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ABSTRACT  Research in the stem cell field has traditionally focused on under-
standing key transcriptional factors that provide pluripotent cell identity. 
However, much less is known about other critical non-transcriptional signal-
ing networks that govern stem cell identity. Although we continue to gain 
critical insights into the mechanisms underlying mitochondrial morphology 
and function during cellular reprogramming – the process of reverting the fate 
of a differentiated cell into a stem cell, many uncertainties remain. Recent 
studies suggest an emerging landscape in which mitochondrial morphology 
and function have an active role in maintaining and regulating changes in cell 
identity. In this review, we will focus on these emerging concepts as crucial 
modulators of cellular reprogramming. Recognition of the widespread ap-
plicability of these concepts will increase our understanding of the mitochon-
drial mechanisms involved in cell identity, cell fate and disease. 
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INTRODUCTION 
A paradigm shift from considering mitochondria mere 
powerhouses of the cell to realizing that they are a major 
regulatory hub began two decades ago with two discover-
ies: (1) that cytochrome c, a protein known previously only 
as an electron transporter, triggers cell disassembly during 
apoptosis once released into the cytoplasm [1]; and (2) 
that the B-Cell Lymphoma-2 (BCL-2) family controls this 
release [2]. Another shift followed from discovering that 
mitochondria are highly dynamic organelles, which fuse 
into each other and divide rapidly and reversibly in re-
sponse to internal and external environmental cues. Sub-

sequent discoveries established that mitochondrial fusion 
and fission (division), which are collectively known as mito-
chondrial dynamics [3, 4], are involved in aging [5], neuro-
degenerative diseases [6], and tumorigenesis [7–9]. Recent 
studies provide compelling evidence for a novel function of 
mitochondrial dynamics in human pluripotent stem cells 
(hPSCs). These investigations have revealed that the BCL-2 
family is essential in hPSCs not only during cell death, but 
also through its ability to regulate the mitochondrial net-
work, which is key for other cell fate decisions, such as self-
renewal and pluripotency [10–12]. 
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Abbreviatons: 
BAK – BCL-2 antagonist killer, 
BAX – BCL-2 associated X, 
BCL-2 – B-Cell Lymphoma-2, 
BID – BCL-2 interacting domain death 
agonist, 
DRP – dynamin-related GTPase protein, 
ER – endoplasmic reticulum,  
ESC – embryonic stem cell, 
hPSC – human PSC, 
iPSC – induced PSC, 
OXPHOS – oxidative phosphorylation,   
PSC - pluripotent stem cell, 
ROCK - Rho kinase,  
ROS – reactive oxygen species, 
SAM – S-adenosylmethionine,  
TCA – tricarboxylic acid. 
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Stem cells can be divided into three main types: em-
bryonic stem cells (ESCs), adult stem cells, and induced 
pluripotent stem cells (iPSCs). ESCs and iPSCs are defined 
by two key properties: self-renewal (defined as the ability 
to proliferate without lineage commitment) and pluripo-
tency (defined as the ability to differentiate into the three 
main tissue lineages). Since the first human ESC (hESC) line 
was derived in 1998, hESCs have become efficient tools to 
study processes of human development and various as-
pects of human diseases, like cancer [13]. Since cells from 
the inner cell mass, from which ESCs are derived, can give 
rise to all tissues derived from germ layers (endoderm, 
mesoderm, and ectoderm), genomic instability is especially 
risky for their self-renewal and organ specific differentia-
tion. Thus, not surprisingly, these cells are endowed with 
exquisite mechanisms to respond rapidly to apoptosis-
inducing stress. Various studies have provided evidence of 
changes in apoptosis regulation, mitochondrial dynamics 
and metabolic function and regulation during the process 
of reprogramming (i.e. reverting a differentiated cell into a 
stem-like state, through the expression of master pluripo-
tency transcription factors such as, OCT4 (Octamer-binding 
transcription factor 4), SOX2 (SRY(sex-determining region 
Y)- box 2), KLF4 (Kruppel-like factor 4) and c-MYC, collec-
tively known as OSKM) [14, 15]. 

Mitochondria-related hallmarks of reprogramming are 
beginning to emerge. In this review, we specifically discuss 
three biological capabilities acquired during the multistep 
transition of a somatic cell into a pluripotent stem cell. 
They include: inherent sensitivity to apoptosis, changes in 

mitochondrial morphology and localization, and a modified 
functional state of the mitochondria (i.e changes in meta-
bolic requirements) [10, 11, 13–17] (Figure 1). In the fol-
lowing sections, we will explore the known underlying 
mechanisms involved in these changes highlighting recent 
discoveries as well as describe areas that are open to more 
detailed investigation. While we propose that these three 
mitochondria-related hallmarks constitute a requirement 
for reverting a differentiated cell into a stem cell, there are 
other mitochondrial events such as mitochondrial biogene-
sis, mitochondrial trafficking and mitochondrial transcrip-
tion that also undergo dramatic changes during cellular 
reprogramming and that could also be essential for suc-
cessfully reverting cell fate. Additional studies are needed 
to elucidate the impact of these events on the reprogram-
ming process. 

