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Abstract: Immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel diseases
and inflammatory arthritis (e.g., rheumatoid arthritis, psoriatic arthritis), are marked by increasing
worldwide incidence rates. Apart from irreversible damage of the affected tissue, the systemic nature
of these diseases heightens the incidence of cardiovascular insults and colitis-associated neoplasia.
Only 40–60% of patients respond to currently used standard-of-care immunotherapies. In addition
to this limited long-term effectiveness, all current therapies have to be given on a lifelong basis as
they are unable to specifically reprogram the inflammatory process and thus achieve a true cure of
the disease. On the other hand, the development of various OMICs technologies is considered as
“the great hope” for improving the treatment of IMIDs. This review sheds light on the progressive
development and the numerous approaches from basic science that gradually lead to the transfer
from “bench to bedside” and the implementation into general patient care procedures.

Keywords: immune-mediated inflammatory diseases (IMIDs); single-cell RNA sequencing; spatial
sequencing; advanced imaging technologies

1. Introduction

Immune-mediated inflammatory diseases (IMIDs) comprise a large number of chronic
inflammatory conditions such as inflammatory bowel diseases (IBD; Crohn’s disease, ulcer-
ative colitis), chronic inflammatory arthritis (rheumatoid arthritis, spondyloarthropathies),
and multiple sclerosis. The clinical course of these debilitating diseases is typically marked
by relapsing exacerbations, causing lifelong morbidity, disability, and heightened risk of
disease-associated mortality [1]. Optimized anti-inflammatory therapy is therefore essential
in the management of these disorders, mainly driven by a dysregulated immune response
that initiates and perpetuates the inflammatory reaction. Growing insights into underlying
immunopathogenic mechanisms have led to the advent of targeted immunotherapies,
which selectively inhibit crucial mediators of the inflammatory process. Nevertheless, only
a subgroup of treated patients respond to initiated therapies [2,3], reflecting the still in-
completely understood immunopathogenesis of these diseases. Ongoing research findings
have indicated that distinct immune cell populations and immune-regulatory pathways
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play a crucial role in the acute and chronic inflammatory reactions [4]. Herein, techno-
logical advancements such as high-throughput omics data generation have been used
as powerful tools to discover genomic mutations, epigenomic modifications, abnormal
transcription/translation, and cellular tissue distribution. Next-generation sequencing
(NGS), proteomics, and metabolomics have catalyzed research and revealed disease-related
associations and patterns that advance our understanding of the inflammatory process.
Furthermore, the quality of novel imaging approaches to visualize the inflammatory pro-
cess has dramatically increased. Together, we have powerful tools in our hands to start
the era of personalized medicine. However, the complexity and amount of the generated
datasets necessitate the need to aid the biologist and physician in the interpretation of the
datasets and images, as well as hampering the direct translation into clinical applications,
which would be important for the fast establishment of personalized medicine. In the case
of IMIDs, treatment decision making is still random, without clear rational arguments,
despite the exponential increase of use of NGS in basic science. RNA sequencing, pro-
teomics, metabolomics, whole genomic sequencing, and whole exome sequencing are
well-established techniques that provide a large number of results and are actually the
most used omics techniques, but are also continuously improving and evolving. In this
review, we address recent advances in high-throughput omics technologies and reflect the
slow but increasing implementation in clinical practice.

