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Abstract

Several dyes are currently available for use in detecting differentiation of mesenchymal cells into adipocytes. Dyes, such as Oil Red O, are
cheap, easy to use and widely utilized by laboratories analyzing the adipogenic potential of mesenchymal cells. However, they are not specific
to changes in gene transcription. We have developed a gene-specific differentiation assay to analyze when a mesenchymal cell has switched
its fate to an adipogenic lineage. Immuno-labelling against fatty acid binding protein-4 (FABP4), a lineage-specific marker of adipogenic
differentiation, enabled visualization and quantification of differentiated cells. The ability to quantify adipogenic differentiation potential of
mesenchymal cells in a 96 well microplate format has promising implications for a number of applications. Hundreds of clinical trials involve the
use of adult mesenchymal stromal cells and it is currently difficult to correlate therapeutic outcomes within and especially between such clinical
trials. This simple high-throughput FABP4 assay provides a quantitative assay for assessing the differentiation potential of patient-derived cells
and is a robust tool for comparing different isolation and expansion methods. This is particularly important given the increasing recognition of the
heterogeneity of the cells being administered to patients in mesenchymal cell products. The assay also has potential utility in high throughput
drug screening, particularly in obesity and pre-diabetes research.

Video Link

The video component of this article can be found at https://www.jove.com/video/57153/

Introduction

One of the key requirements established by the International Society for Cellular Therapy (ISCT) to define a multipotent mesenchymal stromal
cell is that the cells must have the ability to differentiate into the adipogenic, osteogenic and chondrogenic lineages1. Conventional methods
of measuring differentiation into these three lineages rely on the detection of macromolecular products using chemical dyes1. Dyes such as
Oil Red O (which stains fat droplets in cells that have undergone adipogenesis), are cheap and easy to use; however they fail to detect the
specific changes in gene expression that occur when mesenchymal cells differentiate into each respective lineage2. Here, we have developed
a differentiation assay which quantifies protein expression for a adipogenic lineage-specific marker, fatty acid binding protein-4 (FABP4)3,4,5.
FABP4 was initially found in murine 3T3-L1 adipocytes3 and was later discovered to be expressed in human subcutaneous adipose tissue6. It is
a cytosolic protein, which acts as a chaperone to guide fatty acid uptake by cells and is involved in the process of lipolysis4.

The precursor cells used for the differentiation assays were adipose derived mesenchymal stromal cells (ASCs)7,8. ASCs share many properties
with bone marrow-derived mesenchymal stem cells (BM-MSCs), a major mesenchymal stem cell population in adults8,9. ASCs offer several
advantages over BM-MSCs in a clinical application, as greater yield of cells can be isolated from more readily accessible tissue sources8,9. An
isolated cell population needs to meet certain criteria to be defined as ASCs. First, they must show adherence to plastic tissue culture vessels in
standard culture conditions1. They also must show specific surface antigen expression1. Uncultured ASCs are characterized by positive surface
antigen expression of CD34, CD73, CD90, low expression of CD105 and negative expression of CD45 and HLA-DR10. ASCs purified by culturing
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on plastic for 28 days (adherent purified ASCs) show positive expression of CD73, CD90 and CD105 and negative expression of CD34, CD45
and HLA-DR10. Finally, cells must retain the ability to differentiate into various lineages1,7,8.

Adipogenic differentiation protocols induce striking upregulation of FABP4 expression amongst other adipocyte lineage genes, so we used
immunochemistry to visualize FABP4 protein within cells, and then quantified FABP4 expression at the single cell level using an automated
fluorescent high-content screening microscope. This method is advantageous over traditional dyes as it enables highly specific confirmation of
adipocyte-lineage differentiation. Such gene specific lineage assays combined with high content screening methods also enable quantification of
the proportion of cells within a heterogeneous cell preparation that are capable of differentiation down a particular lineage. In our studies we used
the FABP4 assay to confirm loss of adipogenic differentiation potential of freshly isolated ASCs after cell culture.

