
RESEARCH ARTICLE

Design of effective value calculation model for

dynamic dataflow of infrared gas online

monitoring

Dong XiaoID
1,2*, Lu Huang3, Mohamed Keita1,4, Hailun He5, Dayong Chen1, Jin Li6*

1 CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key

Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu,

China, 2 State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and

Technology (Beijing), Beijing, China, 3 School of Management, Xiamen University, Xiamen, Fujian, China,

4 School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu, China, 5 School of Life

Science, Central South University, Changsha, Hunan, China, 6 Department of General Surgery, Xuzhou First

People’s Hospital, Affiliated Hospital of China University of Mining and Technology, Xuzhou, Jiangsu, China

* xd@cumt.edu.cn (DX); lijin_tjdoctor@163.com (JL)

Abstract

The development of “CC30A CH4-CO2 combined analyzer” with infrared gas sensor as the

core detection device can be widely used in online gas component analysis. In data analy-

sis, the maximum value and arithmetic mean of the sensor data for each test period are not

effective value. The characteristics of the dynamic data are: (1) Each DAW completes one

test for one parameter, there is a unique effective value; (2) In test state, the fluctuation of

the sensor value gradually decreases when approaching to the end of the test. An effective

value calculation model was designed using the method of dimensionality reduction of

dynamic data. The model was based on the distribution characteristics of the process data,

and consists of 4 key steps: (1) Identify the Data Analysis Window (DAW) and build DAW

dataset; (2) Calculate the value of optimal DAW dataset segmentation and build DAW sub-

dataset; (3) Calculate the arithmetic mean (Mc) and count the amount of data in each subda-

taset (Fc), and build the optimal segmentation statistical set; (4) Effective value calculation

and error evaluation. Calculation result with 50 sets of monitor data conformed that the EVC

model for dynamic data of gas online monitoring meets the requirements of experimental

accuracy requirements and test error. This method can be independently calculated without

relying on the feedback information of the monitoring device, and it has positive significance

for using the algorithm to reduce the hardware design complexity.

Introduction

CH4 and CO2 are the key products in the anaerobic fermentation of coal or biomass, and the

trend analysis of gas componsition changes is the key factor for the control of anaerobic diges-

tion. Gas composition online analysis technology has gradually diversified with the improve-

ment of the accuracy of gas sensors [1]. Especially using infrared CH4-CO2 gas sensor instead

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0259155 October 28, 2021 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Xiao D, Huang L, Keita M, He H, Chen D,

Li J (2021) Design of effective value calculation

model for dynamic dataflow of infrared gas online

monitoring. PLoS ONE 16(10): e0259155. https://

doi.org/10.1371/journal.pone.0259155

Editor: Pasquale Avino, Universita degli Studi del

Molise, ITALY

Received: December 21, 2020

Accepted: October 12, 2021

Published: October 28, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0259155

Copyright: © 2021 Xiao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by The Open

Research Project of State Key Laboratory of Coal

https://orcid.org/0000-0001-9055-598X
https://doi.org/10.1371/journal.pone.0259155
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259155&domain=pdf&date_stamp=2021-10-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259155&domain=pdf&date_stamp=2021-10-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259155&domain=pdf&date_stamp=2021-10-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259155&domain=pdf&date_stamp=2021-10-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259155&domain=pdf&date_stamp=2021-10-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259155&domain=pdf&date_stamp=2021-10-28
https://doi.org/10.1371/journal.pone.0259155
https://doi.org/10.1371/journal.pone.0259155
https://doi.org/10.1371/journal.pone.0259155
http://creativecommons.org/licenses/by/4.0/


of gas chromatography (GC) to achieve low-cost online gas components detection and analysis

[2, 3]. At the same time, the optimization of data analysis methods (such as profile monitoring

technology [4, 5] and ensemble model [6]) and the improvement of computing capabilities of

single-chip microcomputer, has further improved the reliability and accuracy of online moni-

toring [7]. When the sensor is working, it analyzes the target gas concentration in its gas cham-

ber in real time, and continuously send the value to microcomputer [8], forming a data flow

which is named dynamic data flow. However, in order to avoid the mutual interference of dif-

ferent gas samples and ensure the test accuracy, the analyzer will flush gas chamber with N2 or

air after complete each test [9]. Meanwhile, the response time of sensor further enhanced the

delay effect of test result [10]. For sensors with quick response time, such as noncontact ther-

mopile [11], pressure difference sensor [12], hall sensor [13], etc., the raw sensor data is corre-

lated with the measured parameter and identified effective data, when the data collection

period is longer than the sensor response period. And for the sensor with slow response time

