
MicrobiologyOpen. 2018;7:e637.	 ﻿	   |  1 of 13
https://doi.org/10.1002/mbo3.637

www.MicrobiologyOpen.com

1  | INTRODUC TION

In the past decade, the amount of research related to lignocellulosic 
ethanol (second generation ethanol) has increased extensively in the 
scientific community. Several bacteria and fungi species have been 
studied in terms of the intra and extracellular enzymatic complexes 
involved in the deconstruction of the polymeric components that 
make up the lignocellulosic biomass. On the other hand, every year a 

novel or modified pretreatment technology becomes available with 
the aim of improving yields during the saccharification of the ligno-
cellulosic materials. However, we are still far away from producing 
economically competitive lignocellulosic bioethanol (Mohanram, 
Amat, Choudhary, Arora, & Nain, 2013), largely because the lack of 
microbial enzymatic cocktails that break down the recalcitrant lig-
nocellulosic biomass in an efficient manner (Gupta, 2016). Since the 
amount of plant biomass has been estimated to be of 180 billions of 
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Abstract
Lignocellulose represents the most abundant source of carbon in the Earth. Thus, 
fraction technology of the biomass turns up as an emerging technology for the devel-
opment of biorefineries. Saccharification and fermentation processes require the 
formulation of enzymatic cocktails or the development of microorganisms (naturally 
or genetically modified) with the appropriate toolbox to produce a cost-effective fer-
mentation technology. Therefore, the search for microorganisms capable of develop-
ing effective cellulose hydrolysis represents one of the main challenges in this era. 
Schizophyllum commune is an edible agarical with a great capability to secrete a myr-
iad of hydrolytic enzymes such as xylanases and endoglucanases that are expressed 
in a high range of substrates. In addition, a large number of protein-coding genes for 
glycoside hydrolases, oxidoreductases like laccases (Lacs; EC 1.10.3.2), as well as 
some sequences encoding for lytic polysaccharide monooxygenases (LPMOs) and 
expansins-like proteins demonstrate the potential of this fungus to be applied in dif-
ferent biotechnological process. In this review, we focus on the enzymatic toolbox of 
S. commune at the genetic, transcriptomic, and proteomic level, as well as the require-
ments to be employed for fermentable sugars production in biorefineries. At the end 
the trend of its use in patent registration is also reviewed.
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tons only above the ground and near 40 millions tons in the ocean 
(Chen, 2014), the exploitation of these materials for production of 
biofuels and value-added products is a great alternative to reduce 
the fossil fuels dependence that as a society we have.

This review focuses on the unexploited and enormous bio-
technological potential of the basidiomycete fungus Schizophyllum 
commune for the production of novel enzymes that could boost the 
biofuel and biomass derived product research. Also, this work sum-
marizes the research that has been conducted in the last two de-
cades and that supports the use of S. commune as a current aspirant 
for white, green and gray biotechnology applications.

2  | GENER AL A SPEC TS OF 
SCH IZOPHYLLUM COM MUN E

Schizophyllum commune is an agarical mushroom-forming fungus, 
able to complete its life cycle in about 10 days and is one of the most 
commonly found fungi, whose distribution covers all continents with 
the exception of Antarctica (Ohm, de Jong, Lugones, et al., 2010). 
Schizophyllum commune has been successfully genetically modified 
and used as molecular tool for studying cell wall biogenesis (Wessels, 
1986), hyphal fusion and development (Ahmad & Miles, 1970; Van 
Wetter, Schuren, Schuurs, & Wessels, 1996), mating type (Kothe, 
1999; Yang, Shen, Park, Novotny, & Ullrich, 1995), heterologous 
expression of genes (Schuren & Wessels, 1998), gene deletions (De 
Jong, Ohm, De Bekker, Wösten, & Lugones, 2010; Ohm, de Jong, 
Berends, et al., 2010), among others. Although it has been detected 
causing illness in animals and humans, its lifestyle is mainly saprobic 
by causing white rot. Actually, it has been reported that at least 150 
genera of woody plants are substrates for S. commune, but it also 
colonizes softwood and grass silage (Ohm, de Jong, Lugones, et al., 
2010). This feature is one of the most interesting points in a bio-
technological sense about this fungus, since it allows S. commune to 
colonize a vast diversity of lignocellulosic substrates, expanding the 
range of possibilities and biotechnological products (e.g., enzymes 
(phytase, lipase, holocellulase, etc.) (Arboleda Valencia et al., 2011; 