Protocol

1. Preparing ASCs for Differentiation Assays

1. Prepare tissue culture reagents and handle live cells in a sterile tissue culture hood.
2. Prepare A0 medium: Dulbecco Modified Eagle Medium and Ham's F12 Medium (DMEM/F12), 1x glutamax, 1x penicillin/streptomycin.
3. Prepare complete ASC medium: DMEM/F12, 1x glutamax, 1x penicillin/streptomycin, 10% fetal bovine serum.
4. Use adherent purified ASCs, expanded in a T75 culture flask. Confirm the purity of ASCs using fluorescence-activated cell sorting (FACS)10.
5. Detach cells by removing all medium from the T75 culture flask and adding 2 mL of cell dissociation enzyme.
6. Leave the culture flask in the incubator (37 °C, humidified, 5% CO2) for 5-10 min. Take the culture flask out of the incubator and firmly tap the

side of flask. Check if the cells have detached from the culture flask using an inverted microscope.
7. Add 13 mL of A0 medium to a T75 culture flask.
8. Transfer 15 mL into a 15 mL centrifuge tube and centrifuge at 400 x g for 5 min.
9. Discard the supernatant and re-suspend the cell pellet in 1 mL of complete ASC medium.
10. Perform a cell count using hemocytometer.
11. Dilute the cell suspension to a concentration of 25,000 cells mL-1 in complete ASC medium.
12. Add 200 µL of A0 medium to all periphery wells of the 96 well plate (flat bottom). This reduces the evaporation rate of the wells containing

cells in the center.
13. Transfer 200 µL of cell suspension to a microwell plate to achieve a final cell density of 5 x 103 cells per well. Four wells are needed for each

treatment group (triplicate technical repeats and a no primary antibody control for immunocytochemistry (ICC)).
14. Leave microwell plate in the incubator (37 °C, humidified, 5% CO2) until cells reach confluence (3-4 days).

2. Inducing Differentiation of ASCs

1. Prepare adipogenic differentiation medium by supplementing complete ASC medium with 1 µM dexamethasome, 10 µM insulin and 200 µM
indomethacin. The complete differentiation medium is stable at 4 °C for 1 month, so only make as required for 1 assay. Store at 4 °C and
when required heat an aliquot to 37 °C in water bath.

2. After 3-4 days, take microwell plate out of incubator and replace half of the culture medium with adipogenic differentiation medium.
3. Perform a medium change every 2-3 days.

 

NOTE: Optimal adipogenic differentiation requires 14 days of culture in differentiation medium. Differentiated cells are analyzed using
traditional dye based stains and gene-specific stains.

3. Staining for Differentiation - Traditional Dye Based Stains

1. Prepare 4% formaldehyde solution by diluting 16% formaldehyde with PBS. Dilute only the amount needed for experiment and store tightly
sealed in a centrifuge tube.
 

CAUTION: Formaldehyde is a potential carcinogen and can cause irritation to nose, throat and lungs upon inhalation. Perform all procedures
relating to formaldehyde in a fume hood.

2. Prepare Oil Red O stock solution by dissolving 300 mg in 100 mL of isopropanol.
3. Take the microwell plate out of the incubator. The following steps can be performed in a non-sterile environment.
4. Remove all medium from wells and fix cells with 4% formaldehyde for 30 min.
5. During incubation time, prepare Oil Red O working solution. Working solution comprises 6 parts Oil Red O stock with 4 parts distilled water

(dH2O). Mix well and let sit at room temperature for 20 min, before filtering using 0.2 µm filter unit. Working solution is only stable for 2 h.
6. Remove all formaldehyde from wells by pipetting.
7. Wash cells once with 60% isopropanol and let the wells dry completely before proceeding.
8. Add 50 µL of Oil Red O working solution to each well and incubate at room temperature for 10 min.
9. Remove Oil Red O solution and immediately add dH2O. Wash with dH2O 4 times before viewing under light microscope.

4. Staining for Differentiation - Gene Specific Antibodies

1. Prepare stock solution of Tris buffered saline (TBS) by dissolving 80 g of NaCl, 2 g of KCl and 30 g of Tris Base to 1 L of dH2O (pH 8).
Prepare working solution by diluting 1:10 using dH2O. Store at room temperature.

2. Prepare immunobuffer (IB) (1% fetal bovine serum (FBS) in TBS). Label the 15 mL centrifuge tube with date and store at 4 °C. IB can be
used for 1 week from the date made.
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3. Prepare 0.25% casein blocker by dissolving 0.5 g of casein and 0.195 g of sodium azide in 200 mL of phosphate buffered saline (PBS).
Completely dissolve the ingredients by stirring overnight. Aliquot into 15 mL centrifuge tubes and store in a -20 °C freezer. Thawed casein
solutions can be kept at 4 °C for 1 month.

