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Abstract: The spontaneous formation and fusion of raspberry vesicles was studied using the dis-
sipative particle dynamics (DPD) method. The vesicles were formed through the self-assembly
of amphiphilic E12O6F2 star terpolymers in selective solvent. E and F blocks are solvophobic and
the O block is solvophilic. The shortest F block plays a major role in the formation of raspberry
vesicles. Distinct vesicle formation mechanisms were observed at different polymer concentrations.
At higher concentrations, vesicles form via the bending and closure of an oblate F-bump-E bilayer.
At lower concentrations, the formation pathway contains: the initial formation of a vesicle with a core,
the combination of such vesicles into cylindrical micelles, and the bending of the cylindrical micelles
to form a hollow vesicle. In addition, raspberry vesicle fusion is regulated by F bumps through the
continuous coalescence of them from apposed vesicle membranes. The contact area bends, followed
by the formation of a fusion pore and a tilted inner layer. As the pore sealed, the hemifusion structure
appears, which further restructures to form a vesicle. Our results provide guidance on understanding
the dynamic processes of complex vesicles and biological membrane fusion.

Keywords: raspberry vesicle; vesicle formation mechanism; fusion; dissipative particle dynamic

1. Introduction

Micelles, whose surfaces are composed of physically or chemically distinct domains,
are regarded as soft patchy micelles [1,2]. Their multi-compartment features make them
suitable templates for selective nanoparticle incorporation [3]. Additionally, micelles could
also be utilized as building blocks for the directional assembly of periodic superstruc-
tures [4,5], thus paving the way for application into memory or optoelectronic devices [5].
Distinct from patchy micelles, patchy capsules (vesicles) possess both functionalities of
patchy micelles as well as those of vesicles [6]. As a result, such vesicles are potential
candidates for medical, biotechnological, or sensor applications.

As a carrier, optimizing vesicle encapsulation efficiency is crucial. The loading ef-
ficiency has been found to be affected by the vesicle formation mechanism. The most
commonly investigated formation mechanism (Mechanism I) can be described as the
wrapping-up of a disk or lamellar micelle, where the solvent and cargo molecules are
encapsulated at the same time as the formation of the cavity of the vesicle. In Mechanism II,
vesicles form through the diffusion of the solvent into semivesicles, and a cavity is formed
as a result. Vesicles were also found to be formed by torus micelles [7]. However, vesicles
obtained from Mechanism I are supposed to have higher encapsulation efficiency [8]. Thus,
controlling the vesicle formation path is of great importance to improving encapsulation
efficiency. Studies [7,9–11] have revealed that by manipulating conditions such as solvent
addition rate, polymer concentration, block ratio, polymer–solvent interaction, or heating
rate, the formation mechanism can be tuned accordingly.
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Fusion behavior is another important feature of vesicles [12–14]. Vesicle fusion is
another way to improve the encapsulation ability by enlarging the vesicle size. Recently,
fusion was found to be a method for the formation of large compound vesicles (LCVs) [15].
Much effort through both simulation and experiment [16–23] has been undertaken to
understand the fusion process of polymer vesicles with simple unilamellar structure.
Several models regarding the fusion process have been reported. In the original stalk-pore
mechanism, the inner monolayers of two vesicles merge. The contact area expands further
before the formation of a small pore. However, for the modified model, a pore forms directly
at the trans-monolayer contact area without expanding the contact area. An atypical path
called the stalk-bending process was also observed for vesicles self-assembled from comb-
like block copolymers [23]. In this process, two holes appear in both vesicles near the foot
of the stalk. The stalk bends and encircles the two holes to complete the fusion process.

The development of polymerization techniques has increased the variety of polymer
chain architectures (e.g., linear, star, graft, and dendrimer) as well as the number of building
blocks (e.g., ABC triblock), which lead to the formation of polymer vesicles with complex
structures, e.g., nanostructured vesicles, patchy vesicles, multilayer vesicles, and Janus
dendrimersomes [6,12,13,24–26]. The complexity of the vesicle structure could lead to a
different fusion path. For example, the fusion process for multilamellar vesicles (MLVs) was
found to be layer-by-layer, which starts at the outmost layer and ends at the innermost one.
Nevertheless, little attention has been paid to the fusion of vesicles with complex structures.
Since many functions of vesicles are related to their fusion behavior [23], investigating the
fusion process can help us understand the relationship between structures and the design
of potential applications [13,27].