 

INCREASED SENSITIVITY TO CELL DEATH  
The apoptotic process involves morphologic changes in-
cluding cell constriction, chromatin condensation, nuclear 
envelope disruption followed by nucleus breakdown to 
discrete bodies, plasma membrane blebs formation, and 
finally the break-up of the cell into apoptotic bodies [18]. 
Activated cysteine proteases known as caspases cleave 
many vital cellular proteins (nuclear scaffold, cytoskeleton, 
etc.) followed by nuclear DNA degradation [19, 20]. Caspa-
se dependent apoptosis is classified into extrinsic and in-
trinsic pathways, mediated by death ligands and mito-
chondria respectively [21]. Our focus in this review will be 
on the mitochondrial pathway of apoptosis (Figure 2). The 

FIGURE 1: Emerging mitochondria-related hallmarks of reprogramming. Left side: Differentiated cells (such as fibroblasts) have an elon-
gated mitochondrial network with a preference for oxidative phosphorylation (OXPHOS) as a source of energy and are relatively resistant 
to apoptosis stimuli. Right side: After reprogramming, cells now have a fragmented mitochondrial network with a switch to using glycolysis 
as a preferred bioenergetic source. Cells become increasingly sensitive to cell death due to at least two main mechanisms: increased mito-
chondrial priming and pre-activated BAX. 
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extrinsic pathway of apoptosis has been described exten-
sively in several excellent reviews [22–24]. 

The intrinsic apoptosis pathway, also known as the mi-
tochondria mediated cell death pathway, is a form of regu-
lated cell death initiated by a variety of perturbations in-
cluding DNA damage [24]. These stresses induce the activa-
tion of the transcription factor P53 that then initiates a 
response to arrest cell cycle and repair DNA [25, 26]. If 
repair is not achieved, an apoptosis response is triggered 
leading to the activation of the BCL-2 associated X (BAX) 
and/or BCL-2 antagonist killer 1 (BAK1; best known as BAK), 
these pro-apoptotic effector proteins of the BCL-2 family 
then permeabilize the outer mitochondrial membrane [27–
33 . BAX and BAK can be directly activated via binding to a 
subset of BH3-only proteins known as “activators” (i.e. 
BCL-2 interacting mediator of cell death (BIM), BCL-2 inter-
acting domain death agonist (BID), P53-upregulated modu-
lator of apoptosis (PUMA), and phorbol-12-myristate-13-
acetate-induced protein 1 (PMAIP1, best known as Noxa) 
[32, 33]. The anti-apoptotic members of the BCL-2 family 
(e.g. BCL-2, apoptosis regulator (BCL-2), BCL2- like 1 (best 
known as BCL-XL) and Myeloid Leukemia Sequence 1 (MCL-
1)) can also bind to BAX and prevent its function. BH3-only 
proteins known as “sensitizers” (e.g. BCL2 associated ago-
nist of cell death (BAD), and BCL-2 modifying factor (BMF)) 
inactivate the anti-apoptotic BCL-2 family proteins, and 
therefore may also be needed for efficient BAX and BAK 
activation [24, 32–34]. Early studies examining the interac-
tion between BH3-only proteins and the anti-apoptotic 
proteins revealed differential binding patterns that have 
been exploited to examine the apoptotic vulnerability of 
various cells of interest [35–38]. Mitochondrial outer per-
meabilization induced by BAX and BAK, then results in the 
release of cytochrome c, oligomerization of the Apoptotic 
Protease Activating Factor-1 (APAF-1) and the activation of 
the executioners of apoptosis, a family of cysteine proteas-
es termed caspases [39–41]. Caspases cleave intracellular 

targets [42], resulting in the morphological changes previ-
ously described, and cellular demise [24, 43].  

In contrast to differentiated cells, BAX is kept in an ac-
tive state in hESCs and sequestered at the Golgi network 
[14, 44] (Figure 3). Upon DNA damage, active BAX rapidly 
translocates from the Golgi to mitochondria, triggering 
apoptosis. Such a rapid response may be critical for pre-
venting the propagation of aberrant cells in the developing 
embryo, or the emergence of a cancerous cell in the tissues 
of an adult organism, acting as sort of “cocked gun”. This 
“cocked gun” is disarmed once the cell differentiates [14, 
44], implying that the cell uses specific mechanisms for 
inactivation, which are unknown. An additional study fol-
lowed these observations and determined that mitochon-
drial priming also contributes to the increased apoptosis 
sensitivity of hESCs compared to differentiated cells [15]. 
The balance between pro and anti- apoptotic factors shifts 
more towards the apoptotic threshold in hESCs [15, 44]. 
How the high mitochondrial priming state is initiated and 
maintained in hPSCs, as well as how it is reset early during 
differentiation is not known. Considering the phenomenon 
of mitochondrial priming and the fact that BAX is constitu-
tively activated in hPSCs, we hypothesized that proteins of 
the BCL-2 family have uncharacterized functions in hPSCs 
that are unrelated to cell death. 