4. Prepare DAPI solution by diluting stock DAPI 1:200 in TBS. Store at 4 °C, protected from light.
5. Prepare stock thimerosal solution (10 mg mL-1) by dissolving thimerosal in sterile PBS. Store at 4 °C and dilute appropriate amounts to 0.4

mg mL-1 for use.
6. Fix and permeabilize cells with ice-cold methanol (96 well plate) for 5 min. Wash cells once with 200 µL of TBS.
7. Block with 50 µL of 0.25% casein at room temperature for 10 min and wash once with TBS.
8. Add 50 µL of primary antibodies diluted in IB (see Table 1 for antibody details) and incubate with lids closed for 1 h.
9. Wash once with 200 µL of TBS, and then 3 times with TBS for 5 min with gentle rocking.
10. Add 50 µL of secondary antibodies diluted in IB (see Table 2 for antibody details) with 1:2000 DAPI in each, incubate with lids closed for 1 h.

Cover the plate with foil to prevent photo-bleaching.
11. Wash once with TBS, and then twice with TBS for 15 min with gentle rocking.
12. Remove all TBS and add 200 µL of thimerosal solution.
13. Store plate at 4 °C, protected from light until imaging.

5. Imaging Cells using a High-Throughput Microscope

1. Analyze cells stained with gene specific antibodies and fluorophore conjugated secondary antibodies (immunofluorescence) using a high
content screening microscope controlled with accompanying software.

2. Load the microwell plate into the microscope stage. On the plate acquisition control, select image at medium range magnification (10X
objective lens). Make sure images are taken from the center of each well, with 50 µm spacing in between each site to ensure that one cell
does not appear in two adjacent fields.

3. Select the wells to image.
4. Select the appropriate channel combinations, exposure time and z-offset parameters. Refer to Table 3 for more detailed information of each

filters (Supplementary Table 2).
5. Acquire the assay using the acquisition wizard (images are automatically stored to Database server).
6. Use alternative channel combinations to acquire plates stained with Oil Red O. (Supplementary Table 3).

6. Analyze Acquired Image

Note: Remote access to the database server enables quick and easy evaluation of the images acquired and use of the image analysis software.

1. Open Cell Scoring module on the analysis software.
2. Detect cell nuclei using DAPI channel (nuclear marker) and segment nuclei of interest with user defined parameters for size and signal

intensity above background.
3. Detect FABP4 signal using FITC channel. Segment differentiated cells with user defined parameters for size and signal intensity above

background to select all FABP4 positive regions in each image.
4. Open Transfluor module on the analysis software to analyze plates stained with Oil Red O.
5. Specify the size and intensity of Oil Red O stained regions as 'pits'.

Representative Results

In this study, the adipogenic differentiation potential of ASCs with 3 different methods were measured. Immunofluorescent labelling of FABP4,
showed that this marker localised to the cytoplasm of differentiated cells, and the labelling overlapped with DAPI-labelled nuclei (Figure 1A).
Automated image analysis revealed a 24.6 fold increase in the % of FABP4 positive cells in the differentiated group in early passage cells
compared to 6.9 fold increase in late passage cells (Figure 1B). Oil Red O staining was localized to fat droplets dispersed throughout the
cytosol of differentiated cells, and the labelling rarely overlapped with DAPI-labelled nuclei; however from visual inspection, there are fewer cell
nuclei associated with Oil Red O fat droplets in the late passage cells compared to early passage cells (Figure 2A). Automated image analysis
revealed an 11.1 fold increase in the area of Oil Red O staining per cell in early passage cells and a 53.9 fold increase in staining area per cell
in late passage cells (Figure 2B). Imaging of both stains was performed, and then quantified using Cell Scoring (FABP4) or Transfluor (Oil Red
O) module in the software (Supplementary Figure 1, Supplementary Table 2-5). The upregulation of FABP4 expression was confirmed by
Western blot analysis (Figure 3, Supplementary Figure 5). All 3 analysis methods revealed that early passage ASCs have higher adipogenic
differentiation potential than late passage cells. The adipogenic differentiation did not affect total cell number per well (Supplementary Figure
2, 3). However, the nuclei size of FABP4-positive differentiated cells was significantly smaller than control cells for late passage ASCs only
(Supplementary Figure 3).