As reported from both experiments and simulations, patchy hollow capsules can be ob-
tained from the self-assembly of amphiphilic block copolymers in selective solvent [25,28–30].
In this study, the self-assembly of highly asymmetric E12O6F2 miktoarm star terpolymers
in selective solvent was investigated using dissipative particle dynamics simulation. In the
miktoarm structure, polymer arms are linked at a single point, which suppresses the formation
of concentric structure [31]. The relatively short F block makes the final equilibrium mor-
phologies prone to forming F-block patches. We investigated how the morphologies evolve
by systematically modifying the solvophobicity of E and F blocks. The vesicle formation
mechanism was studied in different polymer concentrations. The fusion path of the patchy
vesicle was also studied for further understanding of the dynamic processes of complex
vesicles.

2. Simulation Methods

In this simulation, dissipative particle dynamics (DPD) method [32] was conducted
to study the spontaneous formation process of the polymer vesicles. The motion of DPD
particles is governed by Newton’s equation of motion,

d
→
r i

dt
=
→
υ i, mi

d
→
v i

dt
=
→
f i (1)

where
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where
→
r ij =

→
r i −

→
r j, rij =

∣∣∣→r ij

∣∣∣, r̂ij =
→
r ij/

∣∣∣→r ij

∣∣∣, aij is the maximum repulsion between
bead i and j, and rc is the cut-off radius with a value of 1.0. The soft-repulsive force used
here allows the simulation to have a larger length scale and timescale. The combination of
dissipative force and random force plays a role as a thermostat in the simulation. The two
forces are given by the following expressions:

→
F
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ij = −γωD(rij
)(→
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)
r̂ij (3)
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where
→
υ ij =
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υ i−

→
υ j; σ and γ represent the amplitude of the dissipative and random forces,

respectively; ωD(rij
)

and ωR(rij
)

are the weight functions; ξij is a random number with
zero mean and unit variance; the

√
dt is used here to ensure that the diffusion coefficient

of the particles is independent of the timestep used in the simulation. In order to satisfy
the equilibrium Gibbs–Boltzmann distribution and the fluctuation-dissipation theorem,
the following two relations must be satisfied:

ωD(rij
)
=
[
ωR(rij

)]2
, σ2 = 2γkBT. (5)

According to Groot and Warren [33], γ was chosen to be 4.5 at density ρ = 3.
The weight function is generally expressed as:

ωD(rij
)
=

{
(1− rij/rc)

2 (rij < rc)
0

(
rij ≥ rc

) (6)

The spring force is given by:
→
F

S

i = ∑
j

C
→
r ij (7)

where C is the spring constant and set as 4.0. This value results in a slightly smaller distance
for bonded particles than nonbonded ones, and the sum runs over all particles to which
particle i is connected.

The integration of the equation of motion (Equation (1)) was carried out using the
Velocity–Verlet algorithm [33] with a timestep of ∆t = 0.04. For simplicity, we set the
cutoff radius, the particle mass, and the temperature as the units of the simulation system,
i.e., rc = m = kBT = 1.0. Therefore, the unit of time is τ = rc

√
m/kBT = 1.0. Periodic

boundary conditions and NVT ensemble were adopted in the simulation. For ρ = 3.0, aij is
chosen according to the linear relationship with Flory–Huggins χ parameter proposed by
Groot and Warren [33,34].

aij = aii + 3.27χij (8)

In this study, we built a coarse-grained model for highly asymmetric amphiphilic star
E12O6F2 triblock copolymer (Figure 1) with a solvophilic O block. We first studied the effect
of the interaction energy between polymer and solvent on the formation of patchy vesicles.
In this case, the concentration was set to 10.0 vol %. The interaction energy between the E
block with solvent varied from 26.0 to 98.0, and the F block with solvent varied from 26.0 to
126.0, in order to investigate the effect of solvophobicity of the long block and short block
on the self-assembly morphologies. We then studied the effect of polymer concentrations
on the vesicle formation mechanism. In this case, we used the maximum interaction energy
between the solvophobic blocks and solvent (aES = 97.9; aFS = 125.0). The interaction
parameters among the species are summarized in Table 1. We mainly performed the system
with a simulation box of 40rc × 40rc × 40rc, and 5.0 × 105 to 8.0 × 105 DPD steps were
taken to guarantee the equilibrium state. To study the dynamic process of vesicle fusion,
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we expanded the simulation box to a size of 70rc × 70rc × 70rc, and 2.0 × 107 DPD steps
were taken to guarantee the equilibrium of the fusion process.
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Figure 1. Schematics of the star block copolymers and color codes of individual polymer blocks.

