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In the precision medicine of lung adenocarcinoma, the identification and prediction of
tumor phenotypes for specific biomolecular events are still not studied in depth. Various
earlier researches sheds light on the close correlation between genetic expression
signatures and DNA copy number variations (CNVs), for which analysis of CNVs provides
valuable information about molecular and phenotypic changes in tumorigenesis. In
this study, we propose a comprehensive analysis combining genome-wide association
analysis and an Elastic Net Regression predictive model, focus on predicting the
levels of many gene expression signatures in lung adenocarcinoma, based upon DNA
copy number features alone. Additionally, we predicted many other key phenotypes,
including clinical features (pathological stage), gene mutations, and protein expressions.
These Elastic Net prediction methods can also be applied to other gene sets, thereby
facilitating their use as biomarkers in monitoring therapy.

Keywords: Elastic Net, DNA copy number, lung adenocarcinoma, gene expression signature, predictive model

INTRODUCTION

The enormous genetic heterogeneity caused by multiple types of DNA aberrations is a key factor
in tumorigenesis. Thus, the capacity to analyze tumor inhomogeneity is essential to elucidating
cancer etiopathogenesis and to more accurately defining patient subgroups in precision medicine
(Gao et al., 2016; Godek et al., 2016; Padmanabhan et al., 2017; Pommier et al., 2020). One
limitation that currently limits us to evaluate the heterogeneity is the accurate description of
tumor phenotypes. The establishment of various data integration and analysis platforms, e.g., the
Cancer Genome Atlas (TCGA), has enabled us to take advantage of readily accessible large-scale
genomic data from multiple platforms to better analyze the association between gene expression

Abbreviations: CNVs, copy number variations; CNV, copy number variation; LASSO, Least absolute shrinkage and selection
operator; TCGA, the cancer genome atlas; DFS, disease-free survival; OS, overall survival; RPPA, reverse-phase protein arrays;
HR, hazard ratios; CI, confidence interval; ROC, receiver operating characteristic; AUC, area under the curve.
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heterogeneity and key phenotypes in the process of tumorigenesis
(Hoadley et al., 2018). In particular, numerous reports have
gradually uncovered various gene expression signatures that
can be used for delineating specific tumor phenotypes from
invasion rates to characterization of tumorous immune
microenvironment (Bild et al., 2006; Nevins and Potti, 2007).
These messenger RNA expression signatures, besides protein
expressions, genetic mutation loads, and clinical characteristics,
offer a wide-ranging cancer molecular representation (Kumar
et al., 2018; Chen Y. J. et al., 2020). Therefore, the application of
genomic data from these data analysis platforms to illuminate
the connection between genotypes and phenotypes is significant
to identify the genomic changes that occur during tumorigenesis
(Gatza et al., 2014; Watermann et al., 2020; Zengin and Önal-
Süzek, 2020). Furthermore, the predictions of phenotypes that
drive tumorigenesis according to DNA expression status would
be valuable to the stratification of patients in precision medicine
(George et al., 2019; Carrillo-Reixach et al., 2020; Tsimberidou
et al., 2020), specifically in current clinical practice, due to the
expensive expression profile and the routine acquisition of
genetic mutation information.