Interestingly, both caspases and P53 play a major part 
in the generation of iPSCs. However, the mechanistic de-
tails of their involvement in somatic cell reprogramming 
are unknown. Apoptosis serves a defensive role by elimi-
nating genetically abnormal and damaged cells from the 
pluripotent population [45–48]. Thus, antagonizing apop-
tosis by overexpression of anti-apoptotic BCL-2 or via re-
pression of P53 significantly improves the efficiency of iPSC 
generation [49, 50]. Previous studies showed that Caspase-
8 deficient animals die in their early developmental stages 
due to improper differentiation of neural precursors [51]. 
This correlation between caspases and the ability of em-

FIGURE 2: Scheme of the mitochondrial pathway of apoptosis. Stress-induced activation of BAX/BAK leading to mitochondrial outer mem-
brane permeabilization and cytochrome c release to the cytosol. Anti-apoptotic proteins block BAK/BAX activation/oligomerization induced 
by BH3-only proteins. BCL-XL: B-cell lymphoma extra-large; MCL-1: myeloid cell leukemia 1; BID: BH3-interacting domain death agonist; BIM: 
BCL-2 interacting mediator of cell death; PUMA: P53-upregulated modulator of apoptosis. 



A. Rastogi et al. (2019)  Mitochondria-related hallmarks of reprogramming 

 
 

OPEN ACCESS | www.cell-stress.com 184 Cell Stress | JUNE 2019 | Vol. 3 No. 6 

bryonic stem cells to self-renew or differentiate was later 
demonstrated by the report that caspase-3 and caspase-9 
mutant mouse ESCs (mESCs) are unable to differentiate 
[52]. A caspase-dependent degradation site in the stem cell 
factor NANOG is conserved between mice and human pro-
tein homologues, providing insight into the mechanism by 
which caspases regulate reprogramming efficiency [52]. 
Caspase-3 dependent degradation of NANOG was reported 
as a key factor leading to the differentiation of hESCs and 
iPSCs in the absence of basic fibroblast growth factor [53]. 
In contrast to their role in ESCs, activated caspase-3 and 
caspase-8 via degradation of Retinoblastoma protein (RB), 
help in the de-differentiation of human fibroblasts into 
iPSCs [54]. Thus, caspases play a dual role by driving de-
differentiation of somatic stem cells and differentiation of 
ESCs, in the context of cellular and substrate availability. 
The use of caspase inhibitors may work as a fine regulator 
for differentiating ESCs/iPSCs and for reprogramming iPSCs. 
Hence, further investigation of underlying molecular 
mechanisms of caspase regulation is needed.  

Numerous studies have demonstrated that P53 is es-
sential for embryonic development and cellular differentia-
tion [55]. P53 transcriptional activity in cellular differentia-
tion is context dependent having contradictory results in 
various cell types [55]. For instance, P53 enhances the dif-
ferentiation of both murine and human ESCs in the pres-
ence of retinoic acid and DNA damage [56, 57] whereas, 
P53 is also shown to promote hematopoietic stem cell 
(HSC) quiescence and inhibit neural stem cell proliferation 
[58, 59]. Use of the MDM2 inhibitor nutlin-3a results in 

rapid accumulation of P53 and subsequent induction of 
apoptosis and rapid differentiation in hESCs, but it has a 
minimal effect in somatic cells [60, 61]. Similar to the ob-
servations that stabilization of P53 plays a role in differen-
tiation of ESCs, various studies have shown that inactiva-
tion of P53 helps in reprogramming of somatic cells to  
iPSCs [49, 62, 63]. Considering that iPSCs and malignant 
somatic cells share similar characteristics (higher prolifera-
tion, transcriptional and metabolic status), the negative 
role of P53 in cellular reprogramming is not unexpected. 
Mechanistic insights for P53’s inhibitory role in cellular 
reprogramming involves P53 mediated targeting of  
miR-34a that suppresses the expression of Sox2, MYC and 
NANOG [64], regulation of CDKN1A that attenuates cell 
division [48] and inhibition of specific epithelial genes that 
further suppress mesenchymal to epithelial transition [46]. 

Reprogramming efficiency of somatic cells to iPSCs is 
reduced in the absence of c-MYC. However, the tendency 
of MYC to cause apoptosis also represents a roadblock to 
reprogramming. A recent study indicates that reprogram-
ming of mouse embryonic fibroblasts (MEFs) is enhanced 
in the absence of BAK and BAX under OKSM conditions [65]. 
These studies demonstrate that mitochondrial apoptosis 
imposes a strong MYC-dependent block to somatic cell 
reprogramming [10, 50, 65, 66]. Hence, although MYC ex-
pression favors reprogramming by regulating cellular pro-
cesses (transcription, translation, ATP generation) [67, 68], 
its tendency to sensitize cells to mitochondrial apoptosis is 
an interesting paradox. Intriguingly, high γ-H2A.X deposi-
tion has been described in hPSCs and it has been linked to 
the global chromatin de-condensation required by pluripo-
tent stem cells in order to dynamically activate transcrip-
tional programs in response to environmental cues [69]. 
How these epigenetic changes are linked to increased mi-
tochondrial apoptosis is not known. Understanding the 
exact mechanisms by which reprogramming induces epi-
genetic modifications, constitutive apoptosis sensitization 
and priming of pluripotent stem cells is an area in need of 
more investigations. 