Table 1. Interaction parameters aij (in DPD units) used in the simulations.

Type of Blocks O E F S

O 25.0
E 38.5 25.0
F 89.4 78.0 25.0
S 26.0 26.0–97.9 26.0–125.0 25.0

3. Results and Discussion
3.1. Effect of Block Solvophobicity on Vesicle Formation

To illustrate the effect of the interaction energy between blocks and solvents, equi-
librium structures for various aFS and aES are presented in Figure 2 in the form of a state
diagram. At low aES (aES = 26), when the interaction energy between the F block and
solvent was low (aFS ≤ 76), polymer chains favored the solvent, and a disordered structure
was found in these cases. As aFS increased from 111.0 to 126.0, the F blocks became rela-
tively solvophobic and started to aggregate. Since E blocks and O blocks are solvophilic,
the chains swelled in the solvent and entangled to form a network structure. For cases
with higher aES (aES > 26), the equilibrium morphologies were mainly governed by short F
blocks when aFS was low (aFS ≤ 51). Polymer chains self-assembled to spherical micelles
at low aFS (aFS = 26), while cylindrical micelles did so at high aFS (aFS = 51). For further
increased aFS, low and high aES favored the formation of micelles and vesicles, respectively.
Although amphiphilic polymers could self-assemble into vesicles with hydrophilic fraction
35% ± 10%, our results showed that the solvophobicity of the hydrophobic blocks also
played an important role in vesicle formation. Note that the length ratio between E blocks
and F blocks was 6:1; thus, the solvophobicity of the shortest F blocks played a more
important role in the formation of vesicles.
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3.2. Vesicle Formation Mechanism