Lung cancer is a kind of malignancies with highest morbidity
and mortality in the world (Siegel et al., 2019). About 85% of lung
cancers are Non-small cell lung cancer (NSCLC), with an only
approximately 16% 5-year survival rate (Namani et al., 2019).
Lung adenocarcinoma (LUAD) is the most common histological
subtype of NSCLC (Zhu et al., 2019). Extensive research in recent
years has led to great advances in exploring the oncogenesis
and treatment strategies of LUAD, however it remains one of
the most deadly and metastatic types of lung cancer (Denisenko
et al., 2018). Patients with LUAD often do not respond well to
conventional radiotherapy or chemotherapy, because of the delay
diagnosis in the middle and advanced stages. Therefore, it is still
urgent to elucidate the pathogenic and molecular mechanism of
LUAD. The ubiquitous DNA copy number variations (CNVs) in
the human genome, containing amplifications, losses, insertions
and multisite mutations, plays a critical role in the occurrence
and developmentof various tumor types (López et al., 2020; Staaf
et al., 2013). Specifically, CNV in tumor tissues and cells can
lead to irregular expressions of tumor-related genetic drivers
as well as genomic and molecular phenotypic heterogeneity
(Kim et al., 2020). Previous studies have shown that DNA
CNVs are associated with higher risks and poorer prognosis
of LUAD. It is increasingly recognized that therapy strategies
for LUAD should focus on the relationship between mutation
loads and epigenetic alterations. However, there is still a lot
of room for exploration. TP53, EGFR and KRAS mutations,for
example, are critical in the occurrence and development of lung
cancers, but not all tumors are caused by the activation of these
mutations alone and eliminated by the inhibition of these genes
(Jänne et al., 2015; Kobayashi et al., 2005). Here, we used gene
expression signatures downloaded from the TCGA platform,
together with common clinical and molecular features, as the
basis for constructing predictive models of lung adenocarcinoma
phenotype. We adopted an comprehensive genomic method,
containing genome-wide association analysis (Gatza et al., 2014;
Watermann et al., 2020), and an ElasticNet-mediated regression

approach (Zou and Hastie, 2005), to modeling complicated
tumorous phenotypes based on DNA copy number variations
(CNVs). By these findings, we aim to elucidate the significant
correlations of CNVs with several genetic expression signatures
and protein expression landscapes. In general, our proposed
method can be used to link CNVs with multifaceted phenotypes,
also to develop evaluation models for therapeutic significance
using currently commonplace DNA-based clinical tools.

MATERIALS AND METHODS

Data Acquisition
Gene mutation data, protein expression data, and clinical
information of lung adenocarcinoma samples in TCGA were
downloaded from Xena1 (Hoadley et al., 2018). For TCGA lung
adenocarcinoma, we converted the gene expression data using the
upper quartile scale and log2 transform, and then screened for
genes expressed in more than 70% of the samples.

DNA CNVs Data
The collection, conversion and subsequent analysis of DNA copy
number data were all based on GISTIC2.0 module. GISTIC2
gene-level CNVs information of human lung adenocarcinoma
downloaded from TCGA GDAC FireBrowse (Mermel et al., 2011;
Hoadley et al., 2018)2 are shown in Table 1, with no further
processing, and the related clinicopathological characteristics are
shown in Table 2. Using Ensembl 54 (hg18) genome build, gene-
level copy number scores were derived through the extreme
method as used in GISTIC2: Genes that fell completely within
a circular binary segmentation (CBS)-identified copy number
segment were assigned corresponding segment value. Genes that
overlapped with multiple segments were assigned the greatest
amplification or the least deletion value among the overlapped
segments. Genes with no overlapping segments were excluded
from further analyses (Xia et al., 2019).

Gene Expression Signatures
Gene expression signature scores for 512 lung adenocarcinoma
cases are composed of a panel of 531 previously published
genetic expression signature, collected from a variety of earlier
research, GSEA (Subramanian et al., 2005), and were partly
summed up by Tanioka et al. (2018) that can be applied to
completely describe tumor phenotypes. As for genetic signature
scores, they were calculated in a manner consistent with their
derivation. For 492 signatures with homogeneous expression

1https://xenabrowser.net/datapages/
2https://gdac.broadinstitute.org/#

TABLE 1 | Sample information.

Data Sample size

Mutation 513

CNV 516

Protein 237
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across the genes, median expression value was used as signature
score. The rest of the signatures were based on correlation to
predetermined gene centroids or based on published algorithms.
For correlation-based signatures, all predetermined training sets
are available to download through our GitHub repository (see
section Code Availability) (Xia et al., 2019). For each such
signature, DWD was used to first merge gene expression matrix
with corresponding training set and then Pearson/Spearman
correlation/Euclidean distance was computed for each sample
in the merged data. For several algorithm-based signatures,
corresponding R code is provided to calculate each signature
(see section Code Availability). All 531 signatures were applied
to TCGA lung cancer data.