Salmon et al., 2012; Singh, Singh, Kumar, & Thakur, 2015), bioethanol 
(Horisawa, Ando, Ariga, & Sakuma, 2015), biosurfactants (Wessels, 
de Vries, Asgeirsdottir, & Springer, 1991), industrial cleaning-in-place 
(CiP) agents (Boyce & Walsh, 2012), polysaccharides (Singh, Kumar, 
& Thakur, 2017), polymers (Jayakumar, Kanth, Chandrasekaran, 
Raghava Rao, & Nair, 2010), etc.) that can be obtained with this mi-
crobe (Figure 1). As a matter of fact, S. commune has the potential 
to degrade all components of the lignocellulosic biomass, since its 
genome contain 240 gene candidates for glycoside hydrolases (89 
account for plant polysaccharides degradation, see Figure 2), 75 for 
glycosyl transferases, 16 for polysaccharide lyases, 17 for expansin-
related proteins, 30 for carbohydrate esterases, and 16 for lignin-
degrading oxidoreductases (Ohm, de Jong, Lugones, et al., 2010). 
This extensive repertoire of plant cell wall degrading and modifying 
enzymes makes S. commune an outstanding candidate for studies 
regarding the mechanism by which this fungus degrades biomass in 
order to exploit its potential and improve the efficiency of industrial 
processes such as the lignocellulosic ethanol production, bioconver-
sion of agricultural by-products or biodegradation of xenobiotics 
and pollutants (Table 1).

3  | PROTEINS INVOLVED IN CELLULOSE 
DECONSTRUC TION BY SCH IZOPHYLLUM 
COM MUN E

The subject of cellulose deconstruction by fungi leads us to think im-
mediately of organisms like Trichoderma reesei, Neurospora crassa, and 
various Aspergillus species, considering the ascomycetes group, and 
mainly in Phanerochaete chrysosporium when referring to the basidio-
mycetes group, leaving out of study a significant group of basidiomy-
cetes with the same or even greater potential to degrade cellulose. 
One of these basidiomycetes is the “split gill” fungus S. commune, 
whose genome sequence was published in 2010 (Ohm, de Jong, 
Lugones, et al., 2010). Its genome revealed that it contains 240 candi-
date genes belonging to glycoside hydrolases from different families, 
almost 80 more GH genes than those reported for P. chrysosporium.

F IGURE  1 Biotechnological 
applications of Schyzophyllum commune. 
Glycoside hydrolase (GH), carbohydrate 
esterase (CE), glycosyltransferase 
(GT), polysaccharide lyase (PL), lytic 
polysaccharide monooxygenase (AA9), 
laccase (AA1), peroxide-producing 
enzymes (AA3, and AA5)
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The study of the hydrolytic machinery in organisms like S. com-
mune is attractive mainly for the lignocellulosic biofuels industry, 
since the number of published works is still growing year by year 
in this subject, but is not limited to this area. Something remarkable 
is that the amount and diversity of published work related with the 

S. commune ′s cellulolytic system is scarce (Table 2) when compared 
with published work (in this area) of fungi like T. reesei, N. crassa or 
P. chrysosporium, despite the fact that studies such as those carried 
out by Arboleda Valencia et al. (2011), Lee et al. (2014), Zhu et al., 
(2016) have demonstrated that S. commune has an important po-
tential in the lignocellulose bioconversion field, even exhibiting 
cellulolytic and xylanolytic activities comparable with those ob-
tained using an enzymatic commercial preparation of Trichoderma 
longibranchiatum.

The cellulose degradation mechanisms by ascomycetes and 
basidiomycetes have been revised by Glass, Schmoll, Cate, and 
Coradetti (2013) and Baldrian and Valásková (2008). However, al-
though the role of the classic enzymes involved in cellulose decon-
struction such as endoglucanases, cellobiohydrolases, cellobiose 
dehydrogenases and beta glucosidases is well documented in fungi, 
the role of the termed “amorphogenic proteins” or plant cell wall re-
modeling proteins (expansins and expansin-related proteins) in cel-
lulose deconstruction is not well understood in both, ascomycetes 
and basidiomycetes. These amorphogenic proteins cause swelling of 
cellulose fibers and fragmentation of cellulose aggregations at the 
beginning of the enzymatic hydrolysis of cellulose before any de-
tectable amount of reducing sugars is released (Gourlay et al., 2013). 
From these latter proteins, the swollenin from T. reesei is the most 
studied, and after its discovering it was suggested as the C1 factor 
of the cellulose enzymatic degradation mechanism originally pro-
posed by Mandels and Reese (1999) and Reese, Siu, and Levinson 
(1950). Nevertheless, that hypothesis has been rejected by the work 
of Eibinger et al. (2016), who demonstrates that swollenin is not an 
amorphogenesis factor when acting on pure cellulose. Nonetheless, 
the possibility that one or more of these plant cell wall remodeling 
proteins may be acting as the C1 factor is yet to be proven. Indeed, 
the genome of S. commune contains at least 17 expansin-related pro-
teins, one of which has already been cloned and expressed in Pichia 
pastoris, showing a 23% increment in avicel hydrolysis when used 
as pretreatment before the addition of a cellulase mixture (Tovar-
Herrera et al., 2015). However, the study of this type of proteins is 
relatively new in microbes, and there is a lot of information yet to be 
obtained from them.

