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Abstract: Identification of genetic markers of a human disease, which is generally sporadic, may
become an essential tool for the investigation of its molecular mechanisms. The role of ABCA7 in
Alzheimer’s disease (AD) was discovered less than ten years ago when meta-analyses provided
evidence that rs3764650 is a new AD susceptibility locus. Recent research advances in this locus and
new evidence regarding ABCA7 contribution to the AD pathogenesis brought a new understanding
of the underlying mechanisms of this disorder. An interesting, up-to-date review article "ABCA7 and
Pathogenic Pathways of Alzheimer’s Disease" by Aikawa et al. (2018), outlines the ABCA7 role in
AD and summarizes new findings in this exciting area. ABC transporters or ATP-binding cassette
transporters are a superfamily of proteins belonging to a cell transport system. Currently, members of
the family are the focus of attention because of their central role in drug pharmacokinetics. Two recent
findings are the reason why much attention is drawn to the ABCA7 family. First, is the biochemical
data showing a role of ABCA7 in amyloid pathology. Second, genetic data identifying ABCA7 gene
variants as loci responsible for the late-onset AD. These results point to the ABCA7 as a significant
new contributor to the pathogenesis of AD.
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1. Alzheimer’s Disease (AD) is a Devastating Neurodegenerative Disease

Currently, an estimated 5.8 million Americans have AD, and this number is growing quickly.
Two hundred thousand individuals under age 65 have younger-onset AD [1]. A key feature of
AD is a buildup of extracellular amyloid-β (Aβ) and corresponding plaques within the brain. This
accumulation occurs because of the altered balance between Aβ production and clearance. Another
important characteristic of AD is the accumulation of hyperphosphorylated Tau protein. This buildup
leads to an increase in neurofibrillary tangles (NFTs). Accumulation of NFTs represented by bundles of
filamentous protein occurs most often in the cytoplasm of neurons. Elevated levels of NFTs, neurotoxic
Aβ peptides, and loss of neurons and synapses, result in brain atrophy. These are the main factors in
the progression of AD, which can be classified as a conformational disease [2] because of the roles of
naturally unfolded prone to aggregation proteins in its development [3,4]. Currently, basic researchers
and pharmaceutical companies have put an enormous amount of effort and funds toward finding
novel targets for pharmacological interventions for AD.

2. Contribution of Genetic Factors to AD Pathogenesis

The majority of AD cases are late-onset and sporadic. However, investigation of genetic forms of
AD and identification of susceptibility loci for late-onset Alzheimer’s disease (LOAD) is an important

Brain Sci. 2020, 10, 121; doi:10.3390/brainsci10020121 www.mdpi.com/journal/brainsci

http://www.mdpi.com/journal/brainsci
http://www.mdpi.com
https://orcid.org/0000-0002-0972-3948
http://www.mdpi.com/2076-3425/10/2/121?type=check_update&version=1
http://dx.doi.org/10.3390/brainsci10020121
http://www.mdpi.com/journal/brainsci


Brain Sci. 2020, 10, 121 2 of 3

approach raising hope for finding new mechanisms and new targets in AD pathogenesis. Although
genetic forms of AD are relatively rare, their investigation helps discover detailed mechanisms of this
disorder [5]. Researchers use various approaches to detect the genetic variants contributing to disease
traits with complex inheritance. The ε4 allele of apolipoprotein E (ApoE), remains the most significant
sequence variant affecting the risk of late-onset AD [6]. Genetic studies revealed other major risk factors
that markedly affect the risk of developing AD. The majority of them are rare variants in the following
genes: Amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) [5]. Recently,
a rare susceptibility variant in TREM2 was discovered [7,8]. Lambert et al. (2013) [9] performed a
meta-analysis of GWAS in European ancestry and discovered a novel susceptibility variant rs4147929
in an intron of the ABCA7 gene. However, the existing genetic data could not explain all phenotypic
forms of AD, and a large portion of the genetic risk for AD remains unexplained.

3. ABCA7 and AD

The recent biochemical and genetic data point to ABCA7 (ATP-binding cassette sub-family A
member 7) as a new contributor to AD pathogenesis [10]. Common variants of this gene were associated
with the risk for LOAD [11,12]. Recent evidence describing the risk of gene variants of ABCA7 for
AD development and its role in the AD pathogenesis are described in the Aikawa et al. review [10].
Genetic data pointing to the ABCA7 gene contribution to AD began to appear about ten years ago. An
important finding indicating a contributing role of ABCA7 in AD development was the identification
of the common single nucleotide polymorphism (SNP) variant rs3764650 in an ABCA7 intron. This
marker is the susceptibility loci for LOAD [11] in Caucasian cohorts. Next, a missense variant associated
with the risk for LOAD due to the G1527A substitution in ABCA7 was described [13]. Analysis of
ABCA7 gene variants in different populations by exome sequencing, whole-genome sequencing, and
targeted resequencing confirmed the conclusion about the role of ABCA7 in AD. These studies showed
that some of the low-frequency variants (1%–5%) and rare variants (less than 1%) have significant
associations with the risk for AD [14]. Based on the data about the loss-of-function of ABCA7, the three
most probable mechanisms of its involvement in AD pathology are proposed. First, is the disturbance
of microglial Aβ clearance. Second, is the accelerated APP processing and third, is the interference
with the elimination of various brain debris during AD progression.

4. ABCA7 Structure and Functions

Members of the family are built of multiple subunits, and one or two of them are usually associated
with membrane ATPases. ABCA7 is a large protein containing 2146 amino acids with a molecular
weight of 220 kDa. Its closest homolog is ABCA1, with 54% of sequence identity. These two proteins
also share some functional similarity [10], but their transcription is regulated differently. ABCA7 is
a ubiquitous protein with high expression in microglia. It is expressed in a tissue-specific manner
as two variants. Type I cDNA is a full-length, whereas Type II is a shorter splicing variant. ABCA7
maintains intracellular lipid metabolism and regulates cellular homeostasis. It is involved in the efflux
of cellular phospholipids, cholesterol, phosphatidylcholine, and other lipids. The family includes
about fifty members subdivided into seven subfamilies. Functions of the members of this family are to
perform and control the efflux of intracellular cholesterol and phospholipids. ABCA7, in addition to
the functions of the mediator of lipid metabolism, also participates in the generation of immune and
regulation of microglial responses to acute inflammatory challenges.

The high level of ABCA7 expression in cell culture increases the amounts of intracellular/cell
surface ceramide and intracellular phosphatidylserine, causing cell cycle arrest. The variety of processes
in which ABCA7 is involved is amazing. In addition to being a modulator of several biochemical
pathways, ABCA7 regulates phagocytic activity in microglia. This activity may play an important role
in AD pathogenesis. In particular, ABCA7 is involved in phagocytosis of Aβ aggregates and, therefore,
participates in Aβ elimination in the brain.
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Furthermore, ABCA7 is an essential player in the regulation of APP processing. Several mechanisms
pinpoint to this ABCA7 role. The most important one of them is via altered lipid profile. Indirect evidence
supporting this point of view suggests that elevated levels of phospholipids, cholesterol, and phospholipids
regulate APP processing. Due to the involvement of ABCA7 in many processes critically involved in AD
pathogenesis, further investigation is necessary to uncover their relationship in more detail.
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