Identification of Gene Signature-Specific
CNVs
For identifying the association between CNVs and gene
expression signatures, we employed two different statistical

TABLE 2 | Patient and clinicopathological characteristics.

Characteristics Types Sample numbers

Gender

Female 275

Male 237

Age (years)

>60 338

≤60 155

Tumor invasion

T1 169

T2 276

T3 46

T4 19

Tx 2

Lymph node metastasis

N0 330

N1 95

N2 74

N3 2

Nx 10

Not reported 1

Metastasis

M0 345

M1 25

Mx 138

Not reported 4

TNM stage

Stage I 274

Stage II 122

Stage III 83

Stage IV 25

Not reported 8

Radiation_therapy

No 369

Yes 57

Not reported 86

approach (Gatza et al., 2014; Watermann et al., 2020) on
gene expression of TCGA lung adenocarcinoma cohorts and
matched copy number data; the first involved calculating the
Spearman correlation between the signature score and gene-
level CNV score for each sample; the second statistical test
involved performing a one-sided Fishers exact test for comparing
the frequencies of CNV amplifications/deletions between higher
score samples (top quartile) and lower score ones. The Benjamin-
Hochberg (BH) method was applied to correct the q-value
for each gene signatures for all analysis. The critical value
of significance for the two statistical tests above (q-value)
was set at 0.01.

Construction of Elastic Net Regression
Predictive Models
The Elastic-Net regression method, a linear combination of
L1/L2 regularization in the Ridge regression and LASSO
(Least absolute shrinkage and selection operator) regression,
was utilized for building the CNV-based tumor phenotype
predictions (Zou and Hastie, 2005). First, gene-level CNV
scores were converted into segment-level CNV scores, which
were averaged as the mean CNV score for all genes in this
DNA segment (Beroukhim et al., 2010; Zack et al., 2013;
Cancer Genome Atlas Research Network, 2014; Qiu et al., 2018;
Hua et al., 2020). To construct the model, the total sample was
split 70%:30% for the training and the test sets, respectively,
which were also stratified by clinical variates (i.e., overall survival,
sex, TNM stage and histopathological stage). Only the training
set was used to build the models. The fitted generalized linear
models were used to determine the maximum and minimum
observed values of λ for each α value in the training sets (CRAN
Rpackage glmnet) (Candia and Tsang, 2019). Using the default
parameters, two hundred turns of MonteCarlo cross-validation
were performed for screening the tuning parameter (Bandalos,
1993), and the optimal parameter was confirmed as the most
accurate classification method. The models with the optimal
parameters were subsequently used in the validation sets, and the
area under the receiver operating characteristic curve (AUC) was
applied to assess the predictive value of models. The phenotypes
with AUC values higher than 0.75 were considered as with high
predictive performance.

Since the variables involved in the prediction in this study are
continuous data, we divided the sample into two-halves (using
the top quartile and bottom three quartiles) to perform model
predictions. For clinical characteristics and gene mutation status,
which have binary outcomes, the model was built directly for
their prediction. For gene mutation prediction, we selected the
top 20 genes with the highest mutation frequencies in lung
adenocarcinoma. Clinical features included pathological stage
(stage I-II vs. stage III-IV) and TNM stage.

Statistical Analysis
SPSS software (version 23.0) or R software (version 4.0.3) were
used for statistical analysis. Curve analysis of receiver operating
characteristic (ROC) was utilized to evaluate the predictive
performance of CNV-based Elastic Net regression models. The
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AUC, ranging from 0.5 (for an uninformative marker) to 1 (for
a perfect predictive marker), was a measurement for how well
patient survival can be predicted with the gene signatures.