(such as infrared CH4 sensors [14], the response time longer than 20 S), the effective data will

be mixed with process data when the data collection frequency is shorter than the sensor

response period is. Infrared CH4-CO2 sensor is a typical case. These two factors cause the gas

composition to be in dynamic changes all the time in sensor gas chamber, and effective data

and process data mixes in dynamic data flow. More than 80% of the sensor data is process

data, which is invalid data, when data collection frequency is set to 1 data/S.

In the gas composition online analysis technology, the tube bundle system is widely used in

coal mines [15, 16], anaerobic digestion systems [17, 18], and fermentation industries [19].

This system uses one set/group of gas sensors to perform gas concentration tests from multiple

monitoring points in patrol read mode [16]. And it suitable to test the atmosphere where the

gas composition is relatively stable and the gas concentration changes slowly. CH4 and CO2

yield monitoring of coal biogasification experiment are a typical case of tube bundle system

utilization [20]. Affected by the characteristics of the biodegradation of organic compounds in

coal, the experiment cycle is usually more than 200 days, or even one year [21, 22]. When set-

ting the test frequency for each experiment sample to 8 hours, one system can serve more than

60 samples. Gas analysis measures 80 experiment samples in a patrol model, and outputs one

set of data every second (take the IR-EK2 infrared CH4-CO2 sensor evaluation kit as an exam-

ple). The total amount of data can reach 1.66 billion for one standard coal biogasification

experiment, if all the data would be recorded. However, only 1.4% of the data is effective data.

The storage of a large amount of process data is not only waste storage resources, but also

waste computing resources for data analysis. Meanwhile, limited by the computing power of

the ARM7 processor [23], it is necessary to design an algorithm that occupies less computing

resources to ensure that the processor has enough computing power to process concurrent

instructions. Therefore, the dynamic dataflow analysis and effective value calculation would be

important for simplifying data processing and improving the utilization of computing

resources.

Methods

Gas chromatographic analysis of gas composition

1.00mL of gas samples were collected from every experiment sample in each test cycle. And

the CH4 and CO2 contents were analyzed by gas chromatography (GC) (7890A, Agilent,

America). The gas composition tested by GC was defined as GC value.

The N2 (carrier gas) flow rate was set at 1.0 mL/min. The injection port was maintained at

150˚C, the oven temperature was 25˚C, and the thermal conductivity detector (TCD) was

operated at 200˚C [24]. The retention time for methane was 3.76 minutes, and for carbon
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dioxide was 5.0 minutes. Calibration standards consisting of 40% CH4, 20% CO2, 10% H2 and

30% N2 were injected to generate the calibration plot.

Gas composition online monitoring

The gas composition analysis flow data was monitored using CC30A CH4-CO2 combined ana-

lyzer (Jundong, China). The gas chamber was 5.0 mL. The analysis period was set for 8 hours,

one injection volume was set to 90 mL, the flow rate was set to 120 mL/min, and the dehydra-

tor temperature was set to -25˚C. The gas sample time was set to 45 S, and the test time was set

to 90 S. After one test was completed, the sensor was flushed with N2 for 60 S and with dried

air for 165 S. N2 and air flow rate was set to 100 mL/min. The CC30A sensitivities of CH4 and

CO2 were 2000 ppm, and the resolution was 500 ppm for both gases.

Effective value analysis model design for gas online monitoring

Dynamic data characteristics of gas online test

In the coal biogasification experiment, “CC30A CH4-CO2 combined analyzer (abbreviated as

CC30A)” was used to test the gas composition of each sample every 8 hours. When CC30A

was in preparation state before the gas test, the gas chamber was filled with air, and the sensor

data of CH4 and CO2 below 0.50%vol. This data was identified as background value.

