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Discrete Stacked Dimers of Aromatic Oligoamide Helices
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Abstract: Tight binding was observed between the C-terminal
cross section of aromatic oligoamide helices in aqueous
solution, leading to the formation of discrete head-to-head
dimers in slow exchange on the NMR timescale with the
corresponding monomers. The nature and structure of the
dimers was evidenced by 2D NOESY and DOSY spectro-
scopy, mass spectrometry and X-ray crystallography. The
binding interface involves a large hydrophobic aromatic
surface and hydrogen bonding. Dimerization requires that
helices have the same handedness and the presence of a C-
terminal carboxy function. The protonation state of the
carboxy group plays a crucial role, resulting in pH depend-
ence of the association. Dimerization is also influenced by
neighboring side chains and can be programmed to selectively
produce heteromeric aggregates.

Structurally precise and designable interaction interfaces
are a key component of large self-assembled architectures.
In this respect, folded molecules constitute building blocks
of unmatched sophistication. The assemblies formed by
proteins and nucleic acids in living systems, e.g. virus capsids
or ribosomes, provide spectacular illustrations of the
structures and functions enabled by assembling folded
building blocks. There has thus been strong interest for
programming interaction interfaces in artificial folded mole-
cules. Great advances have been made using non-natural
DNA[1] and protein[2] sequences. Using smaller molecules,
the bundling of α-helical peptides is now so well understood
that it permits reliable programming and function.[3] By
extension, helix bundles have been produced from β-
peptides[4] and urea-based γ-peptide isosteres.[5] Assemblies
made of completely abiotic folded building blocks could
bring advantages of their own including biochemical and
thermal resistance as well as unrestricted functionalization.
However, this line of research is less advanced because well-
defined interaction interfaces have been lacking. Examples
include the bundling of aromatic helices[6] and the formation
of multistranded helices[7] and sheets[8] primarily in organic
solvents. Here we report the serendipitous discovery of

stable discrete dimers of aromatic oligoamide helices in
water. We find that aromatic stacking and hydrogen bonding
mediate the dimerization of the helix C-terminal cross-
section in a pH and side-chain-dependent manner. Aggrega-
tion can also be made heteromeric but, in all cases, it
remains discrete. This contrasts with the stacking of many
other aromatic objects,[9] including helices,[10] that tend to
form polymeric assemblies.

Sequence 1 (Figure 1) comprises Q and B aromatic
monomers that code for the formation of stable helices
according to well-established design principles.[11] The chiral
BRme unit was introduced to quantitatively bias handedness
towards the M (left-handed) helix.[12] The various positively
and negatively charged side chains provide solubility in
water and were originally designed to promote helix
bundling via side-chain mediated salt bridges. As shown in
the following, helices do aggregate but not in the way
initially intended.
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Figure 1. Sequences and building blocks that were investigated in this
study. Monomers possessing charged side chains are highlighted with
color (sulfonate: orange, carboxylate: red, ammonium: blue).
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The 1H NMR spectrum of 1 in water shows two sets of
sharp signals the proportion of which change with concen-
tration (Figure 2a), indicating a reversible aggregation
phenomenon in slow exchange on the NMR timescale. The
signals coalesce upon heating to 50 °C (Figure S1). The
number of signals indicate that the aggregate is on average
symmetrical, i.e. its helical subcomponents are in the same
environment. The signals of the aggregated species, includ-
ing that of the CH3 group of the BRme monomer below
0 ppm, are upfield-shifted. Upfield shifts associated with
ring current effects are typically observed upon elongating
helical sequences,[13] and suggest that helices of 1 may stack
via their aromatic cross-section. The ESI-MS shows a large
population of [2M� 2H]2� and [2M� 3H]3� dimeric species
in the gas phase (Figure S2).