RESULTS

Identification of DNA CNVs Associated
With Gene Signatures
First, we studied the potential correlations between multiple
gene expression characteristics and gene CNVs. We used a
group of 531 gene expression signatures reported previously
to quantify various tumor phenotypes, including, but not
limited to, tumor microenvironment characteristics and
activated signaling pathways (Supplementary Table 1; Hoadley
et al., 2018). We next applied a genome-wide association
analysis to identify possible connections between each
signature-based phenotype and DNA copy number data

(Gatza et al., 2014; Watermann et al., 2020). Two different
statistical methods were used for each signature to assess the
correlation between DNA CNVs and the genetic signature
for each genetic trait: The Spearman’s correlation was used
for identifying negative/positive correlations between gene-
level CNV and expression signature scores, and the Fisher’s
exact test was performed to compare the differences in
the probability of CNV gains/losses between the groups
with higher expression signature scores (top 1/4) and
low scores (other 3/4). B–H correction of q values were
conducted for both sets of statistical methods (Benjamini
and Hochberg, 1995). To further enhance accuracy, a
given CNV was considered significantly associated with an
expression signature only if the corrected q values for both
statistical methods were < 0.01 (Figure 1A). Potential CNV
drivers of a gene signature should increase the frequencies
of CNV amplifications in samples with high signature
scores and be positively correlated with its signature score.

FIGURE 1 | Identification of gene expression signature-specific CNVs in lung adenocarcinoma. (A) Schematic overview of the strategy used to identify CNVs
associated with gene signatures. Gain/loss indicates DNA copy number gains or losses; Positive/Negative indicates positive or negative association. (B,D)
Spearman rank correlation was used to identify genes that were positively (red) or negatively (dark blue) correlated with gene signatures, and Fisher’s exact test was
used to compare the frequency of copy number gains (orange) or losses (light blue) in GSEA_Median_MYC_amplified_chr8q24 (B), Pcorr_magnoid_PLOS.2012 (C),
and IMMUNE_Bindea_Cell_Th17_cells_Median_Immunity.2013 (D). Dashed lines indicate the significance threshold (q = 0.01). Only the q values for genes that were
significant in both analyses were plotted. In each figure, chromosome boundaries are indicated by vertical black lines.
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We used the methods above to analyze the relationship
between each gene signature and CNV, and found that
some gene signatures were significantly associated with
CNVs, such as GSEA_Median_MYC_amplified_chr8q24,
Pcorr_magnoid_PLOS.2012, and IMMUNE_Bindea_Cell

_Th17_cells_Median_Immunity.2013 (Figures 1B–D and
Supplementary Table 2). Taken together, this part of our study
determined that the modeling methods could accurately find
links between CNVs and specific genetic signatures, some had
been confirmed in previous reports.

FIGURE 2 | CNV-based gene signature prediction. (A) Schematic overview of the strategy used to build Elastic Net regression models for predicting gene
expression signature levels. (B) AUC distributions of CNV-based prediction for the 531 gene signature scores of lung adenocarcinoma in the TCGA training and test
set. (C–E) ROC curves and corresponding AUC values for three signatures in the training and test sets. GSEA_Median_MYC_amplified_chr8q24 (C),
Pcorr_magnoid_PLOS.2012 (D), and IMMUNE_Bindea_Cell_Th17_cells_Median_Immunity.2013 (E). (F–H) CNV segments and whole chromosomal arms and their
corresponding coefficients selected by the Elastic Net prediction models for the three signatures.
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TABLE 3 | Top 20 AUC value of gene signatures predicted by Elastic Net models.