Another group of proteins with great importance and also involved 
in biomass deconstruction is the group of enzymes known as lytic 
polysaccharide monooxygenases (LPMOs) classified in auxiliary activ-
ity families 9 (AA9), 10 (AA10), 11 (AA11), and 13 (AA13) in the CAZy 
database (Frandsen et al., 2016; Frommhagen et al., 2015; Hemsworth, 
Henrissat, Davies, & Walton, 2013; Silveira & Skaf, 2016; Vaaje-Kolstad 
et al., 2010). From these families, AA9 corresponds to fungal proteins 
involved in cellulose deconstruction (some of them are also active in 
hemicellulose), while AA10 belongs to a bacterial group of LMPOs ac-
tive on cellulose and chitin, and AA11 and AA13 are fungal proteins ac-
tive on chitin and starch, respectively. AA9 proteins have been studied 
in N. crassa (Tian et al., 2009), T. reesei (Tanghe et al., 2015), P. chrysospo-
rium (Westereng et al., 2011), Chaetominium globosum (Kim et al., 2015) 
and Myceliophthora thermophile (Frommhagen et al., 2015), and have 
been reported to improve the release of glucose and oligosaccharides 

F IGURE  2 Glycoside hydrolase (GH) genes present in the 
genome of Schizophyllum commune. Only those involved in plant cell 
wall deconstruction were considered

TABLE  1 Examples of biotechnological uses of Schizophyllum 
commune

Biotechnological uses References

Lipase production Singh, Singh, Kumar, and 
Thakur (2014)

Phytase production Salmon et al. (2012)

Lipase inmobilization for fatty 
acids methyl esters

Singh et al. (2015)

Decolorization of textile dyes Asgher, Yasmeen, and Iqbal 
(2013) and Bhatti, Akram, 
and Asgher (2008)

Decolorization of Azo dyes and 
synthetic dyes

Tang, Jia, and Zhang (2011) 
and Yao, Jia, Zheng, and 
Wang (2013)

Biosorption of heavy metals Amna, Bajwa, and Javaid 
(2010), Gabriel, Švec, 
Kolihová, Tlustoš, and 
Száková (2016), Javaid and 
Bajwa (2008)

Biotransformation of 
sophorocoside

Wu et al. (2012)

Direct ethanol production Horisawa et al. (2015)

Holocellulase production Arboleda Valencia et al. 
(2011)

Lignocellulose degradation Asgher et al. (2016)

Phenolic compounds biosorption Kumar and Min (2011)

Schizophyllan production Kumari, Survase, and Singhal 
(2008)

Polysaccharide derived 
antimicrobials

Jayakumar et al. (2010)
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TABLE  2 Cellulolytic and xylanolytic enzymes studied in S. commune

Enzyme Inducer substrate References

β-Glucosidase Cellulose Desrochers, Jurasek, and Paice (1981)

Endoglucanase β-glucosidase Thiocellobiose Rho, Desrochers, and Jurasek (1982)

Xylanase CMC

Cellobiose

Xylan

Endoglucanase Cellulose Willick and Seligy (1985)

β-Glucosidase

Xylanase

Endoglucanase Unknown Clarke and Adams (1987)

Xylanase Avicel Steiner, Lafferty, Gomes, and Esterbauer (1987)

Endoglucanase

Xylanase Bacteria cellulose Haltrich, Sebesta, and Steiner (1996)

Endoglucanase Cellobiose

Sophorose

Birchwood xylan

Acetylxylan esterase Unknown Biely et al. (1996)

Cellulase GH5 Unknown Clarke, Drummelsmith, and Yaguchi (1997)

α-Glucuronidase Cellulose Tenkanen and Siika-Aho (2000)

Wheat bran

Distiller′s spent grain

Xylanase Cellulose Kolenová, Vršanská, and Biely (2005)

Glucuronyl esterase Cellulose Špániková and Biely (2006)

Xylanase Bamboo fibers Arboleda Valencia et al. (2011)

Mannanase Banana stem

Polygalacturonase Sugarcane bagasse

Endoglucanase

Fpase

Avicelase

α-Glucuronidase Recombinant Chong et al. (2011)