Polymer concentration plays an important role in the vesicle formation path. In this
paper, polymer concentration is represented as fp. Figure 3a,b illustrates the typical vesicle
formation processes for E12O6F2 star terpolymers at two different polymer concentrations.
In the case of higher terpolymer concentration ( fp = 0.15), amphiphilic block copolymers
first aggregated into spherical raspberry micelles (Figure 3(a1,a2)). The spherical micelles
merged and restructured to form an oblate F-bump-E bilayer. The bilayer further curled up
into a complete vesicle (Figure 3(a3–a6)). In this case, the vesicle was formed through a
lamellar micelle closure process, a common path reported in the literature as Mechanism
I [7,10]. Figure 3b displays the dynamic process of vesicle formation at a lower terpolymer
concentration ( fp = 0.1). As referred to in Figure 3(b1), the aggregation of star terpolymers
went through a similar initial stage as shown in Figure 3(a1). Disk-like micelles appeared
due to the combination of the small spherical micelles (Figure 3(b2)). As time increased,
the disk-like micelle gradually transformed into a vesicle with a core (Figure 3(b3)). Those
aggregates were stable for a period. After 74,000 DPD steps, the vesicle with a core collided
and the morphology finally evolved into a hollow vesicle (Figure 3(b4–b6)). The final
structures (cross-section) and density profiles of vesicles obtained from both high and low
concentrations are shown in Figure 4. Both density profiles apparently showed bimodal
characteristics for the hydrophilic O block and the hydrophobic F block, while unimodal
features were found in the hydrophobic E block. This suggested that the membrane
was made of E block. The solvophilic O block was located both inside and outside the
membrane, which suggested the typical nature of a vesicle. The super solvophobic F blocks
aggregated into small clusters and bumped to both sides of the membrane. The raspberry
vesicle structure was formed due to the relatively large chain ratio between blocks E and
F. Thus, E blocks exhibited more solvophobic behavior than the solvophobic F blocks.
In conclusion, the two final vesicle structures were similar, with exceptions in the distinct
formation pathways adopted at different polymer concentrations. Such a difference was
realized as a result of the increase in collision probability between adhesive micelles that
resulted from the increase in polymer concentration [10].
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Figure 3. (a) Typical formation process of raspberry vesicle self-assembled from E12O6F2 with a polymer concentration of
fp = 0.15 at (a1) 50,000 DPD steps; (a2) 150,000 DPD steps; (a3) 175,000 DPD steps; (a4) 200,000 DPD steps; (a5) 210,000 DPD
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represent E, O, and F, respectively, while solvent molecules are omitted for clarity.
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For clarity, the morphology transition from a disk-like micelle to a vesicle with a core
over the period of 2.8 × 105 to 3.5 × 105 DPD steps at a low concentration is displayed
in Figure 5, in which an interesting finding is observed regarding its structural evolution.
For more simplicity, only the cleaved structure of the aggregate is exhibited. As shown in
Figure 5a, the micelle exhibited a disk-like structure with an E-bead center surrounded by a
shell made mainly of O and F blocks. This stage was followed by the diffusion of solvophilic
O blocks into the micelle interior. To better understand the evolution process, the variations
in the diffusion number of the solvophilic O block and solvent as a function of time are
displayed in Figure 6. In the figure, φO represents the number of interior solvophilic O
beads as a percentage of all solvophilic molecules of the micelle and φW represents the
number of interior solvent content as a percentage of all micelle molecules. Figure 6 clearly
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shows that the number of interior solvophilic O beads steadily increased over the period of
2.8 × 105 to 3.2 × 105 DPD steps, which corresponds to the dynamic processes described
in Figure 5a–d. This process is similar to the previously described Mechanism II, in which
the solvophilic block in the exterior of the micelle diffuses into the center (nucleation) and
results in the formation of a semivesicle. Since the O beads gradually diffused toward the
center of the aggregate, the central E beads were excluded to the sides, which led to the
bending of the semivesicle (Figure 5d). Once the semivesicle reached a certain curvature,
the diffusion of O beads stopped, shown in Figure 6, in which a constant value (about 2.1%)
for the number of O beads inside the structure (from 3.2 × 105 to 3.4 × 105 DPD steps)
was observed. The curved semivesicle closed spontaneously. The closure of the structure
resulted in a step change for the percentage of inner O-beads in the micelle (Figure 6).
According to Figure 6, solvent molecules, though not many, were found inside the structure
after the closure of the semivesicle. Learning from Figure 5f and Figure 6, we know that the
vesicle with a hydrophobic F block core formed during this stage. Such a special structure
was also reported by Wang et al. in a study of the self-assembly of star terpolymers by the
SCFT method [29]. In their work, a vesicle with a core was formed due to the aggregation of
shorter solvophobic blocks at the center during vesicle size enlargement. In our simulation,
the hydrophobic core was formed due to the intrinsic polymer structure. When the O block
diffused into the micelle center, the F block, which connected with the O block, deposited
simultaneously (Figure 5b–d). The structure was stable for about 74,000 DPD steps.
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Figure 3(b5) shows the formation of a cylindrical micelle. The micelle was formed
by the collision of two vesicles. Both vesicles had a hydrophobic core inside. Figure 7
shows the cross-sections of morphology transition after the combination of the two vesicles.
The compatibility among the three blocks thereby led to a gradual rearrangement of
polymer composition and curvature (Figure 7b–d). As a result, a complete hollow vesicle
formed (Figure 7f). The morphology transition from a cylindrical micelle to a vesicle was
also observed by Narayanan et al. [7] at a lower polymer concentration. Nevertheless,
the evolution process from a cylindrical micelle to a hollow vesicle in our study was
different. For clarity, the shape transformation of the micelles is evaluated by its principal
moments of inertia, Ixx, Iyy, and Izz; here, we use the normalized principal moments of

