red line,
Heidelberg Engineering segmentation by a blue line, and IOWA segmentation by a pink dotted line.
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we believe that ReLayer represents a useful tool to
both researchers and clinicians. Future developments
will include the segmentation of new layers, support
for OCT scans from Carl Zeiss Meditec (Jena,
Germany) Cirrus devices, and for wide-field scans.
Finally, the platform will be upgraded to include
disease-specific segmentation, to allow processing of
multiple volumes with a single upload and to allow
manual correction of the results.
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