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Abstract

The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on
the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion,
therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin
complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future
detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and
E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the
parasites.
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Introduction

Entamoeba histolytica causes a significant amount of death and

disease, an annual estimate made in the 1980s indicated that

40,000–110,000 people died and 34–50 million people developed

severe amoebiasis (dysentery or liver abscess) in 1981 [1]. Infection

commonly results from the consumption of contaminated food and

water and occurs predominantly among the poor in developing

countries. Virulence is a rare outcome of infection, caused by the

parasite attacking and crossing the gut wall. It can manifest as

dysentery and in some cases as abscesses in the liver and other

organs [2]. Most infected people clear their infection within a few

months. The related species Entamoeba dispar is not generally

believed to cause disease, but rather to live in the gut as a

commensal.

A number of genes are implicated in E. histolytica virulence,

among them the genes encoding the Gal/GalNAc lectin complex

on the parasite’s surface. The lectin complex binds galactose and

the N-acetyl-D-galactosamine on mucin glycoproteins and on host

cell surfaces and mediates both colonisation and contact-

dependent cytotoxicity [2]. Anti-lectin immunoglobulin A is

associated with protection from amoebiasis [3] and the Gal/

GalNAc lectin heavy-chain subunit is a leading vaccine candidate

[4]. Immune responses raised against Gal/GalNAc lectin

components can protect against virulence [5,6], although whether

this protection is mediated by T-cells or by immuoglobulins is

unclear [7,8]. Immune mediated selection can be a powerful

driver of diversity in parasite surface proteins [9–11].

Three components of the Gal/GalNAc lectin complex have

been described: the heavy chain subunit, hgl; the light chain

subunit, lgl; and the intermediate chain subunit, igl. Each is

encoded by a gene family. Heavy- and light-chain lectin subunits

are linked by disulphide bonds to form heterodimers. The heavy-

chain subunit (hgl) genes contain a transmembrane domain linking

a short cytoplasmic and a large extracellular, cysteine-rich domain

which appears to mediate binding [12]. Heavy-chain subunit

genes show 89–95% amino acid identity. The light-chain subunit

is GPI-anchored to the cell membrane. It appears not to mediate

adherence but may be associated with virulence, as downregulated

virulence is associated with reduced lgl expression [13]. Light-

chain subunit genes show more diversity than hgl, with 79–85%

amino acid identity among proteins. The intermediate subunit (igl)

is GPI-anchored and is non-covalently associated with the other

members of the complex [2]. Members of both heavy- and light-

chain lectin families have been identified in distantly related

Entamoeba species, but igl genes have been identified only in E.

histolytica and E. dispar [14,15].

We reasoned that the difference in virulence between E.

histolytica and E. dispar may in part be mediated by adaptive

differences in the Gal/GalNAc lectin complex and that immune

evasion may drive the evolution of lectin gene families. Therefore,

it should be possible to see signatures of this adaptation in the

patterns of sequence divergence between the species. However,

rather than evidence for positive selection on single nucleotide

mutations, we found evidence that gene conversion had occurred

among members of the Gal/GalNAc lectin gene families.

Materials and Methods

Data sets were initially defined using a text search for the term

‘‘lectin’’ on the amoebaDB website (www.amoebadb.org) [16].

Annotated lectin genes were used to query the database of

predicted proteins for unannotated gene family members, using

BLASTp. Results were assessed by sequence similarity and

predicted gene length of the putative lectin. Searches indicated

that igl was represented twice in E. histolytica and twice in E. dispar;
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hgl was represented five times in E. histolytica and twice in E. dispar;

lgl was represented seven times in E. histolytica and six times in E.

dispar.

The genomic context of each lectin gene was viewed and

synteny with E. dispar assessed to define ‘positional orthology’ (i.e.

orthology defined by being in the same genomic location).

Syntenic genome regions were trimmed such that the lectin was

bounded by at least one gene with a putative E. dispar orthologue

on each side and aligned using MUSCLE [17] in the SEAVIEW

sequence aligment editor [18]. Sequence alignments were checked

and manually edited to ensure that nucleotide alignments across

coding regions matched the corresponding amino acid alignments.

For a small number of genes, the gene models were altered so that

both species’ gene models matched. The region surrounding the lgl

gene EHI_049690 was orthologous to two scaffolds in E. dispar, the

ends of which were almost identical when overlapped. A consensus

was made of the region, in which the E. dispar genes EDI_071410

and EDI_071300 from scaffold DS548095 were merged with

EDI_253210 and EDI_253220 from scaffold DS550857, respec-

tively.