Xylanase Cellulose Tsujiyama and Ueno (2011)

CMCase Rice straw

β-Glucosidase Wood

Acetylesterase

Cinnamic acid esterase

β-Glucosidase Cellulose Lee et al. (2014)

Avicelase Avicel Luziatelli et al. (2014)

FPase Tamarix leaves

β-Glucosidase

α-Amylase

Expansin Recombinant Tovar-Herrera et al., (2015)

Endoglucanase Jerusalem artichoke stalks Zhu et al. (2016)

Cellobiohydrolase

β-Glucosidase

α-Glucuronidase Recombinant McKee et al. (2016)

β-Glucosidase Cellulose Lee et al. (2017)

Feruloyl esterase Recombinant Nieter, Kelle, Linke, and Berger (2016)
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from avicel, regenerating amorphous cellulose and lignocellulosic sub-
strates even at a level of 150 fold increase (Frommhagen et al., 2015).

Three recent works have reported the presence of AA9 pro-
teins in the secretomes of S. commune when cultured in avicel (one 
protein) (Sornlake et al., 2017), Jerusalem artichoke stalks (nine 
proteins) (Zhu et al., 2016), and Leucaena leucocephala wood chips 
(Singh et al., 2017) (3 proteins). This fact indicates that similar to the 
classic hydrolytic cellulase system, the expression of AA9 proteins in 
fungi is dependent on the substrate. Further analyses are necessary 
to evaluate the biochemical features and the position of the oxida-
tive cleavages (C1 oxidation, C4 oxidation, or both) performed by 
these enzymes, since understanding the action mechanism of fungal 
LPMOs and gaining information about the transcriptional regulation 
of LPMO genes in fungi and bacteria would help to decipher how 
microbes fully deconstruct lignocellulosic biomass.

4  | PROTEINS INVOLVED IN 
HEMICELLULOSE DECONSTRUC TION BY 
SCH IZOPHYLLUM COM MUN E

Hemicelluloses are heteropolysaccharides from the plant cell walls 
that constitute the second most abundant component of lignocel-
lulosic biomass. Their complex structure is dependent on the source 
and mainly contains pentoses (xylose and arabinose), hexoses (glu-
cose, galactose, and mannose) and, to a lesser extent, glucuronic and 
galacturonic acid. The bioconversion of hemicellulose to obtain eth-
anol or other value-added products, such as chemicals and biopoly-
mers, is a well-researched topic. Through a pretreatment process, 
the hemicelluloses are degraded or broken down in the biomass, 
releasing fermentable sugars such as xylose, arabinose and glucose, 
and rendering the cellulose more accessible to cellulolytic enzymes 
(Lavarack, Griffin, & Rodman, 2002). Pretreatment of hemicelullose 
(usually chemically treated) is one of the most expensive steps of 

biomass processing, thus, studies to decrease the cost are of main 
interest from an economic point of view (Canam, Town, Iroba, Tabil, 
& Dumonceaux, 2013). The poor sustainability of the currently used 
acid/base-catalyzed processes has highlighted the need for a more 
environmentally friendly and mild pretreatment of the hemicellu-
losic biomass, such as biological ones, that also encompasses a high 
efficiency (Canam et al., 2013). Another disadvantage of chemical 
processes is that byproducts may potentially act as microbial inhibi-
tors during the subsequent fermentation steps (Peng, Peng, Xu, & 
Sun, 2012). Therefore, enzymatic pretreatment and bioconversion 
have arisen as a suitable alternative that could be coupled to sub-
sequent fermentation and might enhance the industrial processing 
of biomass. The main drawback of enzymatic processing is that high 
efficiency has not been achieved to date. New enzyme cocktails that 
can increase the yields of fermentable products and other value-
added chemicals are currently under study (Zhu et al., 2016).

Hemicellulases are a generic family of proteins that catalyze the 
degradation of hemicellulosic polymers from which xylanases have 
been intensely researched. Xylan is the most abundant type of hemi-
cellulose found on hardwoods and its structure is mainly (1→4)-linked 
β-d-xylopyranosyl residues that are substituted with glucuronosyl and 
4-O-methylglucuronosyl residues by α-(1→2) linkages. Other substit-
uent like acetyl, feruloyl, coumaroyl groups and α-l-arabinofuranose 
can also be of relative importance to produce the complete breakdown 
of hemicellulose. Generally, xylanases refer to a large group of en-
zymes comprising endo-1, 4-β-xylanase (EC 3.2.1.8) and β-xylosidase 
(EC 3.2.1.37), and several accessory enzymes with debranching activ-
ity (Peng et al., 2012). Endo-xylanases degrade xylan at internal sites, 
producing xylooligosaccharides of varying length. Complementary, 
β-xylosidase removes xylose residues from the end of these short 
oligosaccharides. Esterases are among the most studied enzymes 
with debranching activity on hemicellulose. Acetylxylan esterase (EC 
3.1.1.72) removes the O-acetyl of acetyl xylan, while feruloyl and 
coumaroyl esterases (EC 3.1.1.73) hydrolyse the phenolic compounds 