We demonstrated that as cells were expanded in culture, or passaged, the percentage of cells within the culture capable of adipogenic
differentiation decreased, consistent with previously published data11. It is important to note that factors such as age, body mass index or
previous medical history12 could not be controlled for in this study and likely contributed to the variability observed between different donor
samples (Supplementary Table 1).
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Figure 1: FABP4 immunolabelling shows that early passage cells have greater differentiation potential than later passage cells. A)
Representative images of early and late passage, control and differentiated cells labelled with DAPI (nuclear stain) and FABP4 are shown
alongside merge and segmentation images. The segmentation images display differentiated cells with a green overlay and undifferentiated cells
with a red overlay. B) A significant increase in FABP4 expressing cells was observed with adipogenic differentiation in early and late passage
cells, however, early passage cells demonstrated significantly greater increase in differentiation than late passage cells (Mann Whitney test *
denotes P<0.05 and *** denotes P<0.001). The data shown is the average across early passage (p4; n=8) or late passage (p10; n=4) donor
samples, ± SEM. Please click here to view a larger version of this figure.
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Figure 2: Oil Red O staining shows that early passage cells have greater differentiation potential than later passage cells. A) The
representative images of DAPI (nuclear stain) and Oil Red O (grey, lipid droplet stain) are shown alongside merge and segmentation images.
The segmentation images depict all nuclei with green overlay and Oil Red O stained lipid droplets with a red overlay. B) A significant increase
in Oil Red O staining area was observed with adipogenic differentiation. Early passage cells showed greater area of Oil Red O stain per cell
compared to late passage cells. The area of Oil Red O staining per cell (μm2) is used here as a measure of adipogenic differentiation potential.
The data shown is the average across early passage (p4; n=8) or late passage (p10; n=4) donor samples, ± SEM (Mann Whitney test * denotes
P=<0.05 and *** denotes P=<0.001). Please click here to view a larger version of this figure.
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Figure 3: Western blot analysis of FABP4 protein expression level of differentiated early and late passage ASCs. Semi-quantitative
analysis of the optical density of FABP4 bands as a ratio of total protein loading control, beta actin (ACTB), showed that FABP4 immunolabelling
was significantly increased in early passage and to a lesser degree late passage differentiated cells. The data shown is the average across early
passage (p4; n=8) or late passage (p10; n=4) donor samples, ± SEM (Mann Whitney test * denotes P=<0.05 and *** denotes P=<0.001). Please
click here to view a larger version of this figure.

Target antigen Isotype (clone) Species Dilution

FABP4 Polyclonal Rabbit 1:100

Table 1: Primary antibody

Targeting antibody Fluorophore label Species Dilution

Rabbit IgG Alexa fluoro 488 Goat 1:200

Table 2: Secondary antibody

Supplementary Figure 1: Overview of the image analysis virtual environment. The stained cells were imaged using an automated, high-
throughput fluorescent microscope to avoid any source of bias. Images acquired using ImageXpress Micro XLS, were saved directly to the
MDCStore Data Manager database, and made available for viewing through virtual desktop connections, which users use to optimize and test
their specific analysis parameters. Images were analyzed with a dedicated 'autorun' instance which enables multiple different users to send 'jobs'
to the autorun queue. Users can retrieve their data via the virtual instance once their 'jobs' are completed. Please click here to download this
figure.

Supplementary Figure 2: Comparison of total cell count per well of control and differentiated wells for early and late passage ASCs,
using FABP4 stained plate. The data shown is the average across early passage (p4; n=8) or late passage (p10; n=4) donor samples, ± SEM.
There was no statistically significant difference between control and differentiated cells for both early and late passage ASCs. There were more
cells per well for early passage cells compared to late passage cells. Please click here to download this figure.

Supplementary Figure 3: Comparison of total cell count per well of control and differentiated wells for early and late passage ASCs,
using Oil Red O stained plate. The data shown is the average across early passage (p4; n=8) or late passage (p10; n=4) donor samples, ±
SEM. There was no statistically significant difference between control and differentiated cells for both early and late passage ASCs. Please click
here to download this figure.