Divergence (d) was estimated across the region for a sliding

window (window = 200 bp; step size = 1 bp), using R (Pi was

calculated as the number of mismatches per window, rather than

per non-gap-site, to reduce spikes caused by very short ‘windows’).

In addition, the number of gaps in the alignment (an indicator of

alignment quality) was calculated per window. The number of

synonymous changes per synonymous site (dS), nonsynonymous

changes per nonsynonymous site (dN) and their ratio (dN/dS) were

estimated using codeml in the PAML software package [19].

Values were calculated using the maximum likelihood method of

Goldman and Yang [20].

To investigate the possibility of gene conversion in the evolution

of the lectin gene families, dS values between positional

orthologues were compared to a genomic average in order to

assess whether they were unusually high. All E. histolytica and E.

dispar genes were downloaded from amoebaDB and grouped by

orthMCL orthologue group (data from amoebaDB) [21]. To

reduce the number of wrongly-aligned non-orthologous genes in

the dataset only orthologue groups with exactly one gene from

each species were analysed. 4770 orthologue pairs were aligned at

the codon level, using PRANK [22] and dS estimated using

codeml [19]. To further reduce the effect of misalignments of non-

orthologous genes or incorrectly predicted gene models, pairs with

extremely high overall divergence (the top 5% of pairwise branch

length ‘t’ values from codeml) were removed from the analysis,

leaving 4531 orthologue pairs. The frequency distribution of dS

values for these gene pairs was plotted in R [23].

Phylogenetic trees were genearted for igl and lgl gene familes.

Multiple alignments were generated for each family using

MUSCLE [17]. Neighbour-joining phylogenies with bootstrap

confidence values were generated using Seqboot, Protdist,

Neighbour and Consense programs from the PHYLIP package

(http://evolution.genetics.washington.edu/phylip.html), and dis-

played using the Dendroscope software [24]. A short, possibly

truncated, lgl gene (EDI_023210) was removed from the analysis

in order to increase the number of sites used to build the

phylogeny.

Sequence similarity among members of the igl gene family was

assessed. A dotplot was generated for using SEAVIEW [18], in

which 40 bp windows were compared across all igl genes and

plotted if they showed 100% identity. In addition, a sequence

similarity plot was generated across a multiple alignments of the igl

genes, using functions from seqinr and base packages of R [23,25].

Results

Unusually high dS values in members of lectin gene
families compared to neighbouring genes and the
genome-wide average

Text and BLAST searches of predicted gene sets of E. histolytica

and E. dispar in amoebaDB (www.amoebadb.org) defined the

members of the heavy-, intermediate- and light-chain subunit gene

families hgl, igl and lgl. The hgl family contained E. histolytica genes

EHI_042370 , EHI_077500 , EHI_133900 , EHI_012270 and

EHI_046650 and E. dispar genes EDI_213670 and EDI_123980.

The igl family contained E. histolytica genes EHI_006980 and

EHI_065330 and E. dispar genes EDI_276450 and EDI_244250.

The lgl family contained E. histolytica genes EHI_049690, EHI_

159870, EHI_058330, EHI_148790, EHI_183400, EHI_135690

and EHI_027800 and E. dispar genes EDI_071530, EDI_325130,

EDI_131690, EDI_213170, EDI_352500 and EDI_023210.

Visual inspection of aligned scaffolds of E. histolytica and E. dispar

in amoebaDB identified six pairs of genes which could be

identified as orthologous by surrounding synteny (Figures 1, 2 and

Figure S1). These orthologous pairs were: hgl genes

EHI_012270:EDI_213670 and EHI_046650:EDI_123980; igl

genes EHI_006980:EDI_276450 and EHI_065330:EDI_244250;

and lgl genes EHI_049690:EDI_071530 and EHI_159870:

EDI_325130. Genomic regions encompassing these genes were

aligned (Figures S2, S3, S4, S5, S6, S7) and interspecific diversity

estimated across them, under the hypothesis that positive selection

in lectin genes should produce a peak of divergence compared to

surrounding genes not under such selection. Of the six genes

analysed, the two igl genes and an lgl gene (EHI_049690) showed

slightly elevated divergence relative to their neighbours. However,

on testing for positive selection driving divergence between these

genes, the number of synonymous differences per synonymous site

(dS) between orthologous genes was particularly high (Figure 1,

Figure 2), with dS.1 for two of the genes. We would expect,

under positive selection, that the number of nonsynonymous

differences per nonsynonymous site (dN) would be high, but that

dS would not differ from dS in neighbouring genes. The pattern

Author Summary

Gene conversion is a process of recombination that can
generate diversity among genes. Gene conversion occurs
in some pathogenic species of protozoa to generate
diversity among gene families encoding important anti-
gens. The process may contribute to immune evasion by
the parasites. Gene conversion, or indeed recombination
of any kind, has not previously been demonstrated in
human intestinal parasites of the genus Entamoeba. Here,
we analysed genes encoding members of an important
antigenic protein complex on the surface of Entamoeba
parasites which is involved in invasion of the intestinal
wall. Three gene families encode heavy-, light- and
intermediate-subunits of the complex. We estimated
genetic divergence between related genes from two
species of Entamoeba, E. histolytica and E. dispar, and
compared them to divergence among neighbouring genes
and to the average across the whole genome, initially
looking for evidence that the genes were evolving under
positive selection. However, instead we saw patterns of
genetic difference between some of the light- and
intermediate-subunit genes indicating the action of gene
conversion among members of these gene families. This
indicates that recombinational mechanisms may play a
part in the molecular evolution of these parasites.

Gene Conversion in Entamoeba
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Figure 1. Divergence across chromosomal regions genes of E. histolytica and E. dispar containing intermediate-chain lecin genes. (A)
igl1 (EHI_006980:EDI_276450); (B) igl2 (EHI_065330:EDI_244250). Divergence (d) for a 200 bp sliding window is shown (black line), and dN (blue bars)
and dS (red bars) are plotted for putative coding regions. The grey line shows the proportion of gapped positions in each window, an indication of
poor alignment quality. Both lectin genes show dS values near to 1, notably higher than for surrounding genes, except gene EHI_065320 which also
shows dS.1.
doi:10.1371/journal.pntd.0001209.g001

Gene Conversion in Entamoeba
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Figure 2. Divergence across chromosomal regions of E. histolytica and E. dispar containing light-chain lectin genes. (A) lgl
(EHI_049690:EDI_071530); (B) lgl (EHI_159870:EDI_325130). Divergence (d) for a 200 bp sliding window is shown (black line), and dN (blue bars) and
dS (red bars) are plotted for putative coding regions. The grey line shows the proportion of gapped positions in each window, an indication of poor
alignment quality. Light-chain lectin gene EHI_049690 shows dS.1, it occurs adjacent to a LINE2 sequence in E. histolytica. Black bars indicate
putative genes merged by overlapping the two E. dispar scaffolds.
doi:10.1371/journal.pntd.0001209.g002
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we observed for the igl genes EHI_006980:EDI_276450 and

EHI_065330:EDI_244250 and lgl genes

EHI_049690:EDI_071530, where dS was notably higher than

for neighbouring genes, suggested a mechanism generating

diversity other than positive selection on nonsynonymous

mutations. The pattern indicated gene conversion, in which gene

regions are changed to match a paralogue that may be more

divergent than a gene’s true orthologue, hence the elevated dS.

To confirm that dS values between positional orthologues were

unusually high, they were compared to a genomic average (Figure 3).

The median dS between orthologous genes of E. histolytica and E.

dispar was 0.38, and 99% of dS values were below 0.73. The igl genes

EHI_006980:EDI_276450 and EHI_065330:EDI_244250 and the

lgl genes EHI_049690:EDI_071530 all had dS values in the top 1%,

strongly supporting the hypothesis that gene conversion has

occurred among these genes.

Phylogenies of multiple alignments of igl and lgl gene familes

(Figures S8, S9) further supported gene conversion between igl

genes. The expected pattern, given no gene conversion, is that

orthologues should cluster together, yet the tree shows strong

bootstrap support for the clustering of paralogous igl genes

(Figure 4A). In the lgl family, the orthologues EHI_159870 and

EDI_325130 cluster together and are quite divergent from other

lgl genes (Figure 4B). This pair showed no evidence for gene

conversion in Figure 2B and Figure 3. The other pair,

EHI_049690 and EDI_071530, occurred in a poorly resolved

Figure 3. Divergence at synonymous sites (dS) is unusually high between igl and lgl positional orthologues. The frequency distribution
of pairwise dS between 4531 putative orthologue pairs is plotted (grey bars). Dashed lines indicate 1st, 50th and 99th centile values. Pairwise dS
values between hgl, igl and lgl positional orthologues are indicated. Both igl pairs and one lgl pair fall within the top 1% of dS values.
doi:10.1371/journal.pntd.0001209.g003
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part of the tree. Amino acid divergence between EDI_071530 and

EHI_049690 is 25.2% (dS = 1.17), slightly higher than between

EDI_071530 and EHI_035690 (24.8%, dS = 0.98). Between

EHI_049690 and EHI_035690, dS was higher (dS = 0.73) than

the average between E. histolytica and E. dispar (median dS = 0.38),

suggesting that they did not arise from a recent duplication, yet

they are more closely related to each other than either is to

EDI_071530. Without more information on positional orthology it

is difficult to draw any conclusion about the evolutionary history of

the genes, other than noting the unexpectedly high synonymous

divergence.