Rank Gene signatures Train set Test set

1 GSEA_Median_MYC_amplified_chr8q24 0.97 0.95

2 GP19_1Q_amplicon.PerouLab_HS_Green17 Median_BMC_Med_Genomics 0.95 0.93

3 UNC_HS_Green17_Median_BMC.Med.Genomics.2011_PMID.21214954 0.95 0.93

4 IntClust_Deletion.50.Better.than_Median_Genome.Biol.2014_PMID.25164602 0.94 0.93

5 UNC_HS_Red15_Median_BMC.Med.Genomics.2011_PMID.21214954 0.93 0.93

6 UNC_8p_Amplicon_Median_BMC.Med.Genomics.2011_PMID.21214954 0.95 0.92

7 UNC_HS_Green24_Median_BMC.Med.Genomics.2011_PMID.2121495 0.93 0.92

8 UNC_8p22_Amplicon_Median_BMC.Med.Genomics.2011_PMID.21214954 0.97 0.91

9 UNC_HS_Red14_Median_BMC.Med.Genomics.2011_PMID.21214954 0.93 0.91

10 UNC_11q13_Amplicon_Median_BMC.Med.Genomics.2011_PMID.21214954 0.93 0.91

11 UNC_17PP13_Amplicon_Median_BMC.Med.Genomics.2011_PMID.21214954 0.95 0.90

12 Scorr_PTEN_Absent_Correlation_PNAS.2007_PMID.17452630 0.93 0.90

13 UNC_Scorr_P53_Wt_Correlation_BMC.Cancer.2006_PMID.17150101 0.90 0.90

14 UNC_15q25_Amplicon_Median_BMC.Med.Genomics.2011_PMID.21214954 0.97 0.89

15 UNC_17q25x_Median_BMC.Med.Genomics.2011_PMID.21214954 0.96 0.89

16 Pcorr_magnoid_PLOS.2012_PMID.22590557 0.93 0.89

17 UNC_4p16_Amplicon_Median_BMC.Med.Genomics.2011_PMID.21214954 0.93 0.89

18 UNC_Scorr_IE_Correlation_JCO.2006_PMID.16505416 0.97 0.88

19 IntClust_Deletion.50_Median_Genome.Biol.2014_PMID.25164602 0.95 0.87

20 UNC_13q14_Amplicon_Median_BMC.Med.Genomics.2011_PMID.21214954 0.93 0.86

Elastic Net-Mediated CNV-Based
Predictions of Gene Signatures
In view of the strong relationship, we next constructed models
that can predict the levels of genetic expression signatures on
the basis of DNA CNVs landscapes alone. For constructing the
predictive models, a modeling method known as Elastic-Net was

TABLE 4 | Top 20 AUC value of protein expressions predicted by
Elastic Net models.

Rank Proteins Train set Test set

1 CLAUDIN7 0.94 0.84

2 CHK2 0.91 0.82

3 CKIT 0.98 0.79

4 CYCLINB1 0.86 0.78

5 ASNS 0.96 0.77

6 ERALPHA 0.99 0.76

7 PKCALPHA 0.74 0.76

8 4EBP1 0.80 0.75

9 MTORPS2448 0.92 0.74

10 IGFBP2 0.95 0.72

11 EGFRPY1173 0.92 0.72

12 INPP4B 0.87 0.71

13 MRE11 0.75 0.71

14 JNK2 0.85 0.70

15 PDK1PS241 0.93 0.69

16 GSK3ALPHABETA 0.85 0.69

17 JNKPT183Y185 0.83 0.69

18 P70S6K 0.72 0.68

19 RBPS807S811 0.86 0.67

20 ACCPSCPS79 0.86 0.67

utilized, which can handle several potential co-linear variables
that are present in regression models, and then screen out the
most related elements for the final regression modeling (Zou
and Hastie, 2005). Gene-level CNV scores were not used during
model building, instead we applied the segment-level CNV scores
of chromosomal regions proven being significant in multiple
tumor types (Beroukhim et al., 2010; Zack et al., 2013; Qiu et al.,
2018; Hua et al., 2020; Supplementary Table 3). The 512 cases of
lung adenocarcinoma were divided 70% into the training group
and 30% into the validation group. Models were constructed on
the TCGA training set, and tested on the validation set, and
model performance was assessed using AUC value (Figure 2A).

The AUC value of some genetic signatures indicated that the
CNV-based Elastic Net prediction models can be good forecasters
of certain gene signatures (Table 3 and Supplementary
Table 4_AUC_signature). Among the 531 gene signatures,
142 in the test set had AUCs > 0.75 (Figure 2B), henceforth
denoted as “highly predictable.” Of these 142 signatures, only 21
were DNA-based amplicon signatures that essentially measure
specific CNA events and were therefore expected to produce
high AUC values. For example, signature 11q13-amplicon had
a fairly high AUC value in test set (AUC = 0.90). Notably,
the three signatures highlighted in the previous correlation
analysis, namely, GSEA_Median_MYC_amplified_chr8q24,
Pcorr_magnoid_PLOS.2012, and
IMMUNE_Bindea_Cell_Th17_cells_Median_Immunity.2013
were all highly predictable and their corresponding AUC were
0.95, 0.88, and 0.76, respectively (Figures 2C–E). The results of
this part show the prediction efficiency of the Elastic Net model.