The sensor data in test state, 90 mL gas sample was slowly injected into the gas chamber,

and CH4 and CO2 concentration in the gas chamber was gradually increased. The gas sample

injection was lasted for 45 S, the gas composition in the gas chamber gradually consistent with

the sample (Fig 1. Stage), and the slope of curve were gradually decreased. When gas sample

injection process was over, the gas was sealed in gas chamber for 90 S.

When the sensor data was tending to be stable and the test result was tending to be consis-

tent with the GC value (Fig 1. Stage ). After the test state was completed, the gas chamber was

(why would be) flushed with N2 for 60 seconds (Fig 1. Stage ). At the beginning of stage ,

affected by the check valve, which set at the air outlet of gas chamber, in the initial stage of N2

flushing, the short-term pressure increase in the chamber caused the sensor value to increase

first and then decrease (Fig 1, stage ). Stage to stage constitute a data analysis window

(DAW). According to the CC30A CH4-CO2 combined analyzer design, in the later stage of

stage , the sensor data tended to be stable and fluctuated around the effective value. Therefore,

according to the data distribution characteristics in a monitoring window, the effective value is

equal to the sensor value with the highest frequency. Because CC30A completes the gas con-

centration of CH4 and CO2 simultaneously, two gas test values have the same data fluctuation.

To simplify the calculation of effective value, monitoring window should be identified firstly in

dynamic data.

The data in Fig 1 as an example, the DAW was established based on CH4 test results, and

the threshold value (Ct) was defined as 0.50% (background value). When the dynamic data

was larger than the Ct, and data fluctuation conformed to stages - , this data set was defined as

one Data Analysis Window (DAW). The effective value calculation model was designed based

on the window.

According to the CH4 sensor data distribution in Fig 1, compare the character difference of

data in stage / and stage , it was: (1) The absolute value of the difference between adjacent data

was larger in stage and ; (2) If divided the CH4 test value from Ct to the maximum into several

equal parts, the amount of data in the interval of effective value was the largest. Therefore, two

concepts were defined in the calculation model design: (1) Data Numerical Distribution

(DND): the absolute value of the difference between adjacent data in one monitoring window

data set; (2) Data Frequency Distribution of Subdataset (DFDS): the sensor value from Ct to
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the maximum in one DAW was divided into several subdataset. DFDS is the amount of data

in every subdataset if the data was simplified according to certain hexadecimal, the data in the

DAW would be divided into groups. There should be a group of dataset with the highest statis-

tical value, and the effective value should be in this group. By this data analysis method, the

effective value could be identified with the data value domain segmentation (DVDS) and sta-

tistical frequency (SF) analysis.

Effective value calculation model design of dynamic dataflow

Effective value calculation was based on a data set in one DAW. The characteristics of every

dataset were: (1) each DAW completes one test for one parameter, there is a unique effective

value; (2) in test state, the fluctuation of the sensor value gradually decreases when approach-

ing the end of the test. Therefore, the frequency of each sensor data in stage and was less than

2; meanwhile, the frequency of some sensor data in stage was higher than 2. The effective value

calculation model was designed as follow steps:

(1) Identify the DAW in the dynamic dataflow.

One gas concentration test cycle was 360 S. The CC30A sensitivities of CH4 and CO2 were

2000 ppm, and the resolutions were 500 ppm for both gases. Threshold value (Ct) was been

Fig 1. Gas concentration curve in one monitoring window. The test process was divided into three stages based on the test method and gas concentration

change factors. Ct is the threshold value.

https://doi.org/10.1371/journal.pone.0259155.g001
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used to identify the test data and value was set to 0.50%. The first sensor data greater than Ct

was defined as the DAW initial data. The time of each DAW was marked by the time of the

DAW initial data plus 135 S. In order to prevent misjudgment caused by abnormal data fluctu-

ations, it was required that 100 sensor data before the DAW initial data should less than Ct and

the data volume of DAW data set no less than 150.

(2) Optimal DAW dataset segmentation.

In the second step, a DAW dataset was divided from Ct to the maximum data (Cmax) into n

equal parts (n DAW subdatasets, and n is calculated by Eq 1) (Fig 2). The value of segmenta-

tion was integer multiple of CC30A resolution (Si), and the multiple was limited 1–20 (exam-

ple: when the multiple value was 2, the segmentation value was recorded as S2). The smaller

value of i, the larger value of n, and the greater number of subdatasets. The value of i start from

1, and count the amount of data in each subdataset (SNb) under the Si until the SNb has a

unique maximum. Through a large amount of data analysis, the SNb-max should be greater

than 6 in order to reduce the effective value error.