inertia, Iyy
Ixx

and Izz
Ixx

. Typically, spherical aggregates would have Iyy
Ixx

and Izz
Ixx
≈ 1, while

Iyy
Ixx

< Izz
Ixx

and Iyy
Ixx
≈ Izz

Ixx
> 1 correspond to a cylinder and a disk, respectively. In Figure 8,

two parent micelles touch at t − tmerge = 0 (corresponding to Figure 3(b4)), forming a
daughter micelle, a structure with long Izz, short Iyy, and Ixx. The resulting aggregate
elongated in length to form a cylindrical micelle. The cylindrical micelle restructured and
curved to form a spherical vesicle. In the reported experiment, the cylindrical micelle first
grew to a certain length and formed a torus-like micelle. Then, the torus micelle merged to
form a hollow structure. In our simulation, we did not observe the formation of a torus
micelle. Overall, the diffusion of solvophilic O blocks caused the structural transition from
a disk-like micelle to a vesicle with a core. Such vesicles merged to form a cylindrical
structure. The cylindrical structure eventually bent to form a hollow vesicle. The vesicle
with a core could be regarded as an intermediate state during our vesicle formation process.
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Figure 7. Morphology transition during the combination of two vesicles with a core over the periods
of 4.24 × 105 DPD steps to 5.0 × 105 DPD steps: (a) at 424,000 DPD steps; (b) at 430,000 DPD steps;
(c) at 450,000 DPD steps; (d) at 470,000 DPD steps; (e) at 485,000 DPD steps; and (f) at 500,000 DPD
steps. The blue, red, and pink colors represent E, O, and F, respectively, while solvent molecules are
omitted for clarity.
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3.3. Vesicle Fusion

In order to study vesicle fusion, two vesicles were put in one large simulation box.
For clarity, different colors are adopted for the two vesicles, depicted in Figure 9. The fusion
process initiated with the merging of F bumps from opposite vesicle membranes (Figure 9a).
As reported [35], there are two fusion mechanisms for lipid membrane fusion. One sug-
gests that the fusion is modulated by membrane proteins through forming continuous
proteinaceous pores between apposed membranes. The F bumps in our raspberry vesicle
could be viewed as proteins embedded in the membrane. As observed from Figure 9a,b,
opposite F bumps coalesced between apposed vesicle membranes. Thus, our fusion process
was regulated by F bumps and our simulation supported the aforementioned lipid fusion
mechanism. The contact area between the two vesicles then further expanded. Some of
the F bumps and solvophilic O blocks formed a small cluster. The cluster was embedded
into one of the vesicle membranes (Figure 9c). We ascribed this to the bending of the
contact area during the membrane combination. The bending may have been promoted by
the connection of F bumps from each vesicle, which led to an uneven distribution of the
membrane curvature. Contact area bending has also been reported by Brownian dynamic
simulation [36] and molecular dynamics simulation [37] of lipid vesicles. The cluster
gradually mixed with the inner layer and finally disappeared. A pore was then generated
at the center of the contact area (Figure 9d). The current structure could then be regarded
as a stalk. In this stage, in order to solve the high energy of the stalk intermediate [38],
the solvophobic chains tilted, and a sharp corner could be found at the distal of both inner
layers. As time increased, hemifusion intermediates formed after the pore seals (Figure 9e).
The intermediate further expanded into a tubular vesicle (Figure 9f). Finally, the tubular
vesicle restructured into a larger spherical raspberry vesicle (Figure 9g). Our results in
general agree with the second mechanism obtained from the molecular dynamic simulation
of lipid vesicles [38]. The number of solvent molecules before and after fusion was also
calculated to understand the dynamic process. In contrast to the reported vesicle leakage
after fusion finished [19,38], there was a 0.24% increase in solvent molecules after complete
fusion in our simulation. The reason may be attributable to the bending of the contact area,
which encapsulated some solvent molecules simultaneously during the fusion process.
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and block F for two different vesicles, respectively. Solvent molecules are omitted for clarity.

4. Conclusions

In this paper, we applied the dissipative particle dynamics (DPD) method to in-
vestigate the formation and fusion mechanism of raspberry vesicles that self-assembled
from amphiphilic EOF star terpolymers in selective solvent. The work showed that the
solvophobicity of short F blocks plays a major role in vesicle formation. As well, dis-
tinct formation paths were observed in different polymer concentrations. Vesicles form
through the wrapping-up of lamellar micelles in higher polymer concentration. However,
in lower concentrations, the vesicles form through the restructuring of a cylindrical micelle.
The cylindrical micelle is obtained from the collision of vesicles with a hydrophobic core.
The elongation and uneven distribution of curvature play a critical role in the morphology
transition from a cylindrical micelle to the hollow structure. For raspberry vesicle fusion,
the process includes: (1) kissing of F bumps from apposed membranes; (2) formation and
bending of a contact area; (3) formation of a pore in the center of the contact area; (5)
expansion of the pore to form a hemifusion structure; (6) formation of a tubular vesicle and
restructuring of the vesicle. Additional solvent molecules are encapsulated after fusion
completed. Since the F bumps in the raspberry vesicle can be viewed as proteins embedded
in the lipid membrane, our results provide new guidance on understanding the dynamic
formation and fusion of the biological membrane.
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