 

INCREASED MITOCHONDRIAL FISSION 
Mitochondrial movement and fragmentation were first 
observed almost 100 years ago [70]. For decades these 
observations remained unexplored and the idea of mito-
chondria as isolated and static “jelly-bean” structures that 
serve as “power houses” of the cells became an unrefuted 
dogma. The development of new technologies made it 
easier to track mitochondria in live cells. These studies 
revealed the remarkable ability of mitochondria to move 
and to continually divide and fuse [71–73]. Further studies 
have demonstrated that mitochondrial dynamics are cru-
cial for normal physiology from yeast to mammals. Emerg-
ing studies demonstrate a connection between mitochon-
drial dynamics machinery, apoptosis and mitophagy. In 
addition, several human diseases result from mutations in 
fusion and fission proteins further highlighting the rele-
vance of mitochondrial fission and fusion events in cellular 
homeostasis [8, 74–77].  

FIGURE 3: BAX activation in stem cells. Besides high mitochon-
drial priming, human ESCs also have an active form of BAX at the 
Golgi that rapidly translocates to the mitochondria under apop-
tosis stimuli. Active form of BAX: BAX 6A7; Golgi apparatus 
marker: TGN46. 
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Interestingly, as differentiated cells transition to a stem 
cell state, the mitochondrial network undergoes dramatic 
changes. Mitochondria of stem cells contain functionally 
immature mitochondria with a globular shape, poorly de-
veloped cristae, and perinuclear localization, an indicator 
of a less active mitochondrial state [78, 79], whereas dif-
ferentiated cells, like fibroblasts, have a complex morphol-
ogy with well-developed cristae, dense matrix, and elon-
gated appearance. It is not completely understood how 
increased mitochondrial fragmentation is maintained in 
stem cells, however, constitutive activation of the dy-
namin-related guanosine triphosphates (GTPases) is likely a 
contributing factor [79]. 

Dynamin-related GTPases control mitochondrial dy-
namics by allowing opposing processes of division and fu-
sion to work in concert maintaining overall shape and 
number of mitochondria [76, 79]. Large dynamin-related 
GTPase proteins (DRPs) are highly conserved and have the 
ability to self-assemble and hydrolyze GTP to control mito-
chondrial fusion and fission [80, 81]. In mammals, fission or 
fragmentation of the mitochondrial network is mediated 
by dynamin related protein-1 (DRP-1). DRP-1 is primarily 
localized in the cytosol and recruited to mitochondria dur-
ing fission. Activation of DRP-1 is mediated by post transla-
tional modifications including phosphorylation, sumoy-
lation, O-GlcNAcylation and ubiquitination which are 
thought to enhance its recruitment to mitochondrial re-
ceptors [83]. The impact of these post-translational modifi-
cations for maintaining the homeostatic mitochondrial 
fragmentation in pluripotent stem cells is not known. Mod-
ified DRP-1 oligomerizes around mitochondria and con-
stricts the network severing both mitochondrial inner and 
outer membranes. The structural domains and mechanistic 
details of action for DRP1 have been clearly elucidated [8, 
80–86]. DRP-1 is also involved in promoting mitochondrial 
fragmentation during apoptosis [87] (reviewed in next sec-
tion).  

Fusion of mitochondria requires Mitofusin 1 (MFN1), 
Mitofusin 2 (MFN2), and Optic Atrophy 1 (OPA1) to fuse 
the outer and inner mitochondrial membranes [88–90]. 
Fusion is key for mitochondrial DNA (mtDNA) homogeniza-
tion and assembly of electron transport chain. MFN1 and 
MFN2 are anchored in the outer mitochondrial membrane 
and allow for formation of homo- or hetero-dimers with 
MFNs facilitating fusion. The inner membrane is fused af-
terwards in a similar fashion by OPA1. OPA1 is localized to 
the inner mitochondrial membrane with GTPase domain 
exposed to inner membrane space. Overexpression of 
OPA1 leads to fragmentation of mitochondria, however, 
effects on cell death are not clear [91]. The mechanisms by 
which the activity of the dynamin-related proteins involved 
in fusion is regulated are not well understood, but data 
from in vitro assays illustrates that inner and outer mito-
chondrial fusion are separable and mechanistically differ-
ent [92, 93]. Fission is necessary for cell division and for 
mitophagy when damaged mitochondria have to be segre-
gated. As mentioned previously, mitochondrial dynamics 
are crucial for normal physiology from yeast to mammals 
[94]. Imbalance in the process of fusion and fission leads to 

severe pathophysiological conditions. These range from 
the inability to survive past mid-gestation in MFN1, MFN2, 
OPA1, or DRP-1 deficient mice [90, 90, 95–97], to neuro-
degenerative diseases such as Charcot-Marie-Tooth syn-
drome and dominant optic atrophy [88, 89, 98, 99] caused 
by mutations in MFN2 and OPA1.  