Supplementary Figure 4: At later passages, differentiated cells that were FABP4 positive had significantly smaller nuclei area than
cells in control wells. There was no statistically significant difference in nuclei area between control and differentiated cells in early passage.
The data shown is the average across early passage (p4; n=8) or late passage (p10; n=4) donor samples, ± SEM. (Unpaired t test. *** denotes
P=<0.001). Mean ± SEM are shown.) Please click here to download this figure.

Supplementary Figure 5: Images of Western blot gels. Red channel depicts beta-actin. Green channel depicts FABP4 immunolabelling.
Please click here to download this figure.

Supplementary Table 1: Clinicopathological information of donors Please click here to download this table.

Supplementary Table 2: Imaging settings (FABP4) Please click here to download this table.

Supplementary Table 3: Imaging settings (Oil Red O) Please click here to download this table.

Supplementary Table 4: Table of analysis parameters used (FABP4). Cell Scoring module.  Please click here to download this table.

Supplementary Table 5: Table of analysis parameters used (Oil Red O). Trans Fluor module.  Please click here to download this table.
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Discussion

This paper demonstrates the utility and advantages of FABP4 immunolabelling to accurately detect and quantify mature adipocytes derived
from mesenchymal stromal cells. FABP4 is able to detect changes in expression of a lineage specific protein3,4,5 in mature adipocytes,
contrary to other commonly used dyes which label macromolecular changes13,14 such as Oil Red O15, Nile Red16 and Sudan Black17. FABP4
immunolabelling allows for visualization and analysis of changes in cellular morphology. This is a distinctive advantage over previously described
methods using quantitative reverse transcription PCR (RT-qPCR) that analyzes changes at the transcript level without any visualisation5,18,19,20,
or flow cytometry that requires cells to be in suspension20, or Western blotting that requires cells to be lysed to isolate protein19,20. FABP4
immunolabelling is stable in fixed cells, does not leak out in solution and being a cytosolic protein when labelled in an adherent monolayer of
cells, will overlap with the nucleus allowing for easy visualisation and added accuracy in the automated analysis.

High-content screening is advantageous because it is fast, accurate, reproducible and objective. It provides a platform for cost effective use of
reagents and researcher time, since image acquisition and analysis require minimal manual manipulation and rely on the automatic processing
of the instrument. Several factors were identified as critical to the accuracy and reproducibility of the high-content screening assays31. The
quantification of antigen expression relies on image quality. For successful image analysis, images from each channel per well must be in focus
and fall within an optimal dynamic range for gray values (Auto Expose settings are ideal). Out of focus or saturated images lead to erroneous
results.

Some potential limitations of the methods described in this article include the following. The requirement for specialised imaging equipment
and analysis software. While outside the scope of this article, alternative open source software options (for example, ImageJ32,33, Fiji34,
CellProfiler32,35) can be used to perform similar image segmentation tasks; however they do require the skills to either download and tailor
macros available online or write macros/commands for their specific analysis pipelines. Inherent to all automated imaging analysis pipelines
is a level of background noise. This can largely be attributed to debris, poor image quality or analysis error, emphasizing the need for careful
sample preparation and careful set-up of the imaging and analysis platform. The FABP4 label in mice has been found to detect undifferentiated
progenitors30; while the controls in this study (which consist of undifferentiated cells) are devoid of specific FABP4 staining. This under-scores the
necessity of checking FABP4 expression in undifferentiated progenitors in each biological context where the assay is employed.

In order to draw valid comparisons between the FABP4 labelling and Oil Red O staining, the output measurements from image analysis needed
to be biologically relevant. Consequently, the measurement, '% positive cells' was used for FABP4, and 'area of staining per cell' was used for
Oil Red O. It is noteworthy that the measure '% positive cells' was not used for Oil Red O labelled cells in our study because it was not possible
to attribute the labelled fat droplets accurately to a given nucleus; the fat droplets varied considerably in size, number and distribution across the
cell body and rarely overlapped with the nucleus. Oil Red O staining variability exists between cells derived from different tissue sources; while
the% positive cells measure was not appropriate for the current study, another group has used it successfully to quantify adipocytes derived from
human gland stem cells22 where the Oil Red O staining appeared as one large fat droplet which spanned the cytoplasm and overlapped with
nuclei and enabling data to be presented as% positive cells.