For comparing these associated landscapes, the CNV
regions and entire chromosome arms and the coefficients
selected by Elastic Net models of the three features
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above are shown in Figures 2F–H (Supplementary
Table 4). Remarkably, Pcorr_magnoid_PLOS.2012, and
IMMUNE_Bindea_Cell_Th17_cells_Median_Immunity.2013
signatures had a large amount of correlation landscape with
CNVs (Figures 2G,H). On the contrary, the correlation
characteristics of GSEA_Median_MYC_amplified_chr8q24
signature had little intersection with those of the Elastic
Net model (Figure 2F). In general, these consequences
indicate that DNA CNV features can be used to predict gene
expression signatures.

Elastic Net-Mediated CNV-Based
Predictions of Protein Expressions
Next, the method of Elastic Net-mediated CNV-based prediction
was used for constructing models of specific protein expressions.
Reverse phase protein array (RPPA) information was used
(Network, Cancer Genome Atlas Research, 2012; Cancer
Genome Atlas Research Network, 2014) to measure the protein
expression levels of TCGA lung adenocarcinoma samples
(Figure 3A). A few studies have reported that DNA copy
number has a significant impact on the expressions of some

FIGURE 3 | CNV-based protein expression prediction. (A) Flowchart showed the construction of CNV-based Elastic Net prediction models and the certification of its
predictive value on gene expression, protein, mutation and clinical features. (B) AUC distributions of CNV-based expression level predictions for 131 proteins in the
RPPA arrays. (C,D) ROC curves and corresponding AUC values of Claudin7 (C) and CHK2 (D) in the TCGA training and test sets. (E,F) Elastic Net-selected CNV
segments and whole chromosomal arms and their coefficients for prediction models for the two proteins.
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proteins (Geiger et al., 2010; Myhre et al., 2013; Liu et al.,
2016). However, these studies only assessed the correlations
with proteins encoded by individual genes. Here, Elastic Net
predictive modeling was applied to account for genome-wide
CNV changes in the prediction of protein expressions. By setting
the AUC at > 0.75 as “high predictive value,” (Figure 3B) 8 of 131
proteins expression levels can be predicted with high accuracy
(Table 4 and Supplementary Table 5), containing Claudin7 and
CHK2 (Figures 3C,D). Notably, Beroukhim features 17p and
15q deletions were involved within the models, in agreement
with the condition that Claudin7 negativity is common among
patients with lung cancers (Figure 3E; Lu et al., 2015; Choi et al.,
2016; Akizuki et al., 2017). Similarly, the result in Figure 3F was
consistent with other previous reports about the lower expression
of CHK2 in adenocarcinoma (Chen et al., 2012; Choi et al., 2012).
Thus, our method can accurately predict these complex protein
expressions based on a little fraction of genomic information.

Elastic Net-Mediated CNV-Based
Predictions of Mutation Loads
Additionally, the capacity of CNV-based Elastic Net predictive
models to foretell somatic mutation was tested. We first
downloaded the mutation information of lung adenocarcinoma

samples in TCGA database (Hofree et al., 2013), from which
the top 20 genes with the highest mutation frequencies were
selected (Figure 4A and Table 5). By setting the AUC threshold
of validation set as 0.75, only the TP53 mutation was screened
out (Figure 4B), corresponded with its widely recognized role as
a cancer suppressor. And the differential expression of PIK3CA
induced by Beroukhim 3q gain was speculated to take part in
the tumorigenesis of lung adenocarcinoma when TP53 silencing
(Yang et al., 2014; Hou et al., 2020; Wang F. et al., 2020; Figure 4C
and Supplementary Table 6_TP53_weight). Moreover, when the
AUC threshold was relaxed to 0.7, the TP53, RYR2, TTN, LRP1B
and CSMD3 mutations satisfied the condition (Supplementary
Table 6_AUC_snp), indicating their correlations with increased
tumor mutation burden.