The BCL-2 family has recently been implicated as a key 
factor in maintaining stem cell self-renewal and pluripo-
tency. Inhibition of pro-apoptotic BAX and BAK proteins 
has been reported to be required for mitochondrial fusion 
[80, 100–102]. BAX has been suggested to regulate fusion 
by interacting with MFN1 and/or MFN2 [102, 103]. BCL-xL, 
an anti-apoptotic protein, has been shown to be highly 
expressed at the mitochondria of adult neurons and re-
quired for normal brain development [104]. BCL-xL appears 
to affect mitochondrial dynamics in mammalian neurons 
resulting in an increment of the length/size of mitochon-
dria and the localization of mitochondria to synapses [105, 
106]. Furthermore, the anti-apoptotic protein MCL-1 ap-
pears to be involved in the regulation of mitochondrial 
dynamics and the maintenance of pluripotency [10]. MCL-1 
appears to interact with DRP-1 and OPA1 in hPSCs, and 
potentially other BCL-2 family members. This interaction 
may be critical for the modulation of mitochondrial dynam-
ics (Figure 4). A recent study further demonstrates that the 
BH3-only protein BID also regulates mitochondrial mor-
phology and cristae organization [12]. The functional impli-
cation of a potential MCL-1 and BID interaction in main-
taining pluripotency and self-renewal ability of hPSCs has 
not yet been explored. Revealing the mechanistic link be-
tween the mitochondrial dynamics machinery and the BCL-
2 family represents a unique opportunity for increasing our 
understanding of how these mitochondrial signaling path-
ways interact to regulate cell fate.  

 
Mitochondrial remodeling during apoptosis 
The mitochondrial pathway of apoptosis causes the re-
modeling of mitochondrial structure that ultimately ena-
bles the release of cytochrome c, the defining moment of 
apoptosis [87, 101, 107–112]. Some studies suggest that 
BAX/BAK-mediated outer mitochondrial membrane per-
meabilization is not sufficient for cytochrome c release 
during apoptosis, but rather it requires mitochondrial 
fragmentation to occur first. Activation of BAX and BAK 
may lead to changes in mitochondrial cristae structure 
mediated by OPA1 monomerization which drives remodel-
ing and opening of cristae junctions [113, 114]. It is clear 
that the fragmentation of the mitochondria during apopto-
sis is independent of caspase activity [115], and it takes 
place through two coordinated, but independent, events: 
opening of cristae junctions, where cytochrome c is bound, 
and formation of the outer membrane pores [87, 111, 
116–120].  

DRP-1 colocalizes with the BAX/BAK pores [107, 121, 
122] where it promotes disintegration of the mitochondrial 
network. The fragmented mitochondria collapse in a peri-
nuclear pattern and show decreased and non-directed 
motility. Consistent with the increased mitochondrial 
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fragmentation, mitochondrial fusion has also been shown 
to be blocked once apoptosis is activated [123].  

Endoplasmic reticulum (ER) tubules frequently cross 
paths with mitochondria at points of impending fission and 
mark sites of mitochondrial division, a phenomenon known 
as ER-associated mitochondrial division (ERMD) [75, 124]. 
These studies also indicate that the ER might play an active 
role during the early stages of fission, even before DRP-1 
severs the mitochondria. At these “hotspots” mitochondria 
are constricted and allow for assembly of the diversion DRP 
helix. The ER may be able to alter mitochondrial membrane 
composition, facilitate factors, such as MFF, on the inside 
and/or outside of mitochondria to promote fission; how-
ever, the mechanisms underlying ER-mitochondrial micro-
domain or ER-mitochondrial constriction is not well estab-
lished [75]. While the function of DRP1 in constricting the 
mitochondria has been established using cancer cell lines, 
the exact mechanism by which DRP-1 regulates fragmenta-
tion during apoptosis or by which it maintains the constitu-
tive fragmentation of the mitochondrial network in stem 
cells and some cancer stem cells is less clear. It will be in-
teresting to determine if the DRP-1 mechanism of action 
and function in homeostatic conditions and stressed condi-
tions is modified in stem cells and cancer stem cells where 
mitochondria are maintained in a more fragmented state. 

