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Surgical tool tracking has a variety of applications in different surgical scenarios. Electromagnetic (EM) tracking can be utilised for tool
tracking, but the accuracy is often limited by magnetic interference. Vision-based methods have also been suggested; however, tracking
robustness is limited by specular reflection, occlusions, and blurriness observed in the endoscopic image. Recently, deep learning-based
methods have shown competitive performance on segmentation and tracking of surgical tools. The main bottleneck of these methods lies
in acquiring a sufficient amount of pixel-wise, annotated training data, which demands substantial labour costs. To tackle this issue, the
authors propose a weakly supervised method for surgical tool segmentation and tracking based on hybrid sensor systems. They first
generate semantic labellings using EM tracking and laparoscopic image processing concurrently. They then train a light-weight deep
segmentation network to obtain a binary segmentation mask that enables tool tracking. To the authors’ knowledge, the proposed method
is the first to integrate EM tracking and laparoscopic image processing for generation of training labels. They demonstrate that their
framework achieves accurate, automatic tool segmentation (i.e. without any manual labelling of the surgical tool to be tracked) and robust
tool tracking in laparoscopic image sequences.
1. Introduction: Surgical tool segmentation and tracking of pose
(i.e. position and orientation) in the endoscopic camera coordinate
system is essential for various surgical visualisation and
navigation applications [1]. For instance, tracking the laparoscope
and the laparoscopic ultrasound (LUS) transducer enables
augmented reality visualisation [2]. Tracking the LUS transducer
and the ablation needle helps create a virtual environment
to guide needle targeting in laparoscopic ablative therapy [3].
In addition, 2D pose estimation with tool tracking can be utilised
to assess the surgical operative skill of minimally invasive or
robot-assisted surgical procedures [4].
The use of real-time tracking hardware has been shown to be

effective in tracking tools within complex surgical environments.
Compared with optical tracking, which has the line-of-sight require-
ment, electromagnetic (EM) tracking is widely used for tracking
flexible tools, such as LUS transducers with articulating imaging
tips. In addition, computer-vision-based approaches have been
presented for tool segmentation and tracking. Such methods
utilise handcrafted features that capture gradient, colour, and
texture information to obtain binary segmentation masks [5] and
track surgical tools [6]. In vision-based solutions, a fiducial
marker on the tool of interest or auxiliary devices, such as a
stereo laparoscope, are also used for tool tracking [6, 7].
With the advent of deep convolutional neural networks

(DCNNs), deep learning-based approaches have been proposed
for surgical tool segmentation and tracking. These approaches
have demonstrated promising results when sufficient volumes of
training data are available [8, 9]. Transfer learning methods have
been shown to provide competitive performance in binary segmen-
tation tasks while using smaller training datasets [10, 11]. However,
such transfer learning approaches still require laborious, time-
consuming effort to derive training data that is labelled at the
pixel-level.
To address this problem, weakly supervised methods using

image-level rather than pixel-level annotation have been proposed
for localisation and segmentation tasks. These methods use weak
supervision of the discriminative regions generated by the classifi-
cation network [12] and by additional information such as that
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provided by kinematic models [13]. A major challenge in this ap-
proach is to acquire precise segmentation masks from the feature
map, as the discriminative region of the tool of interest is often
sparse.

In this work, we present a new weakly supervised framework for
segmentation and tracking of surgical tools based on a hybrid
sensor system that provides integrated EM tracking and processing
of visual data from a laparoscopic imaging system. First, we use
both EM and visual data for automatic seed selection. Then we
relabel seeds using a feature map created from a DCNN, and
apply a Random Walks framework for accurate, binary semantic
labelling.

The proposed framework enables fast, robust, and fully auto-
mated generation of annotated datasets. This work is significant,
as it can (a) generate training data for surgical instruments of
any size with an EM tracker setup and (b) alleviate the limitations
of EM tracking using a complementary, vision-based tracking
method.

The main contributions in this work are two-fold: first, we
develop methods to generate semantic labelling of surgical tools
without any manual interaction, and secondly, we develop
methods for weakly supervised segmentation with a light-weight
DCNN for tool tracking. For evaluation, we obtain laparoscopic
image datasets using EM-tracked surgical tools over an anatomical
phantom. We also acquire in-vivo datasets from an Institutional
Animal Care and Use Committee (IACUC)-approved animal
study, and then apply our proposed framework to these datasets.