TABLE  3 Hemicelulose degrading glycoside hydrolases in the genome of S. commune (modified from (Ohm, de Jong, Lugones, et al., 
2010))

CAZyme family No. Genes Carbohydrate target Enzyme name No. enzymes

GH5 1 Hemicellulose β-mannanase 1

GH10 5 Hemicellulose β-1,4-endoxylanase 5

GH11 1 Hemicellulose β-1,4-endoxylanase 1

GH26 1 Hemicellulose Glycosidase related 1

GH43 19 Pectin + hemicellulose Exo-b-1,3-galactanase 2

α-l-arabinofuranosidases 12

Glycosidase related 5

GH51 2 Pectin + hemicellulose α-l-arabinofuranosidase 2

GH53 1 Pectin + hemicellulose Endo-β-1,4-galactanase 1

GH62 1 Hemicellulose α-l-arabinofuranosidase 1

GH93 2 Hemicellulose Exo-1,5-α-l-arabinanase 1

Glycosidase related 1

GH115 2 Hemicellulose Xylan α-1,2-glucuronidase 2
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TABLE  4 Granted and applied patents related with S. commune

Technical and industrial fields of the 
patents (applied for or granted) Applicant(s) and year References

Selective and oriented enzyme production and preparation

Preparation of glucoamylase TAX ADM Agency (Japan, 1984) Shimazaki and Sato (1984)

Production of bilirubin-oxidase Takara Shuzo Co. Ltd (Japan, 1986; 1984) Matsui, Sato, and Nakajima (1986) and 
Susumu, Satou, and Takako (1984)

Production of cholesterol oxidase 
and its use in modification of 
natural occurring spirostanes

Toejepast Natuur Ondersoek, (Netherland, 1988); Ono 
Pharmaceutical Co., Ltd. (Osaka, Japan, 1977)

Kerkenar Anthonius inventor, NO voor TNO 
(1988) and Sugiura, Shimizu, Sugiyama, 
Kuratsu, and Hirata (1977)

Production of xyloglycan 
endo-transglycosylases

Novozymes A/S (Europe, 2000) Ilum (2000)

Production of cholesterol esterase Toyobo Co. Ltd. (Japan, 1978) Aisui, Nakagiri, and Otawara (1976)

Production of pantolactone 
hydrolase

Fuji Yakuhin Kogyo Kabushiki Kaisha (Japan, 1996) Sakamoto, Yamada, and Shimizu (1996)

Production of xylanase and 
laccases for treatment of wood 
pulp and lignin decomposition

Mercian Corp. Japan Bioindustry Association Agency 
of Ind. Science & Technol (Japan, 2000); Clariant 
Finance (bvi) Limited Sandoz (Europe, 1997)

Behrendt, Blanchette, Farrell, and Iverson 
(1997) and Hitoshi, Watanabe, Yoshio, and 
Takeo (2000)

Production of thermostable 
xylanases

National Research Council of Canada (Canada, 2001) Wing (2001)

Production of thermo-resistant 
trehalose phosphorylase

Kureha Chem. Ind. Co. Ltd (Japan, 2004) Eisaki, Eiichi, Yasutake, and Toshihiko (2004)

Multifunctional cellulases Dyadic International (USA, 2013) Ltd. (USA); 
Novozymes A/S (2014).

Emalfarb et al., (2013) and Kuilderd, Wu, Li, 
and Zhou (2014)

Enzymatic complex with chloro-
genic acid esterase activity and 
feruloyl esterase activity

Stern Enzym GmBH & Co. KG (Denmarck, 2014) Nieter et al. (2016)

Obtaining and preparation of secondary metabolites and derivatives with great added value

Preparation and use of β-glucans Birch Stewart Kolasch & Birch (USA, 2009) Kim, Park, and Sang-Rin (2009)

Preparation of neoschizophyllan Taito Co., Ltd. (Tokyo, Japan, 1978) & Kaken Chemical 
Co., Ltd. (Tokyo, Japan, 1978)

Kikumoto, Yamamoto, Komatsu, Kobayashi, 
and Kamasuka (1978)