Fig 3 as an example, when the segmentation value of i was 1, the SNb-max of two subdatasets

was 3 (Fig 3A-1); when the value of i was 2, there was only one SNb-max = 4 (Fig 3B-1). Until

the value of i was 10, there was only one SNb-max = 7 (Fig 3C-1) Therefore, the optimal value of

DAW dataset segmentation was S10.

(3) The optimal segmentation statistical set building.

Based on DAW dataset segmentation, statistical calculation of the average value of each

subdataset and DFDS values.

Step 1: Build DAW dataset. After the DAW has been established, removed the time stamp

and reordered the sensor data in the window (V1 . . .. . .Vm) (Step 1 in Fig 2).

Step 2: Calculate the value of optimal DAW dataset segmentation. And divide the DAW

dataset into n equal parts, build DAW subdataset (SNb, b = 1 to n).

n ¼
Cmax

Si
ð1Þ

where: n: the number of DAW subdataset;

Cmax: the largest value in DAW;

Si: segmentation value

Step 3: calculate the arithmetic mean (Mc) and count the amount of data in each subdataset

(Fc). If there is no data in a subdataset, it is judged as an invalid subset and recorded as empty.

The empty subset would not record into Optimal Segmentation Statistical Set (OSS).

Mc ¼

Pbmax
i¼bmin

Vi

ðbmax � bminÞ þ 1
ð2Þ

Where: Mc: the c data in Optimal Segmentation Statistical Set;

Vi: a data in a DAW dataset;

bmax is the max Vi number in a DAW subdataset;

bmin is the min Vi number in a DAW subdataset;

Step 4: Build the optimal segmentation statistical set. There are two parameters in each OSS

subset: the arithmetic mean of SNb, number of data in SNb.

(4) Effective value calculation.

Effective value is one data in optimal segmentation statistical set. It needs meet two condi-

tions at the same time: it has the unique maximum SN; the effective value is no the largest

OSS data. Therefore, the effective value can be found by the query method. A review calcula-

tion was introduced in this model to ensure the reliability of effective value. The principle was
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that the curve slope where the effective value was located tends to 0. The value dispersion (VD)

was introduced, and it could analyze the proportional relationship between the adjacent data

of effective value and optimal DAW dataset segmentation (Eq 3). Because the fluctuation of

sensor data at the end of test was the smallest, the VD of effective value should close to 1. Tak-

ing the data of Fig 1 as an example, the VD was large in the stage and and small in the Stage ,

especially for the data close to the effective value (Fig 3A-2, 3B-2 and 3C-2).

VDb ¼
ðOSSbþ1 � OSSb� 1Þ

2S0

b � 1 � 1ð Þ ð3Þ

Where: VDb: the value dispersion of the b data;

OSSb: the b data in optimal segmentation statistical set;

S0: the optimal DAW dataset segmentation.

Validation of the effective value calculation model

The effective value calculation (EVC) model was verified based on 50 sets of CH4 and CO2

data which obtained in the coal biogasification experiment. The calculation process was per-

formed according to the data acquisition time. And the error of each parameter was calculated

based on GC value. The allowable error was set to�2.5% (Fig 4).

Calculation result conformed that the EVC model for dynamic data of gas online monitor-

ing less than allowable error. The relative error statistics data identified that the relative error

for more than 65% data was less than 1% for both CH4 and CO2 concentration data.

Fig 2. Monitoring window data set segmentation and effective segmentation statistical set calculation method.

https://doi.org/10.1371/journal.pone.0259155.g002
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Results and discussion

This model was designed for the key algorithm in CC30A CH4-CO2 combined analyzer system

development. In the CC30A system, infrared CH4-CO2 sensors were used as the core analysis

unit. The system needs to be physical separated between calculation unit and analysis unit,

including power ground and signal transmission. To solve this problem, only one optical cou-

pler was used in system design to establish one signal isolation path for the two units. This sim-

plified design improved the anti-interference ability of the system, but created a problem

which was how to make the computing unit fast and complete the result analysis with low cal-

culate resource utilization. This algorithm design was based on the analysis steps and sensor

characteristics of CC30A CH4-CO2 combined analyzer, and clarifies the reason and law of the

fluctuation of the infrared gas component sensor data. It was to allow the computing unit to

automatically lock the data analysis window and complete the effective value calculation

according to data changes in dynamic data flow.