While the high mitochondrial priming described in the 
first section and the increased mitochondrial fragmenta-
tion are two fundamental features that accompany entry 
into the pluripotent state, the protein network and exact 
signaling events that are modulating these changes remain 
elusive. We speculate that the BCL-2 family mediates both 
of these properties, and that reprogramming of differenti-

ated cells into stem cells provides a useful tool to dissect 
this intriguing possibility. Examining the connection be-
tween mitochondrial priming, fragmentation and the ac-
quisition of a particular stem cell fate opens an exciting 
opportunity for future studies to determine whether these 
properties are mechanistically related.  

 

DECREASED MITOCHONDRIAL-DEPENDENT META-
BOLISM 
The increased sensitivity to cell death as well as the struc-
tural and functional remodeling of the mitochondrial net-
work described in previous sections are accompanied by an 
essential switch from oxidative phosphorylation (OXPHOS) 
to glycolysis during reprogramming. The detailed molecular 
mechanisms and the temporal regulation underlying this 
switch remains unclear. ESCs and iPSCs have a similar met-
abolic profile to many cancer cells that predominantly de-
pend on glycolysis for rapid proliferation and self-renewal. 
There are landmark papers on the characterization of the 
differences in metabolic profiles between various stages of 
pluripotency in mPSCs (i.e., naïve PSCs, primed PSCs and 
epiblast stem cells) [125–127]. In this section we will de-
scribe the main metabolic pathways involved in promoting 
cellular reprogramming and maintaining pluripotency in 
human PSCs [128].  

 
Oxidative phosphorylation (OXPHOS) 
OXPHOS is a primary source of ATP production in eukaryot-
ic cells. A series of enzymes residing in the inner mitochon-
drial membrane oxidize the products of glycolysis and citric 
acid cycle to release protons into the inter-membrane 
space in the presence of oxygen. This establishes a proton 

FIGURE 4: Mitochondrial dynamics. Mitochondrial fusion and fission are regulated by guanosine triphosphatases (GTPases) proteins: DRP1 
mediates fission, OPA1 and Mitofusins (not shown) regulate mitochondrial fusion. In stem cells, the anti-apoptotic protein MCL1 has been 
shown to interact with DRP1 at the outer mitochondrial membrane and with OPA1 at the matrix. 
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gradient that drives the ATP synthase which shuttles back 
the hydrogen ions and produces 30 ATP molecules in the 
process, but it requires oxygen.  

Energy production of PSCs rely heavily on glycolysis 
over OXPHOS [129–131]. While OXPHOS results in in-
creased production reactive oxygen species (ROS) that 
could be deleterious, low ROS levels produced at the mito-
chondria have been shown to be critical for signaling and 
cell survival [132]. Thus, maintaining functional respiratory 
complexes may be critical for generating endogenous lev-
els of ROS critical for stem cell renewal and pluripotency. 
Mitochondrial uncoupling protein 2 (UCP2)-mediated sup-
pression of OXPHOS is required for the maintenance of 
pluripotency. UCP2 decouples glycolysis from OXPHOS by 
shunting pyruvate out of the mitochondria [133]. However, 
it is not completely understood whether this suppression 
of OXPHOS in PSCs still results in permissive low levels of 
endogenous ROS. Redox levels and pathways involved in 
redox signaling have not been thoroughly studied during 
cellular reprogramming, and remain an open area of inves-
tigation.    

 
Glycolysis 
Glycolysis involves ten reactions in the cytosol that rapidly 
catabolizes each six-carbon glucose molecule to produce 
two ATP molecules, without the requirement of oxygen. 
Glycolysis generates pyruvate, which in most cell types, can 
be shunted into two metabolic fates: in the presence of 
oxygen, pyruvate enters the mitochondria where it is oxi-
dized to acetyl-CoA via pyruvate dehydrogenase (PDH), 
whereas in the absence of oxygen, pyruvate is reduced into 
lactate via lactate dehydrogenase (LDH) [134–138]. The 
intermediates in glycolysis can also be shunted into mac-
romolecule synthesis during rapid cell growth. Thus, while 
it is a less efficient source of energy, glycolysis can gener-
ate both anabolic growth intermediates and ATP very rap-
idly owing to the much higher speed of glycolysis reactions. 
Primed pluripotent stem cells utilize glycolysis as a primary 
source of energy, converting glucose to lactate instead of 
directing the produced acetyl-CoA into the tricarboxylic 
acid cycle (TCA) cycle at the mitochondria as seen in ma-
ture differentiated cells which mostly rely on the TCA cycle 
for energy production [139–141]. Glycolysis in PSCs is cru-
cial for maintaining pluripotency. In fact, conversion to 
glycolysis is necessary for successful reprogramming as 
inhibition of glycolysis in hESCs has been shown to result in 
apoptosis and cell cycle arrest [142]. 

Interestingly, hypoxic conditions are known to stimu-
late glycolysis and have been shown to prevent the spon-
taneous differentiation of hESCs [143, 144]. As hypoxic 
niches are the primary residing locations for PSCs, glyco-
lytic metabolism might represent an adaptation to their 
surroundings. The increased senescence in MSCs cultured 
under normoxia (21% O2) compared to when cultured un-
der 5% O2 levels supports this hypothesis [145]. Hypoxia 
inducible factor-1 (HIF-1) regulates transcriptional activities 
and induces a switch from OXPHOS to glycolysis followed 
by suppression of mitochondrial biogenesis in response to 
hypoxia and thus, represent an important link between 

mitochondrial metabolism in PSCs and cellular reprogram-
ming [146–149]. 
 