Elastic Net-Mediated CNV-Based
Predictions of Clinical Features
Furthermore, we explored whether CNV-based Elastic Net
predictive regression models can be used to forecast clinical
features. Here, pathological stage and TNM stage were selected
to divide the sample into two halves (stage I –II, as one
group; stage III –IV, as another). After grouping the samples
for model building and prediction, the AUC of the prediction

FIGURE 4 | CNV-based genetic mutation prediction. (A) AUC distributions of CNV-based predictions for top 20 genes with the highest mutation frequencies
selected from TCGA lung adenocarcinoma mutation data. (B) ROC curves and corresponding AUC values of TP53 mutation status in the TCGA training and test
sets. (C) Elastic Net-selected CNV segments and whole chromosomal arms and their coefficients selected for prediction models for TP53 mutation.
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TABLE 5 | Top 20 AUC value of somatic mutations predicted by
Elastic Net models.

Rank Proteins Train set Test set

1 TP53.txt 0.88 0.81

2 RYR2.txt 0.77 0.73

3 TTN.txt 0.77 0.73

4 LRP1B.txt 0.87 0.70

5 CSMD3.txt 0.86 0.69

6 KRAS.txt 0.93 0.67

7 SPTA1.txt 0.72 0.64

8 USH2A.txt 0.77 0.63

9 PCDH15.txt 0.81 0.62

10 MUC16.txt 0.86 0.60

11 NAV3.txt 0.78 0.60

12 CSMD1.txt 0.70 0.57

13 XIRP2.txt 0.88 0.57

14 ANK2.txt 0.72 0.56

15 FLG.txt 0.73 0.56

16 ZNF536.txt 0.82 0.54

17 COL11A1.txt 0.50 0.50

18 FAT3.txt 0.50 0.50

19 ZFHX4.txt 0.50 0.50

20 MUC17.txt 0.71 0.47

results was found to be 0.52 (Figure 5A). The model feature
landscapes for TNM stage were shown in Figure 5B. For model
building and prediction based on TNM stage, all AUCs were
0.5. Additionally, we acquired radiotherapy_information for

TCGA lung adenocarcinoma samples, and applied the Elastic Net
predictive model, but the prediction outcomes were poor, and
all AUCs were 0.5.

DISCUSSION

In this study, we applied chromosomal segment-level CNVs
downloaded from TCGA database to perform Elastic Net
predictive model building, and the resulting models were used for
the forecasting of mutations, protein expression, clinical features,
and gene signature scores in lung adenocarcinoma.

The ability to predict key tumor phenotypes is essential
for elucidating the biocomplexity in multiple cancer types
(Bailey et al., 2018; Ding et al., 2018). The standard treatment
procedure for lung adenocarcinoma includes DNA-based gene
expression profiling, whiles protein expression analysis (e.g.,
PDL1) is gaining prominence, which is mostly owing to immune
therapy (Wang L. et al., 2020). Numerous previous studies have
confirmed that lung cancer is likely to be driven by gene copy
numbers in some degree due to the occurrence of numerous
copy number events, many of which are known genetic drivers
(Wilkerson et al., 2012; Campbell et al., 2016; Chen J. et al.,
2020; Gillette et al., 2020). Therefore, we reasoned that when
testing a copy number-driven tumor type, the diversity of DNA
CNVs can be used to predict many key tumor phenotypes. To
verify the above hypothesis, a wide-ranging manual archiving of
arranged genetic expression signatures extracted from plenty of
existing studies were utilized for analyzing tumorous phenotype
and assess the predictability. Two methods were adopted to