Fig 3. Value frequency and data dispersion changes with difference value domain segmentation. Fig A shows the variation of the value frequency of different

segmentation values with a histogram. Fig B shows the data dispersion for different segmentation values. The smaller the dispersion, the better the relative continuity of

the values in the data set.

https://doi.org/10.1371/journal.pone.0259155.g003
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The model uses the data dimensionality reduction method to extract the data distribution

characteristics. The dimensionality reduction calculation instead of curve slope change analy-

sis or curve fitting, and completes the calculation of the effective value by the conditional judg-

ment and mean calculation within 8 data. This algorithm calculation is mainly divided into

three steps (Fig 5). The calculation of the DAW subdataset and the OSS subset completed the

dimensionality reduction calculation of the original data. It is the core algorithm of the EVC

model. The model was verified based on 50 sets of CH4 and CO2 data. Error analysis con-

firmed that the EVC model for dynamic data of gas online monitoring meets the requirements

of experimental accuracy requirements and test error.

Conclusion

Real-time and accurate acquisition the concentration of CH4 and CO2 in anaerobic fermenta-

tion is key indicators for monitoring the fermentation system. The design goal of the CC30A

CH4-CO2 combined analyzer is to realize low-cost, automated, real-time online analysis of key

Fig 4. The absolute error and relative error statistics of effective value analysis model calculation results. Fig A and B are the effective value analysis model

calculation result with absolute error for 50 sets of CH4 and CO2 data. Fig C and D show the statistical results of the data in graphs A and B respectively with

0.5% relative error interval.

https://doi.org/10.1371/journal.pone.0259155.g004
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gas components. Limited by the computing power of the ARM7 processor, the effective value

calculation (EVC) model has been designed. The advantage of this algorithm is that only a few

simple judgments and statistics are needed to replace complex algorithms to extract the target

data from the data flow. According to the principle of model operation, the model can be well

utilized to dynamic data flow operations with the following characteristics. (1) the effective

value is related to the data distribution characteristics, and is not the maximum or average

value in dataset; (2) the calculation is independent and complete according to the fluctuation

of the data, and does not rely on any peripheral devices signals. The design of the EVC model

enables the calculations independently, and it has positive significance for using the algorithm

to reduce the hardware design complexity.
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Fig 5. Effective Value Calculation (EVC) model calculation flow chart.

https://doi.org/10.1371/journal.pone.0259155.g005

PLOS ONE Effective value calculation model design

PLOS ONE | https://doi.org/10.1371/journal.pone.0259155 October 28, 2021 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259155.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259155.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259155.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259155.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259155.s005
https://doi.org/10.1371/journal.pone.0259155.g005
https://doi.org/10.1371/journal.pone.0259155


Acknowledgments

The authors’ acknowledge the contributions of the following companies for allowing access to

coal samples and other information used in this paper: Sihe mining, J&D Technology

Company.

Author Contributions

Data curation: Dong Xiao, Lu Huang, Hailun He, Dayong Chen.

Funding acquisition: Dong Xiao, Jin Li.

Methodology: Lu Huang.

Writing – original draft: Dong Xiao, Lu Huang.

Writing – review & editing: Mohamed Keita, Hailun He, Dayong Chen, Jin Li.

References
1. Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. British

Journal of Anaesthesia. 2009; 103: 3–13. https://doi.org/10.1093/bja/aep299 PMID: 20007987

2. Ward AJ, Bruni E, Lykkegaard MK, Feilberg A, Adamsen APS, Jensen AP, et al. Real time monitoring

of a biogas digester with gas chromatography, near-infrared spectroscopy, and membrane-inlet mass

spectrometry. Bioresource Technology. 2011; 102: 4098–4103. https://doi.org/10.1016/j.biortech.2010.