Methionine metabolism 
Human PSCs use high levels of methionine instead of thre-
onine as seen in murine PSCs [126, 150]. This is because 
threonine dehydrogenase, which catabolizes threonine 
into 2-amino-3-ketobutyrate, evolved into a pseudogene in 
humans, unlike most other mammals [151]. Methionine 
provides the methyl group for many histone methyltrans-
ferases. Uptake of methionine from the culture media is 
required to maintain S-adenosylmethionine (SAM) levels in 
hPSCs. SAM is a methyl donor for histone methyltransfer-
ases (HMT) and DNA methyltransferases (DNMTs). Methi-
onine deprivation results in a rapid decrease in SAM, loss 
of H3K4me3, and reduced NANOG expression which trig-
gers human PSCs to differentiate. Prolonged methionine 
deprivation leads to cell cycle arrest and apoptosis in hu-
man PSCs [150]. SAM is consumed by NNMT (nicotinamide 
N-methyltransferase) which has been found upregulated in 
naïve hPSCs [152]. Thus, appropriate levels of methionine 
in the culture media are required to maintain SAM levels 
and global DNA and histone methylation, which are im-
portant for the maintenance of pluripotency [126]. 

Recent findings by Vernardis and collaborators corre-
late changes in metabolism to the differential responses of 
hiPSCs and hESCS, after prolonged exposure to ROCK (Rho 
kinase) inhibitor [153]. ROCK inhibition enables mainte-
nance of stem cell phenotype. The authors assessed the 
effect of ROCK inhibition on the metabolic characteristics 
of cells over a 96 hours (h) of culture period. Both hPSCs 
and hiPSCs showed downregulation of the methionine 
pathway following 12 h and 24 h exposure and upregula-
tion after 48 h. This suggests that both hPSCs and hiPSCs 
lose their highly proliferative characteristics after exposure 
to ROCK inhibition and regain their proliferation potential 
following adaptation to the new culture conditions. Inter-
estingly, though, no differences in the gene expression, 
protein levels and physiology of hESCs and hiPSCs were 
observed, a differential expression of metabolic regulators 
p53 and mTORC1 revealed the fluctuating state of metabo-
lism. Collectively, these and other studies have revealed 
the importance of methionine metabolism in integrating 
extrinsic amino acid information with the intrinsic epige-
nomics and pluripotency state to determine the cell fate of 
PSCs [154–157].  

 
Acetyl-CoA 
While the importance of metabolism on SAM levels and 
global methylation patterns has been studied in detail, the 
regulation of other key metabolites, such as acetyl-CoA, in 
PSCs and iPSCs needs additional investigation. Acetyl-CoA 
is not only a substrate for TCA cycle but it may serve for 
histone acetylation in PSCs for maintaining their pluripo-
tency [158]. By performing a high resolution nuclear mag-
netic resonance experiment, Moussaieff and collaborators 
identified a metabolic transition marked by loss of acetyl-
CoA that leads to histone deacetylation, during hPSC dif-
ferentiation [159]. The lipogenic enzyme acetyl-CoA car-
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boxylase has been found upregulated in iPSCs and their 
inhibition is linked to decreased reprogramming efficiency 
[160]. Likewise, chemical inhibition of histone deacetylases 
is shown to promote reprogramming of somatic cells to 
iPSCs [161]. These studies suggest that it is via shunting of 
pyruvate-cytosolic acetyl-CoA that glycolysis may contrib-
ute to pluripotency regulation [162]. 

A recent study reported that cytosolic acetyl-CoA, 
whichis produced through glycolysis and the pyruvate-
derived citrate flux via ATP citrate lyase (ACLY) is inhibited 
during PSC differentiation [159]. Acetyl-CoA blocks histone 
deacetylation and stem cell differentiation, while acetate, 
an alternative precursor of cytosolic acetyl-CoA, delays PSC 
differentiation by promoting histone acetylation in a dose-
dependent fashion [159].Thus, a glycolytic switch that reg-
ulates histone acetylation can have a profound effect on 
the ability of stem cells to differentiate [159]. Of note, the 
decrease in OXPHOS might be causal for the activation of 
glycolysis during reprogramming, as (OXPHOS-derived) ATP 
is a potent allosteric inhibitor of a number of enzymes in-
volved in glycolysis [163]. In sum, glycolysis may remodel 
the metabolome and facilitate the reprogramming of so-
matic cells into iPSCs [129, 164, 165]. 