In contrast, the morphology of FABP4 immunolabelling is consistent in adipocytes derived from a range of different tissue sources23,24,25. The
ability to quantify the proportion of cells within a culture capable of differentiation has a number of applications. Adult mesenchymal stromal
cells hold significant promise for a diverse range of therapeutic uses. A significant issue that has arisen with clinical translation is the inherent
variability in the capability of these cells between patients26, between sites of isolation27,28, and between methods for isolation12 and expansion
of cell numbers12 for therapeutic use. It has been shown previously that cultures of adherent stromal cells are frequently heterogeneous, with
some cells capable of differentiation and some not 12,17 as our FABP4 assay demonstrates for ASC cultures. Assays like this, combined with
enrichment techniques, will help identify sub-populations within heterogeneous cultures capable of lineage-specific differentiation. Having a
standardized, quantifiable assay such as this FABP4 assay provides a simple method for comparison between all of these variables, and the
potential to evaluate therapeutic outcomes within and between clinical trials.

The quantification of FABP4 in a semi-automated fashion enables objectivity and reproducibility in analysis across many donor cases and
samples. Furthermore as the label is cytoplasmic, it can potentially be used to analyze hypertrophy (enlargement of adipocyte size) in addition
to hyperplasia (increase in adipocyte number), a distinction that is of considerable importance in obesity research, where hypertrophy is strongly
associated with adipose dysfunction in obese individuals21. The obesity epidemic has spurred a significant amount of interest in identifying drugs
capable of controlling lipid storage. This FABP4 assay also provides a simple readout for screening thousands of compounds for their ability to
inhibit lipid accumulation.

Disclosures

The authors declare no conflicts of interest.

Acknowledgements

We are grateful to the donors of the adipose tissues and the research professionals who collect and provide this resource to us for research use.
We would like to acknowledge funding support by Allergan. We are also grateful to the University of Auckland, Faculty of Medical and Health
Sciences Performance Based Research Fund for funding the cost of videoing and editing for submission of this article.

https://www.jove.com
https://www.jove.com
https://www.jove.com


Journal of Visualized Experiments www.jove.com

Copyright © 2018  Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

March 2018 |  133  | e57153 | Page 8 of 8

References

1. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position
statement. Cytotherapy. 8 (4), 315-317 (2006).

2. Proescher, F. Oil Red O Pyridin, A Rapid Fat Stain. Biotech Histochem. 2 (2), 60-61 (1927).
3. Matarese, V., Bernlohr, D. a. Purification of murine adipocyte lipid-binding protein. Characterization as a fatty acid- and retinoic acid-binding

protein. J Biol Chem. 263 (28), 14544-14551 (1988).
4. Lafontan, M., Langin, D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 48 (5), 275-297 (2009).
5. Sekiya, I., Larson, B.L., Vuoristo, J.T., Cui, J.C., Prockop, D.J. Adipogenic Differentiation of Human Adult Stem Cells From Bone Marrow

Stroma (MSCs). J Bone Min Res. 19 (2), 256-264 (2004).
6. Baxa, C. et al. Human adipocyte lipid-binding protein: purification of the protein and cloning of its complementary DNA. Biochemistry. 28 (22),

8683-8690 (1989).
7. Bourin, P. et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived

stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So.
Cytotherapy. 15 (6), 641-648 (2013).

8. Zuk, P. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2), 211-228 (2001).
9. Orbay, H., Tobita, M., Mizuno, H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical

applications. Stem Cells Int. 2012 (2012).
10. Feisst, V., Brooks, A.E.S., Chen, C.-J.J., Dunbar, P.R. Characterization of mesenchymal progenitor cell populations directly derived from

human dermis. Stem Cells Dev. 23 (6), 631-42 (2014).
11. Mitterberger, M.C., Lechner, S., Mattesich, M., Zwerschke, W. Adipogenic differentiation is impaired in replicative senescent human

subcutaneous adipose-derived stromal/progenitor cells. Journals Gerontol - Ser A Biol Sci Med Sci. 69 (1), 13-24 (2014).
12. Baer, P.C., Geiger, H. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells

Int. 2012 (2012).
13. Xu, S. et al. Evaluation of foam cell formation in cultured macrophages: An improved method with Oil Red O staining and DiI-oxLDL uptake.