Preparation of trehalose Kureha Chem. Ind. Co. Ltd (Japan, 1994) Takashi and Eisaku (1994)

Preparation of schizostatin Sankyo Co. Ltd (Japan, 1995) Yoshio, Kiyoshi, Tomoyuki, Tatsuo, and 
Takeshi (1995)

Preparation of stachyose Infinitus (China, 2017) Meng, Zhang, Zhou, Gao, and Duan (2017)

Obtention of ergothioneine Mitsubishi Shoji Foodtech Co Ltd (Japan, 2015) Tokumits (2015)

Preparation of schizophyllan Ningbo Xinuoya Marine Biotechnology Co. Ltd (China. 
2016)

Hui (2016)

Production of huperzine A Univ. Fujian Traditional Chinese Medicine (China, 2014) Yaxuan (2014)

Processes and prototypes

Cosmetic creams for topical use MAX FUAKUTAA KK (Japan) Fukada, Kobayashi, Matsuda, Kato, Toshinori, 
and Kojima (1993)

Oxidative dyeing process of keratin 
fibers

Casalonga Axel Bureau (Europe, 2002) Gregory (2002)

Endoglucanase treatment of 
lignocellulosic materials and 
selective degradation of resin 
acids and triterpenes

Novozymes, A/S (USA, 2002) Schülein et al. (2002)

Production of II generation biofuels 
from vegetable biomass via 
cellulolytic enzymes

IFP (France, 2009) Margeot Antoine (2009)

Process for degradation of lignin 
and dioxin derivatives in field 
conditions

Idemitsu Kosan Co. Ltd (Japan, 2001) Yuki Junishiro (2001)

(Continues)
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linked to arabinofuranoside residues. α-l-Arabinofuranosidase (EC 
3.2.1.55) and α-d-glucuronidase (EC 3.2.1.139) are also responsible 
for the cleavage of branching structures.

The reduced capacity of S. commune to degrade the lignin com-
ponents from lignocellulose has been previously reported (Floudas 
et al., 2015; Horisawa et al., 2015; Zhu et al., 2016) in agreement 
with the lack of genes encoding class II peroxidases from the AA2 
family (Ohm, de Jong, Lugones, et al., 2010). Interestingly, the main 
enzymatic activity detected in culture supernatants from S. com-
mune grown in lignocellulosic substrates is hemicellulolytic (Zhu et al., 
2016). Nevertheless, the production of xylanase activity in this fungus 
is under the regulatory control of cellulosic degradation byproducts 
(Haltrich & Steiner, 1994). Xylan or galactomannan do not induce xy-
lanase or mannanase activities when provided as sole carbon source. 
Instead, cellulose, cellobiose, lactose, and l-sorbose induce, alto-
gether, xylanase, cellulase, as well as mannanase activities indicating 
a common regulatory control in this fungus (Haltrich & Steiner, 1994).

The analysis of the genome of S. commune has shown that non-
cellulosic polysaccharide-degrading enzymes are more abundant when 
compared to other model of lignocellulose decomposers (Ohm, de Jong, 
Lugones, et al., 2010). This fungus contains an extensive repertoire of 
xylan and pectin glycoside hydrolases as shown in Table 3, indicating 
a great potential for hemicellulose deconstruction. When compared 
with other basidiomycete fungi (the white-rot Phanerochaete chrysos-
porium and Ceriporiopsis subvermispora and the brown-rot Gloeophyllum 
trabeum), S. commune achieved the highest xylanase activity when 
growing on a lignocellulosic substrate (Zhu et al., 2016). Similarly, a 
crude enzymatic cocktail obtained from a solid-state fermentation of 
S. commune was more effective than a commercial enzyme cocktail 

from Trichoderma longibrachiatum in terms of reducing sugar release 
from pretreated lignocellulosic biomass (Zhu et al., 2016). In this case, 
while cellulolytic activities where similar, the level of xylanases was sig-
nificantly higher in the S. commune enzymatic cocktail.