12.052 PMID: 21232940

3. Lu H, Iseley T, Behbahani S, Fu L. Leakage detection techniques for oil and gas pipelines: State-of-the-

art. Tunnelling and Underground Space Technology. 2020. https://doi.org/10.1016/j.tust.2019.103249

4. Qiu P, Zou C, Wang Z. Nonparametric profile monitoring by mixed effects modeling. Technometrics.

2010; 52: 265–277. https://doi.org/10.1198/TECH.2010.08188

5. Qiu P, Xiang D. Univariate dynamic screening system: An approach for identifying individuals with irreg-

ular longitudinal behavior. Technometrics. 2014; 56: 248–260. https://doi.org/10.1080/00401706.2013.

822423

6. Lu H, Iseley T, Matthews J, Liao W, Azimi M. An ensemble model based on relevance vector machine

and multi-objective salp swarm algorithm for predicting burst pressure of corroded pipelines. Journal of

Petroleum Science and Engineering. 2021; 203. https://doi.org/10.1016/j.petrol.2021.108585

7. Xu Z-D, Yang Y, Miao A-N. Dynamic Analysis and Parameter Optimization of Pipelines with Multidimen-

sional Vibration Isolation and Mitigation Device. Journal of Pipeline Systems Engineering and Practice.

2021; 12. https://doi.org/10.1061/(asce)ps.1949-1204.0000504

8. Zhang K, Luo W, Wang T, Yang J, Yuan Y, Zhang Z, et al. Gas chamber and thermal isolation structure

simulation for an integrated NDIR gas sensor. 15th IEEE International Conference on Nano/Micro Engi-

neered and Molecular System, NEMS 2020. 2020. https://doi.org/10.1109/NEMS50311.2020.9265577

9. Maffei N, Kuriakose AK. A solid-state potentiometric sensor for hydrogen detection in air. Sensors and

Actuators, B: Chemical. 2004; 98. https://doi.org/10.1016/j.snb.2003.09.024

10. Schmidt M, Linke P, Esser D. Recent development in IR sensor technology for monitoring subsea meth-

ane discharge. Marine Technology Society Journal. 2013;47. https://doi.org/10.4031/MTSJ.47.3.8

11. Schmidt W. New manufacturing technology improves thermopile sensors. Laser Focus World. 1995;

31: 77–79.

12. Price C, Parker D, Nester C. Validity and repeatability of three in-shoe pressure measurement systems.

Gait and Posture. 2016; 46: 69–74. https://doi.org/10.1016/j.gaitpost.2016.01.026 PMID: 27131180

13. Paun MA, Sallese JM, Kayal M. Hall effect sensors design, integration and behavior analysis. Journal of

Sensor and Actuator Networks. 2013; 2: 85–97. https://doi.org/10.3390/jsan2010085

14. Dinh TV, Choi IY, Son YS, Kim JC. A review on non-dispersive infrared gas sensors: Improvement of

sensor detection limit and interference correction. Sensors and Actuators, B: Chemical. 2016; 231:

529–538. https://doi.org/10.1016/j.snb.2016.03.040

15. Karl Zipf R, Marchewka W, Mohamed K, Addis J, Karnack F. Tube bundle system: For monitoring of

coal mine atmosphere. Mining Engineering. 2013; 65: 57. PMID: 26306052

PLOS ONE Effective value calculation model design

PLOS ONE | https://doi.org/10.1371/journal.pone.0259155 October 28, 2021 10 / 11

https://doi.org/10.1093/bja/aep299
http://www.ncbi.nlm.nih.gov/pubmed/20007987
https://doi.org/10.1016/j.biortech.2010.12.052
https://doi.org/10.1016/j.biortech.2010.12.052
http://www.ncbi.nlm.nih.gov/pubmed/21232940
https://doi.org/10.1016/j.tust.2019.103249
https://doi.org/10.1198/TECH.2010.08188
https://doi.org/10.1080/00401706.2013.822423
https://doi.org/10.1080/00401706.2013.822423
https://doi.org/10.1016/j.petrol.2021.108585
https://doi.org/10.1061/%28asce%29ps.1949-1204.0000504
https://doi.org/10.1109/NEMS50311.2020.9265577
https://doi.org/10.1016/j.snb.2003.09.024
https://doi.org/10.4031/MTSJ.47.3.8
https://doi.org/10.1016/j.gaitpost.2016.01.026
http://www.ncbi.nlm.nih.gov/pubmed/27131180
https://doi.org/10.3390/jsan2010085
https://doi.org/10.1016/j.snb.2016.03.040
http://www.ncbi.nlm.nih.gov/pubmed/26306052
https://doi.org/10.1371/journal.pone.0259155