The results of our experiments demonstrate the capability to
provide robust surgical tool segmentation and tracking using
DCNNs that are configured from automatically-generated
training data.

2. Methods: The overall structure of our proposed framework is
illustrated in Fig. 1. The subsystem labelled Semantic Labelling
is used to generate a labelled dataset that is used to train the
DCNN in the subsystem labelled Weakly Supervised
Segmentation. The Semantic Labelling subsystem takes as input
both EM and laparoscopic image data that has not yet been
231
This is an open access article published by the IET under the

Creative Commons Attribution -NonCommercial License (http://
creativecommons.org/licenses/by-nc/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


Fig. 1 Overall structure of our proposed framework. Semantic labels generated in the Semantic Labelling subsystem are used to train a DCNN for the Weakly
Supervised Segmentation subsystem
labelled. From this multimodal data, localisation is performed to
generate ‘seed cues,’ which are used to initialise processes for
automatically labelling the laparoscopic image data illustrated.
From the input data, the Semantic Labelling subsystem also
computes a set of features that provides confidence values of
binary classes, foreground and background, for seed refinements.
The seed cues and features supply input to a module that applies
random walks to generate semantic labels. The output of the
Semantic Labelling subsystem is a labelled version of the set IL
of laparoscopic images that were provided as input to the
subsystem. Each pixel of each image in IL is labelled as either
foreground (part of a tool) or background.

The labelled version of IL is used to train the DCNN for the
Weakly Supervised Segmentation subsystem (see Fig. 1), which
is used for real-time tool tracking. In the overall framework, the
Semantic Labelling subsystem enables high-accuracy configuration
of the DCNN through a fully-automated process of labelled dataset
generation for network training.

2.1. Coarse seed selection using EM tracking: Using EM tracking,
we obtain coarse seed cues, which can be viewed as subsets of
approximate labels in the image domain. This process is the first
phase of two computational phases represented by the block
labelled ‘Seed Cues’ in Fig. 1. Fig. 2a shows the setup of the
kind of hybrid (bimodal) sensor system that our proposed
framework is designed to work with. In our experiments, we used
a commercial EM tracking system, called Aurora (developed by
NDI Medical), which includes a table top field generator.
Custom-designed EM tracking mounts, each containing a six
degrees-of-freedom sensor, were attached to the handle of the
laparoscope, the imaging tip of the LUS transducer, and the
handle of the laparoscopic needle.
Fig. 2 Coarse seed generation using EM tracking
a Hybrid sensor system setup
b Coarse seed cues derived from EM tracking: tip point (red point) and
intersection point (green point)
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The diameter of the EM sensor is 1.3 mm, and the sensor on the
needle was placed so that its z-axis was in parallel with the needle’s
longitudinal axis.

The needle tip location in the sensor coordinate system was
obtained using an original equipment manufacturer stylus.

By touching the needle tip with the stylus, the needle tip location
can be acquired in the coordinate system of the sensor attached
on the needle. A projected needle trajectory was calculated as an
extension line from the needle tip along the needle’s longitudinal
axis. The intersection point between the needle trajectory and
the LUS image plane can be obtained in the EM tracking space.
As illustrated in Fig. 2b, the needle tip (red dot), projected needle
trajectory (red line) and intersection point (green dot) were overlaid
on the laparoscopic video frame through camera calibration.

As can be seen in Fig. 2b, seed cues may deviate from the target
object due to errors in EM tracking and calibration. However, two
points of coarse seed data can be used to calculate the approximate
orientation of the tool in the image space. Such approximate infor-
mation is useful for refining the coarse seed data into more accurate
fine seeds, as described in the following section.

2.2. Fine seed selection using laparoscopic image processing: Fig. 3
depicts fine seed derivation, which is the second phase of Seed Cue
Fig. 3 Fine seed derivation
a ROI generation
b Line detection using the Probabilistic Hough Transform
c Orientation-based line filtering

Fig. 4 Semantic labelling using the Random Walks framework
a Feature map overlaid onto the input image
b Seed refinement
c Binary semantic labelling
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computation. Using orientation with respect to x-axis determined by
the coarse seed points, which we refer to as uc, we create a region of
interest (ROI) sector that encompasses a candidate region of the
surgical tool, as depicted in Fig. 3a.
As uc along with the coarse seed points present coarse 2D pose of

the surgical tool of interest, we generate the ROI sector by assigning
Fig. 5 Illustration of results obtained from
a Semantic labelling from the training dataset
b Binary segmentation on the testing dataset. In the last column of the testing illu
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offset angles to the upper and lower sides with respect to uc from the
intersection point illustrated as the green dot in Fig. 3a.