While it is conventionally thought that metabolism is 
altered as a consequence of the chosen cell fate (i.e., met-
abolic demand drives the cell’s metabolic program), an 
intriguing possibility is that metabolism itself can dictate 
stem cell renewal and/or differentiation by altering tran-
scriptional networks that modulate cell fate [134]. It will be 
interesting to determine when during reprogramming and 
differentiation these metabolic changes take place. Charac-
terization of the temporal regulation of metabolism, mito-
chondrial dynamics, and apoptosis during stem cell fate 
decisions could provide critical insight into if the changes in 
these processes are a result of the stem cell state, or a 
necessary factor for maintenance of the state of the cell. 

 

CONCLUDING REMARKS 
Mitochondria are a crucial source for fuel and intermediate 
metabolites that are essential for many cellular functions. 
These organelles house key proteins involved in the regula-
tion of apoptosis and metabolism while maintaining a high-
ly dynamic network that is essential for their function. 
Decades of studying these organelles in isolation have al-
lowed for the elucidation of the main components involved 
in apoptosis, OXPHOS and mitochondrial dynamics, but we 
know less about the crosstalk between these pathways and 
how they are regulated as mitochondria communicate 
within themselves and with other cellular membranes. 
Many questions about mechanisms and integration of 
these mitochondrial changes and signaling networks re-
main unanswered. Future studies should be aimed to un-
derstand how these pathways intersect to regulate cell 
survival, what factors control the switch in mitochondrial 
network status, turnover, and connectivity to the ER as 
cells undergo reprogramming; how do changes in metabol-
ic state and metabolite levels affect epigenetic enzymes 
that regulate gene expression; and how is respiratory ca-

pacity increased with differentiation and lowered with 
reprogramming. Answering these questions could lead to a 
complete understanding of how mitochondrial biology and 
function modulate cell fate.  

Recent advances in the field of stem cell biology and in 
cellular reprogramming technology in particular, have cre-
ated new opportunities in understanding human disease, 
drug discovery, and regenerative medicine. The generation 
of iPSCs reveals the remarkable plasticity associated with 
differentiated cells and provides unprecedented oppor-
tunity to model diseases using patient samples. In addition 
to transcriptional and epigenetic remodeling, cellular re-
programming is also accompanied by dramatic changes in 
the structure and function of the mitochondria. In this re-
view, we describe three main mitochondrial events linked 
with reprogramming: increase of cell death sensitivity, 
fission of mitochondrial network, and decreased OXPHOS. 
We discussed potential mechanisms underlying the rewir-
ing of the cellular state. It is clear, that we are just begin-
ning to understand the integral roles played by mitochon-
drial morphology and function in development and diseas-
es. There are also other areas of exciting opportunities. 
Today, it is possible to culture additional types of human 
pluripotent stem cells that model cells from pre-
implantation and post-implantation embryos [125, 166]. 
These different phases of pluripotency, for example, naïve 
state (which resembles the pre-implantation blastocyst 
inner cell mass), primed state (which resemble the post-
implantation epiblast cells) and extended PSCs (which can 
generate embryonic and extraembryonic tissues), can all 
now be cultured in vitro simply by adapting different cell 
culture parameters. This possibility opens the potential to 
examine the function of mitochondrial morphology, dy-
namics and function in the context of the developmental 
potential of all of these model systems.    

Pioneer work from Ruth Slack’s group [11] highlighted 
the physiological significance of mitochondrial dynamics 
for stem cell identity and fate during mouse brain devel-
opment. Studies in human brain have been limited by the 
lack of model systems. The emergence of three-
dimensional models, known as organoids [167–170], has 
opened a new avenue of discovery and could provide an 
additional model system to study the effects of disrupting 
mitochondrial morphology/function on early human brain 
development. While human stem cells provide many ad-
vantages, it is difficult to model many stages of maturation, 
such as neurodevelopmental processes of myelination, 
gliogenesis etc., which may not occur in the time that a 
monolayer culture can be maintained. Understanding the 
molecular events governing the mitochondria-related 
hallmarks described in this review, in the context of three-
dimensional tissues could reveal new areas of discovery on 
the impact of disrupting mitochondrial function in the de-
velopment of degenerative diseases. Organoids better re-
capitulate functional, structural, and architectural com-
plexity of organs and their cellular diversity and thus, pro-
vide a powerful tool to dissect the principles of mitochon-
drial biology we have learned from other systems.  
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Recent discoveries have evidenced the interplay be-
tween mitochondrial dynamics, intermediate metabolism 
and epigenetics, thus, the traditional views of mitochon-
dria as isolated organelles and of metabolism as a devel-
opmental byproduct have largely been refuted. To what 
extent mitochondrial morphology and cellular metabolism 
are directly wired to cellular transitions associated with 
development and reprograming warrants future investiga-
tions. Recent studies shed light into the essential require-
ment for a fine-tuned regulation of mitochondrial mor-
phology and function for the maintenance of stem cell 
properties. New studies in these areas could have far-
reaching implications facilitating innovations leading to 
new treatments for patients affected by neurodevelop-
mental and neuropsychiatric disorders. 
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