Sequence similarity across igl genes
To further explore and locate possible gene conversion among

the igl genes, we assessed sequence similarity among members of

the gene family across the length of the genes. We generated a

dotplot showing identical 40 bp windows between genes and

calculated sequence similarity across a multiple alignment (Figure

S10). Sequence similarity between paralogues is particularly

notable at the 39 end and between bases 1000 and 1500

(Figure 5), covering two of several putative growth factor receptor

domains predicted in the genes.

Discussion

We set out to determine whether members of the Gal/GalNAc

lectin complex have evolved under positive selection. However, we

were unable to test this due to an unusual pattern of apparent

synonymous divergence in some lectin genes. These unusually high

values (in some cases .1 synonymous mutation per synonymous

site) indicated that the genes of E. histolytica and E. dispar were not in

fact orthologous, despite occurring in syntenic genome regions. We

showed that dS significantly exceeded the genomic average for igl1,

igl2 and an lgl (EHI_049690:EDI_071530). Phylogenetic analysis

supported the hypothesis that gene conversion had made para-

logous igl genes more similar than orthologous igl genes. In these

intermediate-chain lectin genes we saw regions, most notably in the

central region and at the 39 end, where paralogous sequences were

highly similar to each other: a pattern expected if gene conversion

has occurred.

While it should be noted that the lower sequence coverage of E.

dispar, compared to E. histolytica, could result in more errors in its

sequence, such errors would inflate the estimated divergence (d) for

all genes. Thus, the unusually high dS in lectin genes relative to

their neighbours and the the genomic average would not be

affected. For the light-chain lectins it is difficult to infer gene

conversion from the phylogeny, due to the existence of more gene

family members with uncertain orthology. The phylogeny is

complicated by the possibility both of incomplete sampling of

genes and of recent gene duplications within a species, and by the

lack of positional orthology information to compare to the tree.

Further sequencing and analysis may help to clarify the picture. In

contrast, support for gene conversion among the igl genes was

stronger.

Some genes near to lectin genes also showed similarly high dS

values. A putative heat shock protein 70 gene (EHI_065320)

occurs adjacent to Ehigl2 and shows dS.1. A BLASTp search

against E. histolytica and E. dispar protein sequences (data not

shown) shows stretches of sequence identity with other genes

(EHI_006560 and EDI_169350), suggesting a similar process may

have occurred among these genes. A gene encoding an unknown

product (EHI_159850) near to a light chain lectin gene

(EHI_159870) also shows high dS and a BLASTp search (data

not shown) showed high sequence identity with another E. dispar

hypothetical protein (EDI_285400). A notable feature of several of

the lectin genes is their close proximity to repetitive elements. It is

possible that repetitive elements, by creating regions of sequence

homology adjacent to non-homologous genes, might promote

gene conversion.

Gene conversion is a process of non-reciprocal homologous

recombination whereby one region of the genome is ‘converted’

to become identical to another region. Since sequence

homology is required, it occurs preferentially among members

of multi-gene families. Our results indicate that homologous

recombination can occur in E. histolytica. This is significant since

the same mechanism is required for sexual reproduction, which

has not been demonstrated to occur in E. histolytica despite its

genome encoding the necessary genes [26,27]. Our results do

not prove that sexual reproduction (genetic exchange between

individuals) occurs.

Although over the long term gene conversion will homogenise

sequence, by displacing diversity accumulated during the

divergence of paralogous sequences, in the short term it may

act as a generator of diversity by creating new haplotypes which

may exist alongside ancestral haplotypes in a population. Gene

conversion is a mechanism utilised by a number of eukaryotic and

prokaryotic pathogen species to generate antigenic diversity

within large gene familes and evade the immune response of the

host [28,29]. It has also been identified in a number of smaller

gene families in Plasmodium falciparum [30–32] and in a large

family in Trichomonas vaginalis [33]. The Gal/GalNAc lectin does

appear to be a target of protective immunity [3] so it is possible

that gene conversion enables the generation of genetic diversity

for immune evasion. However, the specific target and vaccine

candidate molecule ‘lecA’, a part of the heavy-chain subunit gene

EHI_133900, does not have a clear orthologue in E. dispar, so

evidence of gene conversion could not be seen in this gene. The

hgl genes that were tested did not show clear evidence for gene

conversion. It will be interesting to discover whether variant

genes arising from gene conversion segregate within E. histolytica

and E. dispar populations, to assess the importance of this

mechanism in these species.