Construction of the ROI allows a more reliable and stable
localisation of the tool of interest. Since surgical tools are repre-
sented as straight line segments in the image, we apply the
Probabilistic Hough Transform, a well-known line detection
stration, the red trajectory indicates the pose of tool
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method [14], as a basis for fine seed selection. More specifically, we
use a bilateral filter for smoothing and enhancement, and then we
employ the Canny edge detector followed by the Probabilistic
Hough Transform for edge and line detection.

Seed selection based on the applied line detection method, which
is sensitive to image noise, lacks accuracy due to complex and
redundant features generated by organ texture, miscellaneous
objects, and the image background. Thus, for robustness, we
group line segments using agglomerative hierarchical clustering
and extract desired line segments of the tool according to orienta-
tion, uc.

This is applied as a post-processing step to line detection. As
illustrated in Fig. 3c, this clustering process enhances the precision
with which the tool position is computed. The set S of fine seeds
derived from clustering consists of the union of the disjoint pixel
subsets Sf and Sb, which represent the estimated foreground and
background, respectively. Note that the pixels in Sb are all external
to the ROI sector.
Table 1 Performance comparison of semantic labelling with different
thresholds used for the seed refinement procedures

ub\uf 0.6 0.7 0.8 0.9

0.1 64.1 70.3 73.8 68.4
0.2 72.2 75.2 82.1 75.9
0.3 76.3 82.6 86.0 79.5
0.4 82.9 88.1 90.8 85.3

Here, uf and ub represent thresholds for foreground and background seeds,
respectively. The table reports mean DSC values with respect to manually
segmented labelling.
2.3. Feature-based seed refinement and random walk segmentation:
To aid in semantic labelling, we make use of a feature map, as
illustrated in Fig. 1. The feature map is created before the
Semantic Labelling subsystem is executed.

The feature map is obtained from an segmentation DCNN Nmap
that is trained using fully annotated labels of surgical tools from
the Endoscopic Vision challenge of MICCAI 2017 [15]. To gener-
ate the feature map, we use a segmentation network for the DCNN
Nmap, which is based on an encoder–decoder architecture.

After training Nmap, we extract its last layer, which is a softmax
layer, as the feature map. The extracted feature map F generates as
output a probability value F(z) [ [0, 1] for each pixel z of the input
image. The value F(z) represents the probability of the given pixel
being a foreground pixel.

The feature map F is used to further improve the accuracy of the
fine seed sets Sf and Sb whose derivation was discussed in Section
2.2. Fig. 4 illustrates the pipeline for semantic labelling using the
Random Walks framework.

In Fig. 4a, red-yellow pixel regions represent a high probability
of the foreground, while blue-green pixel regions represent high
probability of the background.

The ROI helps to restrict the region of analysis in the image so
that the surgical tool of interest can be determined in a robust
manner. The improved seed sets Rf and Rb for foreground and back-
ground, respectively, in Fig. 4b are derived by:

Rf = {z|(z [ Sf )> (Fz . uf )},
Rb = {z|(z [ Sb)< (Fz , ub)},

(1)

where uf and ub (0 ≤ ub ≤ uf ≤ 1) denote empirically-determined
thresholds for the seed refinement process.

In the feature map F, the pixels that have probabilities close to 1
and 0 can be classified as foreground and background seeds,
respectively. For the seed refinement process, the thresholds uf
and ub are used to select the foreground and background seeds.

This approach enables the generation of globally distributed seed
cues for the background while eliminating mislabelled seeds in the
foreground.

Using the relabelled seed sets Rf and Rb, we employ a Random
Walks algorithm that labels all of the pixels in a given laparoscopic
input image. The Random Walks algorithm that we apply is a
graph-based segmentation method that shows robustness to weak
boundaries and image noise [16]. We use a Conditional Random
Field (CRF) to post-process the result of the Random Walk
module so as to refine the boundary, thereby acquiring semantic
labelling for training the deep segmentation network.
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2.4. Weakly supervised segmentation and tool tracking: Through
design and integration of the modules described in Section 2.1
through Section 2.3 for semantic labelling, our framework is
capable of automatically generating labelled datasets, which can
subsequently be used to train various kinds of DCNNs for high
accuracy surgical tool segmentation. As in this work we are
specifically interested in real-time tool tracking, we employ an
efficient DCNN structure Ninf as the inference engine, as
illustrated by the block labelled DCNN in the right side of Fig. 1.