Cytotechnology. 62 (5), 473-481 (2010).
14. Hopkins, P.M. et al. Oil red O stain of alveolar macrophages is an effective screening test for gastroesophageal reflux disease in lung

transplant recipients. J Hear Lung Transplant. 29 (8), 859-864 (2010).
15. Dragunow, M., Cameron, R., Narayan, P., O'Carroll, S. Image-based high-throughput quantification of cellular fat accumulation. J Biomol

Screen. 12 (7) (2007).
16. Greenspan, P., Mayer, E.P., Fowler, S.D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 100 (3), 965-973

(1985).
17. Muraglia, a, Cancedda, R., Quarto, R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a

hierarchical model. J Cell Sci. 113 ( Pt 7, 1161-1166 (2000).
18. Neubauer, M. et al. Basic fibroblast growth factor enhances PPARgamma ligand-induced adipogenesis of mesenchymal stem cells. FEBS

Lett. 577 (1-2), 277-283 (2004).
19. Janderova, L., McNeil, M., Murrell, A.N., Mynatt, R.L., Smith, S.R. Human mesenchymal stem cells as an in vitro model for human

adipogenesis. Obes Res. 11 (1), 65-74 (2003).
20. Aldridge, A., Kouroupis, D., Churchman, S., English, A., Ingham, E., Jones, E. Assay validation for the assessment of adipogenesis of

multipotential stromal cells--a direct comparison of four different methods. Cytotherapy. 15 (1), 89-101 (2013).
21. Wang, Q.A., Tao, C., Gupta, R.K., Scherer, P.E. Tracking adipogenesis during white adipose tissue development, expansion and

regeneration. Nat Med. 19 (10), 1338-1344 (2013).
22. Gorjup, E., Peter, L., Wien, S., von Briesen, H., Schmitt, D. Automated microscopic quantification of adipogenic differentiation of human gland

stem cells. Ann Anat. 191 (1), 13-22 (2009).
23. Wojciechowicz, K., Gledhill, K., Ambler, C.A., Manning, C.B., Jahoda, C.A.B. Development of the mouse dermal adipose layer occurs

independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLoS One. 8 (3), e59811 (2013).
24. Sandhu, M.A., Jurek, S., Trappe, S., Kolisek, M., Sponder, G., Aschenbach, J.R. Influence of Bovine Serum Lipids and Fetal Bovine Serum

on the Expression of Cell Surface Markers in Cultured Bovine Preadipocytes. Cells Tissues Organs. 204 (1), 13-24 (2017).
25. LaRosa, P.C. et al. Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes. Physiol

Genomics. 31 (3), 544-553 (2007).
26. Sen, A. et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem. 81 (2),

312-9 (2001).
27. Zuk, P.A. et al. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol Biol Cell. 13 (12), 4279-4295 (2002).
28. Russo, V., Yu, C., Belliveau, P., Hamilton, A., Flynn, L.E. Comparison of Human Adipose-Derived Stem Cells Isolated from Subcutaneous,

Omental, and Intrathoracic Adipose Tissue Depots for Regenerative Applications. Stem Cells Transl Med. 3 (2), 206-217 (2014).
29. Tilg, H., Moschen, A.R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 6 (10), 772-783

(2006).
30. Shan, T., Liu, W., Kuang, S. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose

tissues. FASEB J Off Publ Fed Am Soc Exp Biol. 27 (1), 277-287 (2013).
31. Narayan, P.J., Dragunow, M. High content analysis of histone acetylation in human cells and tissues. J Neurosci Methods. 193 (1) (2010).
32. Buchser, W. et al. Assay Development Guidelines for Image-Based High Content Screening, High Content Analysis and High Content

Imaging. Assay Guid Man. 1-80 (2004).
33. Abràmofff, M.D., Magalhães, P.J., Ram, S.J. Image processing with ImageJ Part II. Biophotonics Int. 11 (7), 36-43 (2005).
34. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682 (2012).
35. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7 (10), R100 (2006).

https://www.jove.com
https://www.jove.com
https://www.jove.com