5 | LIGNIN DEGRADING ENZYMES AND 
ALTERNATIVE BIOTECHNOLOGICAL 
APPLICATIONS OF SCHIZOPHYLLUM COMMUNE

In addition to the cellulases and xylanases studied in S. com-
mune (Table 1), the lignin-degrading enzymes of this fungus have 
also been evaluated for different biotechnological applications. 
According to the CAZy database, lignin-degrading enzymes are 
grouped in some of the families with auxiliary activity. From 
these, S. commune produces only members of the AA1 (laccases; 2 
genes), AA3 (cellobiose dehydrogenases: 1 gene; glucose oxidase: 
4 genes; aryl alcohol oxidase: 1 gene; pyranose oxidase: 1 gene; 
alcohol oxidase: 1 gene) AA5 (glyoxal oxidase: 2 genes) and AA6 
(benzoquinone reductase: 4 genes) families, lacking the produc-
tion of lignin peroxidases (LiP), manganese peroxidases (MnP) and 
versatile peroxidases (VP), that belong to the AA2 family (Ohm, 
de Jong, Lugones, et al., 2010). Intriguingly, although S. commune 
does not produce MnP nor LiP as stated above, there are a vari-
ety of studies which mention that the Lip and MnP enzymes from 
S. commune are involved in the decolorization of azo and textile 
dyes or that the LiP and MnP from S. commune are useful en-
zymes for lignin removal of a variety of lignocellulosic substrates 
(Asgher, Wahab, Bilal, & Nasir Iqbal, 2016). It is likely that instead 

Technical and industrial fields of the 
patents (applied for or granted) Applicant(s) and year References

Process for degradation of 
exogenous endocrine disruptors

Idemitsu Kosan Co. Ltd. (Japan, 2002) Genshi and Takahiro (2002)

Process for decomposition of 
prions

Kondo Ryuichiro (Japan, 2005) Ryuichiro, Yuli, and Shiro (2005)

Process for production of alcohol 
or second generation solvent

IFP Énergies Nouvelles (France, 2012) Ropars, Aymard, Guillaume, and Menir (2012)

Design of immunological cancer 
therapies

Therapy Co. Ltd (Japan, 2000) Akiyuni and Takashi (2000)

Process for selective removal of 
hexenuronic groups from biomass

Siika-aho, Matti (USA, 2004) Siika-Aho et al. (2004)

Mycelial extracts formulations for 
potentiating the resistance of bee 
colonies against fungal-viral 
collapse syndrome

Paul Stamets and Co. (USA, 2015, 2017) Stamets (2015, 2017)

Biological saccharification method 
using biomass

PHYGEN Inc (Korea, 2016) Kul et al. (2017)

Nutritional additives

Enhance immunity of lobster Dingyuan County Profess. Coop. (China, 2016) Guanghong (2016)

Milk cow forage Xuzhou Jiwang Xintuo Animal Husbandry Co. Ltd. 
(China, 2016)

Xiume (2016)

TABLE  4  (Continued)
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of MnP and LiP, the enzymes involved in the decolorization and 
delignification effects are members of the multi-copper oxidases 
and the hydroxyl radical generation system, among others (Ohm, 
de Jong, Lugones, et al., 2010).

The evaluation of extracellular laccases from S. commune date 
to 1986 (De Vries, Kooistra, & Wessels, 1986). These enzymes are 
proteins with a great versatility, since they can oxidize a variety of 
organic and inorganic compounds, phenolic and non-phenolic sub-
strates, including, mono, di, polyphenols, aminophenols, and me-
toxyphenols (Upadhyay, Shrivastava, & Agrawal, 2016). Current 
laccase investigations are focused on bio-oxidation and biotrans-
formation processes, biosensor development, enzymatic synthe-
sis of organic compounds, biopulping and biobleaching, textile dye 
transformation, removal of phenolic compounds from must and 
wine, waste effluent treatment, fossil fuel desulfurization, bio-
solubilization of coal, degradation of herbicides, food treatments, 
medicinal applications through the synthesis of novel compounds 
and delignification and biografting of lignocellulosics (Singh Arora 
& Kumar, 2010; Upadhyay et al., 2016). However, the search for 
industrial applications of S. commune ′s laccases is scarce, and is 
limited to dye decolorization experiments, the study of the three-
dimensional model of one of the laccases from S. commune and the 
activity related to delignification of lignocellulosic substrates. This 
lack of industrial applications of laccases from S. commune leaves 
open areas of studies to be exploited from various points of view.

6  | PATENTS REL ATED TO THE POTENTIAL 
OF SCH IZOPHYLLUM COM MUN E  IN 
INDUSTRIAL APPLIC ATIONS

Patent databases (United States Patent Office (USPO), World 
Intellectual Property Organization (WIPO), European Patent Office 
(EPO), etc.) show an overview on technological and industrial state 
of the art as well as conceptual and methodological advances in the 
field of molecular biology and biotechnological applications (applied 
mycobiotechnology and myco-remediation technology) of fungi.