16. Liang Y, Zhang J, Wang L, Luo H, Ren T. Forecasting spontaneous combustion of coal in underground

coal mines by index gases: A review. Journal of Loss Prevention in the Process Industries. 2019; 57:

208–222. https://doi.org/10.1016/j.jlp.2018.12.003

17. Li L, Peng X, Wang X, Wu D. Anaerobic digestion of food waste: A review focusing on process stability.

Bioresource Technology. 2018. https://doi.org/10.1016/j.biortech.2017.07.012 PMID: 28711296

18. Ardolino F, Parrillo F, Arena U. Biowaste-to-biomethane or biowaste-to-energy? An LCA study on

anaerobic digestion of organic waste. Journal of Cleaner Production. 2018;174. https://doi.org/10.1016/

j.jclepro.2017.10.320

19. Omar B, El-Gammal M, Abou-Shanab R, Fotidis IA, Angelidaki I, Zhang Y. Biogas upgrading and bio-

chemical production from gas fermentation: Impact of microbial community and gas composition. Biore-

source Technology. 2019; 286. https://doi.org/10.1016/j.biortech.2019.121413 PMID: 31078978

20. Choi YC, Li XY, Park TJ, Kim JH, Lee JG. Numerical study on the coal gasification characteristics in an

entrained flow coal gasifier. Fuel. 2001; 80: 2193–2201. https://doi.org/10.1016/S0016-2361(01)00101-

6

21. Xiao D, Peng SP, Wang EY. Fermentation enhancement of methanogenic archaea consortia from an

Illinois basin coalbed via DOL emulsion nutrition. PLoS ONE. 2015; 10: e0124386. https://doi.org/10.

1371/journal.pone.0124386 PMID: 25884952

22. Xiao D, Peng SP, Wang BY, Yan XX. Anthracite bio-degradation by methanogenic consortia in Qinshui

basin. International Journal of Coal Geology. 2013; 116–117: 46–52. https://doi.org/10.1016/j.coal.

2013.06.008

23. Jeong GY, Park JS. Design of 32-bit RISC processor and efficient verification. Proceedings—KORUS

2003: 7th Korea-Russia International Symposium on Science and Technology. 2003.

24. Stra̧poćD, Picardal FW, Turich C, Schaperdoth I, Macalady JL, Lipp JS, et al. Methane-producing

microbial community in a coal bed of the Illinois Basin. Applied and Environmental Microbiology. 2008;

74: 2424–2432. https://doi.org/10.1128/AEM.02341-07 PMID: 18310416

PLOS ONE Effective value calculation model design

PLOS ONE | https://doi.org/10.1371/journal.pone.0259155 October 28, 2021 11 / 11

https://doi.org/10.1016/j.jlp.2018.12.003
https://doi.org/10.1016/j.biortech.2017.07.012
http://www.ncbi.nlm.nih.gov/pubmed/28711296
https://doi.org/10.1016/j.jclepro.2017.10.320
https://doi.org/10.1016/j.jclepro.2017.10.320
https://doi.org/10.1016/j.biortech.2019.121413
http://www.ncbi.nlm.nih.gov/pubmed/31078978
https://doi.org/10.1016/S0016-2361%2801%2900101-6
https://doi.org/10.1016/S0016-2361%2801%2900101-6
https://doi.org/10.1371/journal.pone.0124386
https://doi.org/10.1371/journal.pone.0124386
http://www.ncbi.nlm.nih.gov/pubmed/25884952
https://doi.org/10.1016/j.coal.2013.06.008
https://doi.org/10.1016/j.coal.2013.06.008
https://doi.org/10.1128/AEM.02341-07
http://www.ncbi.nlm.nih.gov/pubmed/18310416
https://doi.org/10.1371/journal.pone.0259155