Genes analysed in this manuscript were: putative heavy chain

lectin genes EHI_042370, EHI_077500, EHI_133900, EHI_

012270 and EHI_046650 of E. histolytica and EDI_213670 and

EDI_123980 of E. dispar; putative intermediate chain lectin genes

EHI_006980 and EHI_065330 of E. histolytica and EDI_276450

and EDI_244250 of E. dispar; and light chain lectin genes

EHI_049690, EHI_159870, EHI_058330, EHI_148790,

EHI_183400, EHI_035690 and EHI_027800 of E. histolytica and

EDI_071530, EDI_325130, EDI_131690, EDI_213170,

EDI_352500 and EDI_023210 of E. dispar.

Figure 4. Phylogenies of igl and lgl gene familes. Amino acid neighbour-joining trees with % bootstrap support shown where values are .70%.
Grey solid and dashed boxed indicate positional orthologue pairs. (A) The igl tree clearly clusters paralogues. (B) The lgl tree clusters the orthologue
pair EHI_159870:EDI_325130, which do not show unusually high dS (Figure 2B, Figure 3). The tree is not well resolved in the clade containing
positional orthologues EHI_049690 and EDI_071530.
doi:10.1371/journal.pntd.0001209.g004
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Figure 5. Sequence similarity among intermediate-chain lectin subunit genes. (A) Dotplot indicating identical 40 bp windows among all igl
genes. Dark grey boxes I and II represent E. histolytica genes EHI_006980, EHI_065330; light grey boxes III and IV represent E. dispar genes EDI_276450
and EDI_244250. (B) Sequence identity (to gene EHI_006980) calculated for a 200 bp window, moving in 10 bp increments across a multiple
alignment of igl genes.
doi:10.1371/journal.pntd.0001209.g005
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Supporting Information

Figure S1 Divergence across chromosomal regions
genes of E. histolytica and E. dispar containing heavy-
chain lecin genes. (A) hgl (EHI_012270:EDI_213670); (B) hgl

(EHI_046650:EDI_123980). Divergence (d) for a 200 bp

sliding window is shown (black line), and dN (blue bars) and

dS (red bars) are plotted for putative coding regions. The grey

line shows the proportion of gapped positions in each window,

an indication of poor alignment quality. dS is not notably

greater for lectin genes than for surrounding genes. In panel B,

bases between position 8000–14,000 could not be aligned so

were replaced with Ns (hence the apparent sequence identity in

the plot).

(PDF)

Figure S2 Nucleotide alignment of orthologous genome
regions of E. histolytica and E. dispar used to estimate
inter-specific divergence around the heavy chain lectin
orthologues EHI_012270 and EDI_213670.
(PDF)

Figure S3 Nucleotide alignment of orthologous genome
regions of E. histolytica and E. dispar used to estimate
inter-specific divergence around the heavy chain lectin
orthologues EHI_046650 and EDI_123980.
(PDF)

Figure S4 Nucleotide alignment of orthologous genome
regions of E. histolytica and E. dispar used to estimate
inter-specific divergence around the intermediate chain
lectin orthologues EHI_006980 and EDI_276450.
(PDF)

Figure S5 Nucleotide alignment of orthologous genome
regions of E. histolytica and E. dispar used to estimate

inter-specific divergence around the intermediate chain
lectin orthologues EHI_065330 and EDI_244250.

(PDF)

Figure S6 Nucleotide alignment of orthologous genome
regions of E. histolytica and E. dispar used to estimate
inter-specific divergence around the light chain lectin
orthologues EHI_049690 and EDI_071530.

(PDF)

Figure S7 Nucleotide alignment of orthologous genome
regions of E. histolytica and E. dispar used to estimate
inter-specific divergence around the light chain lectin
orthologues EHI_159870 and EDI_325130.

(PDF)

Figure S8 Amino acid multiple alignment of intermediate
chain lectin (igl) gene family members from E. histolytica
and E. dispar, used to generate a gene phylogeny.

(PDF)

Figure S9 Amino acid multiple alignment of light chain
lectin (lgl) gene family members from E. histolytica and
E. dispar, used to generate a gene phylogeny.

(PDF)

Figure S10 Nucleotide multiple alignments of intermedi-
ate chain (igl) lectin gene family members from E.
histolytica and E. dispar, used for sequence similarity plot.

(PDF)
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