FIGURE 5 | CNV-based prediction of clinical features. (A) ROC curves and corresponding AUC values for CNV-based prediction of clinical stage (stage I–II vs. stage
III–IV) in the TCGA training and test sets. (B) Elastic Net-selected CNV segments and whole chromosomal arms and their coefficients for prediction model for
pathological stage.
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investigate the associations between every gene expression
signature and DNA CNV; a genome-wide association analysis
and Elastic Net regression modeling method. The correlation
research was able to identify whether genes have positive or
negative correlations with gene characteristics by evaluating
the genes individually. The combination of the two methods
synergistically produced a complete landscape of the connection
between gene signature and CNV, including many known
linkages, such as genetic signature for DNA gains and deletions,
or some signaling pathway activities (e.g., TP53). Indeed, many
of these signatures in the true validation group were highly
predictable (AUC > 0.8). Combining the association landscape
for each gene marker with its Elastic Net features has provided us
with exact CNV region for deeper exploration of possible genetic
drivers for multiple tumors. Besides, the following usage of
Elastic Net predictive model method in many other phenotypes,
such as the levels of proteins and mutations, has demonstrated
the capacity to forecast various essential phenotypes of lung
adenocarcinoma with high accuracy.

Nowadays, many similar studies are based on the expression
levels of related genes to build the prediction models for
molecular expression signatures, clinical indicators, disease
progression and prognosis. However, our study starts from the
perspective of DNA copy number data, intending to excavate
the potential information contained in which, and predicting
key tumor phenotypes, like mutation status or biomarker levels
or complex expression phenotypes in a proposed copy number-
driven tumor type, e.g., lung adenocarcinoma. In addition,
instead of some simple methods such as Logistics regression
and random forest used in some other conventional prediction
model researches, the DNA CNVs-based prediction models in
our study are built on the basis of Elastic Net regression. With the
characteristics of both Ridge regression and LASSO regression,
the Elastic Net algorithm can effectively achieve the screening
of eigenvectors with group effect and compress the selected
variables to avoid the model over-fitting, so as to maintain the
simplicity and accuracy of the model at the same time.

This modeling strategy might have clinical benefit and offer an
orthogonal method to addressing significant features like TP53
status, especially considering the increasing value of gene exons
and genetic mutations goes with the diagnosis and treatment of
tumors (Kinde et al., 2013; Garofalo et al., 2016; Uzilov et al.,
2016; Valle et al., 2020). Our study indicates that a little fraction
of genomic information plays a significant role in predicting
many molecular phenotypes in lung cancer. This also provides
possibility for the clinical use of Elastic Net model. For instance,
a variety of cell cycle progression and apoptosis signatures, such
as c-MYC signature assessed above, may play a predictive role
in the efficacy of NEDD8 inhibitors targeting PI3K/c-MYC axis
(Ochiiwa et al., 2021), or for MAPK inhibitors by targeting
ABL1/2-mediated reactivation of MEK/ERK/c-MYC signaling
(Tripathi et al., 2020). The Elastic Net prediction models of
c-MYC signature were able to extract out the patients with
high proliferation rates, which generally accompanied by MYC
amplification, then the use of NEDD8 inhibitors is recommended
for these patients. If followed by more extensive trial and
verification, it might be possible to read out plenty of novel

prediction markers for cancer diagnosis, efficacy, and prognosis
from available genomic panel information, hence playing a
better guiding role in tumor personalized medicine without
increasing the expense.

The strengths of this present study are that the
model has been validated in both the test and validation
sets, and that some results have previously been
shown to be associated with lung adenocarcinoma,
such as GSEA_Median_MYC_amplified_chr8q24 and
Pcorr_magnoid_PLOS.2012. Nevertheless, there are still
many shortcomings in our study. For example, in the prediction
of clinical features, we analyzed the pathological stage, TNM
stage, and radiotherapy, but only the prediction outcome of the
pathological stage in the validation set was > 0.5. No new sample
sets with both CNV and expression profile data were found for
further validation, so we used 70% TCGA data for testing, and
another part of the data was used for validation.

CONCLUSION

Overall, our study exhibited the capability to construct CNV-
based Elastic Net predictors for multiple key tumor phenotypes in
patients with lung adenocarcinoma. Although most studies have
focused on the search for genetic drivers of tumorigenesis, our
results had the important connotation that DNA information can
be used to predict significant complex tumor phenotypes, which
could have applications in the clinical settings.
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