A crystal structure of 1 confirmed the expected helical
structure (Figure 2b).[14] Packing in the lattice shows ex-

tended head-to-head stacks of helices and revealed several
pairwise helix-helix contacts (Figure S23–S28). Rare inter-
molecular salt-bridges were dismissed as the possible driving
force of aggregation in water. Stacking of the helix N-
terminal cross sections involved a reduced aromatic surface
and was also dismissed. In contrast aromatic contacts
between the C-terminal cross sections were extensive (total
buried surface of 431 Å2)[15] and accompanied by a close
proximity of the terminal carboxy groups that can be
attractive only if one of the two is in its protonated form
(Figure 2d). In addition, tight side-by-side pair-wise contacts
were observed that involve multiple hydrophobic aromatic
and aliphatic CH groups that could not be dismissed without
further experiment as the possible reason for aggregation in
solution.

The 1H NMR spectrum of the aggregate of 1 was
assigned using bidimensional NMR experiments (Supporting
Information section 3). NOE correlations were for most
compatible with intramolecular contacts but at least two
correlations could be explained only when the C-terminal
cross-section of two helices are stacked (Figure 3a). In
addition, analogous sequence 2, which has the same side
chains as 1 and a C-terminal Aib extension, does not
aggregate and its signals are not upfield-shifted, i.e. they
appear in the same range as those of the monomer of 1.
When mixed with 1, compound 2 does not interfere with the
aggregation of 1 and a DOSY spectrum shows that 2 is a
smaller species despite having the additional Aib (Fig-
ure 3b), thus hinting at a monomeric state. In contrast
shorter sequence 4 does aggregate in a similar manner as 1
(Figure S8).

Altogether, these data clearly support the formation of
discrete dimers of 1 in aqueous solution via head-to-head
stacking of the C-terminal cross-section. That simple stack-
ing and one carboxyl-carboxylate hydrogen bond give rise to
slow exchange on the NMR timescale is quite remarkable.
Discrete aggregation mediated by aromatic stacking has
been reported for some macrocycles[16] but it remains rare in
aromatic systems which more frequently form polymeric
aggregates. This discovery made us realize that several
water-soluble aromatic helices that we have reported in the
past presumably dimerize in the same way as they show the
exact same stacking motif of the C-termini in the solid
state.[17] This had however been overlooked.

The relative position of the carboxylate and carboxylic
acid in the solid-state results in dissymmetry within the
dimer (Figure 2d). In solution, NMR signals presumably
reflect fast exchange between two degenerate dissymmet-
rical dimers upon proton exchange between the carboxylic
acid and the carboxylate. The involvement of a carboxylic
acid and a carboxylate was supported by different observa-
tions. Unlike sequence 4, amide terminated analogous
sequence 5 does not aggregate. In addition, the dimerization
of 1 is hampered at higher pH (Figure S5). Dimerization at
pH 7 in fact indicates a significantly increased apparent pKa

within the dimer. In the absence of external factors, the acid
form is not expected at pH 7. These different effects explain
why slightly different dissociation constants are calculated
from the proportions of 1 and (1)2 measured at different

Figure 2. a) 1H NMR spectra of compound 1 at different concentrations
in 27 mM sodium phosphate aqueous buffer pH 7.0. Selected distinct
signals belonging to either the monomeric or dimeric form are
highlighted in cyan and red, respectively. X-ray structure of 1 showing
the stacking of two helices at their C-terminus in side view (b) and top
view (c). The two crystallographically distinct molecules engaged in
binding are colored in cyan and pink, respectively. Side chains, solvent
molecules and hydrogen atoms are omitted for clarity. d) Fragment of
the helix–helix binding interface showing the C-terminal monomers in
space-filling representation. Side chains and solvent molecules are
omitted. The acidic proton is not visible in the electron density map.
The assignment of the carboxylic acid and carboxylate function is
tentative, based on orientation.
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concentrations (Figure 2a): the extent of protonation also
slightly depends on concentration and this impacts dimeriza-
tion. Nevertheless, an average Kd value of 30 �8 μmol can
be extracted at neutral pH (27 mM phosphate buffer).