In this context, there is an increase in the biotechnological sig-
nificance of S. commnune in the last 15 years. Related to its genome, 

its enzymatic complexes and its biological versatility, more than 
6,000 patent application documents and technological reports 
have been registered between 1995 and 2017 worldwide, which 
support S. commune as a biotechnologically functional microorgan-
ism, relevant in different technological, agricultural, environmental 
and pharmaceutical fields. At the EPO, Espacenet, more than 170 
patent documents have been registered during 2000–2017, directly 
linked to technological and industrial applications of S. commune. 
The fields of innovation-patentability-biotechnology where the ver-
satility of S. commune is currently being applied are summarized in 
Table 4.

In the field of lignocellulosic biomass, more than 1,100 patents 
(altogether applied and granted) related to the use of S. commune 
were reported in the last two decades (Gupta, 2016), including bio-
fuel′s production and biomass derivatives. As stated before, it is 
recognized that economic utilization of widely distributed lignocel-
lulosic biomass as a feedstock for the eco-sustainable production 
of biocarburants, biodiesel, molecular scaffolds, biomaterials, fuels, 
and chemicals with high-added value would represent a conceptual 
and methodological change in the strategic utilization of natural raw 
materials, allowing sustainable resources to be substituted for, and 
compete with, petroleum-based products.

In other research areas, S. commune has also been a subject of 
interest. For example, a nematicidal and bacteriostatic fumigant for-
mulation has been prepared from an S. commune strain where the 
main bioactive component is β-bisabolol. This composition is environ-
mentally friendly and shows a very wide spectrum of action (Kaiyin, 
2017). Cozen Co. Ltd reported a hot water-extracted thrombotic dis-
solving enzyme (9–10 kDa) from S. commune fruiting bodies, capable 
of being used effectively as health supplement food or a treatment 
agent for thrombus-related disease (Choi Nack Shick, 2015).

The patent database study (EPO base, 150–170 documents from 
1990 to 2017) reveals that the main technological-industrial applica-
tion fields for S. commune in the last two decades were: nutritional 
additives for humans and animals with economic significance; ag-
ricultural biotechnology; pharmaceutical and cosmetic industry; 
generation of secondary metabolites with great-added value; bio-
technological application of enzyme complexes; biomass process-
ing and bio-refineries; and environmental issues. Some results are 
shown in Figure 3.

Taking this information into account, it must be highlighted 
that nutritional additives (nutrient feed, fermented functional bev-
erages, forage, healthcare formulations, tonifying compositions, 
etc.) correspond to 20% of the overall patents reported for that 
period. In the case of the pharma-cosmetic field (bioactive anti-
bacterial- nematocide components, pharma compositions, ex-
tracts with selective pharmaceutical properties, anticancer and 
antiviral formulations, skin treatment creams, ophthalmic solu-
tions, bio-adhesives, anti-oxidant and anti-wrinkle formulations, 
nano-liposomes, etc.) it corresponds to 27%. Regarding to biomass 
bioprocessing and related processes (bio-pretreatment of agro-
wastes, biological saccharification, gelatin production, obtention 
of biofuels and bio-derivatives at the bio-refinery level, generation 

F IGURE  3 Europe Patent Office patents (1990–2017). 
Distribution by technological application fields
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of enzymatic complexes for treatment of lignocellulosic materials 
and wastes, functional biofibers and bio-oligomers, solid fermen-
tation, pith and lignin degradation, bio-oriented decomposition, 
etc.) the patents correspond to 22%, and, in the field of applied 
secondary metabolites, with great-added value, and utilization of 
enzymatic complexes (laccases, cellulases, xylanases, esterases, 
oxidases, production of glucans and polysaccharides with differ-
ent molecular weights, ergothioneine, schizophyllan, glucosone, 
xylitols, trehalose, pantolactone, retinoids, organic acids, etc.), the 
patents number account for 31% of the total. It is noteworthy that 
the observed application-development trends will be maintained in 
the next 2–5 years, which supports the biotechnological versatility 
and applicability of this basidiomycete.

7  | CONCLUSIONS

Schizophyllum commune is a fungus that has a quite complete enzy-
matic set that can be used for diverse areas in the biotechnologi-
cal field. Its genome description as well as the recently published 
works and patents related to this fungus, demonstrates part of the 
biotechnological potential that S. commune possess. This review is 
the first to concentrate most of the work that has been done with 
S. commune in the subject of plant biomass exploitation and the en-
zymes involved in its degradation, with a view to its future imple-
mentation in bio-refineries, pollutant degradation, formulation of 
enzymatic cocktails, bioconversion of agricultural by-products, as an 
example. Additionally, S. commune is a good source for hydrolytic, 
non-hydrolytic and oxidative enzymes which can help to understand 
the processes by which this fungus is capable of using the carbohy-
drates and phenolic compounds in the vast diversity of woods it can 
colonize, since classical genetics and genetic engineering techniques 
are available for S. commune.
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