We demonstrate our framework using different DCNN structures
that are plugged in as Ninf . In particular, we use models with
light-weight encoder structures, thereby enabling fast processing
at inference time.

For the final step of real-time tool tracking, we enhance the
output of Ninf by postprocessing using a CRF module for boundary
delineation. We downsample the input image and the acquired
segmentation mask by two to reduce the computational burden
for testing. Then, we extract the centre line of the surgical tool by
means of OpenCV’s fitline function [17], which utilises least
squares regression. The resulting straight line is used to estimate
the pose of the tool in the input image.

3. Experiments
3.1. Datasets and experimental setup: We collected three
frame-sequences using phantom datasets with 500 frames each:
two datasets were for training and the other dataset was for
testing. We used EM-tracked surgical tools over an anatomical
phantom and generated a sufficient number of image sequences
that have varying tool positions and orientations. We also
acquired a laparoscopic image sequence, consisting of 100
frames, from an IACUC-approved animal study. We used this
dataset for testing. The dataset contains complex surgical scenes
that have high variability, including effects of complexity and
variability due to blood and specular reflection. Each image
sequence has a resolution of 1280× 1024 pixels.

For the DCNN Ninf , we used U-Net [18]; TernausNet-11 [10],
which utilises a pre-trained VGG11 network; and two different
LinkNet-type [19] DCNN structures: LinkNet-34 and LinkNet-152.

As a loss function, we used binary cross entropy, which is com-
monly used for binary pixel classification. We used both of these
DCNNs separately and averaged the results. For the integration of
the feature map, we set uf = 0.8 and ub = 0.4.

We used the scikit-image package for Random Walks segmenta-
tion and OpenCV 3.4 for line-fitting. For training and testing of the
segmentation networks, we used a computer equipped with an Intel
Core i9-9820X CPU, 64 GB RAM and an 11 GB NVIDIA RTX
2080 Ti GPU.

3.2. Evaluation: To approximate ground truth, we created manually
segmented labels by using VGG Image Annotator (VIA) [20] and
then calculated both the Jaccard Index and the DICE similarity
coefficient (DSC) for quantitative evaluation of semantic labelling
and the binary segmented mask.
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Table 3 Tracking accuracy in degrees acquired from validation datasets for the segmentation task

EM tracking Proposed tracking

baseline LinkNet-34 LinkNet-152 TernausNet-11 U-Net

8.39° (2.61) 5.29° (3.22) 4.39° (2.19) 5.68° (2.74) 10.29° (4.23)

The table reports mean values with standard deviations shown in parentheses.

Table 2 Quantitative results of the proposed framework for semantic labelling and segmentation tasks based on 200 manually segmented labelling

Segmentation DCNN Semantic labelling (Training) Binary segmentation (Phantom) Binary segmentation (In-vivo)

model DSC Jaccard Index DSC Jaccard Index DSC Jaccard Index
LinkNet-34 89.28% (3.37) 85.62% (4.62) 89.53% (4.20) 86.36% (5.72) 87.45% (5.02) 84.32% (5.75)
LinkNet-152 90.14% (2.21) 88.35% (5.17) 91.46% (3.67) 89.76% (4.83) 88.86% (6.22) 85.37% (6.52)
TernausNet-11 87.05% (3.82) 86.15% (4.92) 87.31% (3.90) 85.61% (4.43) 85.45% (6.21) 83.67% (5.12)
U-Net 75.28% (6.37) 73.47% (8.62) 72.67% (7.21) 69.61% (9.16) 71.45% (8.02) 68.67% (9.30)

The table reports mean values with standard deviations shown in parentheses.
For each task, we created 100 frames of manually segmented
labels from phantom datasets and another 100 frames from clinical
datasets. We used the resulting set of 200 frames for validation.
To derive this set of 200 frames, we manually performed pixel-wise
annotation, as there is no publicly available ground truth data for
surgical instruments that have been used for training. Using such
manually-derived labels, we employed the Jaccard index as an
evaluation metric. This metric is a similarity measure of overlap
that is used to assess the accuracy of segmentation results. The
metric is defined as:

Jaccard Index(A, B) = |A> B|
|A< B| , (2)

where A represents the set of foreground pixels in ground truth, B
represents the set of foreground pixels in the predicted segmentation
mask, and |S| indicates the cardinality of the set S. We also used the
DSC, which is commonly used as a quantitative metric for segmen-
tation performance. This metric can be expressed as:

DSC(A, B) = 2|A> B|
|A| + |B| . (3)

We report tracking accuracy by obtaining the orientation of
lines fitted to the manually segmented labels and the binary
segmented masks. For orientation accuracy, we calculate the angle
at the intersection of the two lines (e.g. an angle of 0° indicates a
perfect orientation). In addition, to establish a baseline, we
compare the tracking accuracy of the EM-based tracking system rela-
tive to the line fitted to the manually segmented result.

3.3. Experimental results: Fig. 5 illustrates results obtained by
the proposed framework for semantic labelling and binary
segmentation. Fig. 5b shows test images; the first two are from
phantom datasets, while the others, which contain occlusion,
blood, and light reflection, are from in-vivo datasets. As
presented in Fig. 5, segmentation using generated semantic
labelling, followed by CRF post-processing, has the capability to
delineate the boundary even in surgical scenes, and this capability
can be used for pose estimation with the line-fitting method.
Table 1 presents a performance comparison involving semantic

labelling using threshold selection for seed refinement. The
evaluation is performed using the ground truth data available for
the semantic labelling task. Here, uf and ub represent thresholds
for the foreground and background seeds, respectively, that were
discussed in Section 2.3. As presented in Table 1, higher values
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 231–236
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of ub provide higher average DSC values. We anticipate that this
is because higher values of ub help to remove background features
from the feature map. On the other hand, high uf values place
greater emphasis on localisation cues for the foreground of the
surgical tool of interest. The threshold in bold, which produced
the highest mean DSC value, was selected for the seed refinement
process.

Table 2 summarises quantitative results derived from our experi-
ments on semantic labelling and segmentation using segmentation
DCNN models. Owing to the higher level of complexity and blurri-
ness observed in the images, the accuracy of segmentation obtained
from in-vivo datasets is lower than that from anatomical phantom
datasets.

Table 3 presents the tracking accuracy, reported as an angular
error in degrees, of the proposed method. The validation datasets
for the segmentation task are used. These results indicate that the
proposed approach with the LinkNet-type and TernausNet segmen-
tation models have significantly improved tracking accuracy rela-
tive to EM-based tracking alone.

4. Conclusion: In this paper, we developed a new method,
using data from both EM tracking and laparoscopic imaging,
which generates semantic labelling of surgical tools without any
human intervention. Using labelled data generated from this
method, we developed a system for real-time tool tracking
based on weakly supervised segmentation with a light-weight,
DCNN.

This work could be generalised for multiple tools tracking in
two manners. By collecting a set of training samples of multi-tools
based on the proposed labelling procedures using the EM
sensor, we could perform multi-class segmentation which enables
segmentation of different tools. Using a set of training samples,
we could also construct multiple segmentation DCNNs and
obtain segmentation of multiple tools independently in each frame.

Our method for semantic labelling addressed a major bottleneck
in the development of high accuracy tool tracking systems, which is
that of providing sufficient labelled data for the DCNN training.
We have demonstrated the accuracy of our proposed methods
using a relevant manually segmented dataset, and two different
DCNN structures that were trained using the automatically-
generated training data.

5. Funding and Declaration of Interests: The work described in
this paper was funded by the National Institutes of Health Grant
2R42CA192504. Conflict of interest: None declared.
235
This is an open access article published by the IET under the

Creative Commons Attribution -NonCommercial License (http://
creativecommons.org/licenses/by-nc/3.0/)



6 References

[1] Bouget D., Allan M., Stoyanov D., ET AL.: ‘Vision-based and marker-
less surgical tool detection and tracking: a review of the literature’,
Med. Image Anal., 2017, 35, pp. 633–654

[2] Liu X., Kang S., Plishker W., ET AL.: ‘Laparoscopic stereoscopic
augmented reality: toward a clinically viable electromagnetic tracking
solution’, J. Med. Imaging, 2016, 3, (4), p. 045001

[3] Sastry A.V., Swet J.H., Murphy K.J., ET AL.: ‘A novel 3-dimensional
electromagnetic guidance system increases intraoperative microwave
antenna placement accuracy’, HPB. (Oxford), 2017, 19, (12),
pp. 1066–1073