Dimerization was also investigated in sequences 6–8
(Figure 3c, S9–S11) and was found to vary by up to 20-fold
from compound to compound. These results hint at possible
intermolecular charge repulsions between side chain within
the dimers and at possible effects of the electron richness of
the quinoline rings at the helix-helix interface. For example,
the difference between 6 and 7 is a simple change of position
of a sulfonate. Based on the crystal structure of (1)2, one can
speculate about shorter intermolecular distances between
anions in (6)2 than in (7)2 (Figure S12). From these results,
one can envisage to tailor attractive interactions as well, e.g.
intermolecular salt bridges between side chains.

In additional experiments, we explored the possibility to
form heterodimers. We shall point again that each “homo-
dimer” in fact consists of an acid and a carboxylate under-
going proton exchange. The “homodimer” is thus an
average. Upon mixing (1)2 and (6)2 whose NMR signals
differ due to the different lengths of 1 and 6, a new species
formed whose NMR chemical shift values suggest an
intermediate length (Figure S13). This species could thus be
reasonably assigned to heterodimer 1.6. Depending on the
sequences involved, the proportions between homo and
heterodimers were found to vary as a reflection of their
respective stability. Quantitative heterodimerization was
achieved by mixing 1 and 5. Sequence 5 cannot dimerize,
but its primary amide can act as a hydrogen bond donor.
Conversely, at higher pH, 1 is exclusively monomeric
because its C-terminus is entirely deprotonated. Upon
mixing the two, a single new species formed that was
assigned to heterodimer 1.5 (Figure 4a).

Finally, we investigated stereochemical aspects of the
dimerization. The crystal structure of (1)2 (Figure 2b) and
the presence of a single dimer in the NMR spectra of achiral
sequences 3, 6, and 7 show that dimerization occurs between
helices that have the same handedness and not between a P
and an M helix. We reasoned that upon mixing an
exclusively M dimer such as (1)2 from chiral sequence 1 with
a racemic P/M mixture of dimers such as (3)2 from achiral
sequence 3, heterodimers 1.3 would form only with the M-
helix of 3. Heterodimerization would thus bias the handed-
ness of 3 in favor of the M helix. Sequence 3 was therefore
designed with additional flexibility (two pairs of contiguous
B units) to allow for its helix handedness reversal to take
place.[18,19] Circular dichroism spectra of mixtures of 1 and 3
in different proportions were recorded and demonstrated a
deviation from linearity that perfectly matches with the
predicted contribution of heterodimer 1.3, assuming all three
dimers have the same stability (Figure 4b, c, S14).

In summary we have characterized a binding interface
between the C-terminal cross section of aromatic helices in
water that is thermodynamically stable and undergoing slow
exchange on the NMR timescale. Association is strictly
dependent on the presence of a C-terminal main chain acid
function and of helix handedness. In contrast, helix length
likely has little influence. Association can be further tuned

Figure 3. a) Selected parts of the NOESY spectrum of 1. The intermo-
lecular NOE correlations between Q11 H5/Q10 H5 and Q11 H5/Q10
H10 are highlighted in red. Structural models indicate the location of
the protons involved in these correlations showing why these are likely
to be intermolecular correlations and not intramolecular contacts.
b) Amide-region of the 1H NMR spectra of 1 (1 mM) in 27 mM sodium
phosphate aqueous buffer pH 7.0, 2 (1 mM) and part of the DOSY
spectrum of a mixture of 1 (1 mM) and 2 (1 mM) in 27 mM sodium
phosphate aqueous buffer pH 7.0. Signals corresponding to compound
1 are highlighted in red. The two different levels of signals in the DOSY
spectrum are indicated by dashed lines. c) 1H NMR titration data of
compounds 1, 4, 6–8 in 27 mM sodium phosphate aqueous buffer
pH 7.0. Relative integrals of selected signals are plotted against sample
concentration.
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by charges borne by the helices and by pH. Selective
heterodimerization can also be implemented. This interface
may serve as a tool for the programmed assembly of various
entities in water, including in combination with aromatic
helix bundling, the initial and unmet objective of the work
reported here, about which progress will be reported in due
course.
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