[4] Jin A., Yeung S., Jopling J., ET AL.: ‘Tool detection and operative skill
assessment in surgical videos using region-based convolutional
neural networks’. 2018 IEEE Winter Conf. on Applications of
Computer Vision (WACV), Lake Tahoe, Nevada, USA, 2018,
pp. 691–699

[5] Speidel S., Benzko J., Krappe S., ET AL.: ‘Automatic classification of
minimally invasive instruments based on endoscopic image
sequences’. Proc. SPIE, Medical Imaging 2009: Visualization,
Image-Guided Procedures, and Modeling Int. Society for Optics
and Photonics, Orlando, FL, USA, 2009, vol. 7261, p. 72610A

[6] Allan M., Thompson S., Clarkson M.J., ET AL.: ‘2D-3D pose tracking
of rigid instruments in minimally invasive surgery’. Int. Conf.
on Information Processing in Computer-assisted Interventions,
Fukuoka, Japan, 2014, pp. 1–10

[7] Zhao T., Zhao W., Halabe D.J., ET AL.: ‘Fiducial marker design and
detection for locating surgical instrument in images’, Google
Patents, 2016. US Patent 9,526,587

[8] García-Peraza-Herrera L.C., Li W., Fidon L., ET AL.: ‘Toolnet:
holistically-nested real-time segmentation of robotic surgical tools’.
2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Vancouver, Canada, 2017, pp. 5717–5722

[9] Twinanda A.P., Shehata S., Mutter D., ET AL.: ‘Endonet: a deep
architecture for recognition tasks on laparoscopic videos’, IEEE
Trans. Med. Imaging, 2017, 36, (1), pp. 86–97
236
This is an open access article published by the IET under the
Creative Commons Attribution -NonCommercial License (http://
creativecommons.org/licenses/by-nc/3.0/)
[10] Shvets A.A., Rakhlin A., Kalinin A.A., ET AL.: ‘Automatic
instrument segmentation in robot-assisted surgery using deep
learning’. 2018 17th IEEE Int. Conf. on Machine Learning and
Applications (ICMLA). IEEE, Orlando, Florida, USA, 2018,
pp. 624–628

[11] Lee E.J., Plishker W., Liu X., ET AL.: ‘Segmentation of surgical instru-
ments in laparoscopic videos: training dataset generation and
deep-learning-based framework’. Proc. SPIE Medical Imaging,
2019, San Diego, CA, USA, 2019, vol. 10951, p. 461

[12] Vardazaryan A., Mutter D., Marescaux J., ET AL.: ‘Weakly-supervised
learning for tool localization in laparoscopic videos’. Intravascular
Imaging and Computer Assisted Stenting and Large-Scale
Annotation of Biomedical Data and Expert Label Synthesis, 2018,
pp. 169–179

[13] Rocha C.D.C., Padoy N., Rosa B.: ‘Self-supervised surgical tool
segmentation using kinematic information’, arXiv preprint
arXiv:190204810, 2019

[14] Kiryati N., Eldar Y., Bruckstein A.M.: ‘A probabilistic Hough trans-
form’, Pattern Recognit., 1991, 24, (4), pp. 303–316

[15] Allan M., Shvets A., Kurmann T., ET AL.: ‘2017 robotic instrument
segmentation challenge’, arXiv preprint arXiv:190206426, 2019

[16] Grady L.: ‘Random walks for image segmentation’, IEEE Trans.
Pattern Anal. Mach. Intell., 2006, 28, (11), pp. 1768–1783

[17] Bradski G.: ‘The OpenCV library’, Dr Dobb’s Journal of Software
Tools, 2000

[18] Ronneberger O., Fischer P., Brox T.: ‘U-net: convolutional networks
for biomedical image segmentation’. Int. Conf. on Medical image
computing and computer-assisted intervention, Munich, Germany,
2015, pp. 234–241

[19] Chaurasia A., Culurciello E.: ‘Linknet: exploiting encoder
representations for efficient semantic segmentation’. 2017 IEEE
Visual Communications and Image Processing (VCIP). IEEE,
2017, pp. 1–4

[20] Dutta A., Zisserman A.: ‘The VIA annotation software for images,
audio and video’, arXiv preprint arXiv:190410699, 2019
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 231–236
doi: 10.1049/htl.2019.0083


	1 Introduction
	2 Methods
	3 Experiments
	4 Conclusion
	5 Funding and Declaration of Interests