2. On the Path of Single-Cell Omics

The beginning of the 21st century marked a new chapter for genomic research; next-
generation sequencing (NGS) technology made it possible to routinely generate billions of
reads and to quantify millions of transcripts in parallel. It first started with the analysis of
cell mixtures, but further technological developments; protocol optimizations; and, above
all, the increasing commercialization with upcoming simplifications and standardizations
of the experimental procedures enabled the generation of datasets on a single-cell level [5].
This development of new single-cell technologies has uncovered a new view on the basic
unit of life, a thus far undetected high degree of heterogeneity that exists between indi-
vidual cells. The use of single-cell technologies could show that, e.g., the heterogeneity
of T cells goes far beyond the division into T helper (Th)1/Th2/Th17 and regulatory T
cells). Recently, mucosal-associated invariant T (MAIT) cells and their functional roles in
tissue repair as well as several pathologies, e.g., colitis, arthritis, and multiple sclerosis,
have been tackled [6]. Innate lymphoid cells (ILCs) were genotypically separated from
natural killer (NK) and T cells [7–10]. Functional studies revealed different types of ILCs
with the ability to resolve inflammation [11], but also to amplify pathogenic processes
in IMIDs [12,13]. Furthermore, fibroblasts are not considered any longer as bystander
cells, but have been divided into several subpopulations according to their functional
implications. Wohlfahrt et al., showed that extracellular matrix production is under control
of a transcriptional network including PU.1 [14]. The discovery of PU.1 as a potential profi-
brotic transcription factor was based on a bioinformatic analysis of bulkRNAseq datasets
from 97 patient samples and opened the door to the development of a new class of PU.1-
inhibiting substances for the treatment of fibroinflammatory IMIDs. ScRNAseq analyses
revealed NOTCH3 and THY1 as markers of distinct fibroblast subtypes in the synovial
membrane, which are implicated in persistent inflammation and joint destruction [15,16].
The discovery of this subpopulation opens up completely new possibilities for the treat-
ment of inflammatory arthritis with fibroblasts as main target. Genomics, transcriptomics,
epigenomics, etc. provide researchers with opportunities to interrogate the heterogeneity
of single cells at unprecedented depth. Nonetheless, the abundance of mRNA transcripts
is not strictly reflective of the level of present functional protein. Post-transcriptional and
post-translational modifications further tune biological processes and cellular phenotypes.
The combination of single-cell transcriptomic and proteomic technologies will be the key
to a comprehensive picture of the heterogeneous regulatory mechanisms of an individual
cell in the future. Humby et al., recently showed that RNA sequencing-based stratification
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of patients with rheumatoid arthritis can guide physicians to choose the most effective
therapy [17]. On the protein level, there are numerous high-dimensional procedures such
as highly multiplexed imaging, mass cytometry, and numerous other single-cell proteomic
platforms in the pipeline. Increasing technical availability, decreasing costs, and advanced
automation generate tremendous new possibilities for personalized medicine (Figure 1).
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Figure 1. Omics methodologies with regard to RNA/protein abundancy and spatial resolution.
Certain technologies allow for a combinatory assessment on RNA and protein level, and microscopic
analyses. DBiTSeq, deterministic barcoding in tissue for spatial omics sequencing; FISH, fluorescence
in situ hybridization; GeoMx Digital Spatial Profiler technology from NanoString; IMC, imaging
mass cytometry; MALDI, matrix-assisted laser desorption/ionization; MERFISH, multiplexed error-
robust fluorescence in situ hybridization; Seq, sequencing; smFISH, single-molecule fluorescence in
situ hybridization.

3. Single-Cell RNA Sequencing (scRNA-Seq)

ScRNA-seq was first established in 2009 [18]. Various techniques have been developed:
Some use barcoding of RNAs with unique molecular identifiers (UMI), allowing for the
distinguishing between original mRNA reverse transcripts and library preparation-based
PCR amplicons. Other approaches rely on full-length sequencing of cDNA fragments,
allowing for a higher sensitivity or detection of unknown mRNA sequences [19–21]. Fur-
thermore, technologies can be distinguished as to whether cDNA synthesis occurs in a
water-in-oil emulsion, encapsulating single cells with master mix and barcoded solid sup-
port (droplet), or if cells are sorted into individual wells of multi-well plates or microfluidic
chips. Technologies relying on either of the approaches have been commercialized, facili-
tating scRNA-seq in becoming a mainstream technology. For droplet-based approaches,
specific instrumentation is required, which might cost up to USD 75,000 and/or propri-
etary kits allowing for the generation of single-cell libraries for USD 0.15–0.20 per cell.
Droplet-based approaches are considered less sensitive but allow high-throughput. In
conventional sorting-based approaches, costs per single cell library might increase to up
to USD 20, but usually no further instrumentation is needed, as mostly in droplet-based
approaches also, cells of interest will be sort purified. Initially, fluorescent dyes have been
used for barcoding droplets. However, their use is limited for encoding only a few hundred
samples, owing to the dynamic range of the optical setup. Larger sample numbers can be
achieved with DNA oligonucleotides instead of fluorescent dyes whose barcoding capacity
corresponds to 4n (with n being the number of nucleotides) and is hence almost unlimited.

InDrop, Drop-seq, and 10× Genomics Chromium are the three most frequently used
systems until now. Besides differences between the systems with regard to bead manu-
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facturing and barcode design, the cDNA conversion distinguishes in particular the sys-
tems [22]. Whereas Drop-Seq only captures the transcripts without cDNA conversion,
reverse transcription is carried within droplets for 10× and inDrop before demulsification.
Cells with a high enzymatic activity such as neutrophils interfere with the RT and result in
low cDNA yield. In such situations, Drop-seq is the better variant because the sensitive step
of cDNA conversion does not take place in the droplet but starts later after demulsification
of the cells and therefore in the absence of cell specific enzymes.

Besides understanding the composition of the inflammatory niche, single-cell tran-
scriptomic analysis can guide successful therapeutic interventions for patients with IMIDs.
Kim et al., recently described the successful use of tofacitinib in a patient with drug-induced
hypersensitivity syndrome after performing an scRNAseq analysis of the patient’s skin
and blood [23]. ScRNAseq has also been successfully used in other cases such as metastatic
ALK-positive lung cancer [24]. Costs of sequencing applications have decreased signifi-
cantly over the last 20 years. According to the National Human Genome Research Institute
(NHGRI), the price of 1 raw mega-base (approximately 3400 reads) was USD 10,000 in
2001 but dropped to USD 0.01 in 2020 [25]. Initially, the costs of sequencing developed
according to the popular “Moore’s law”, which describes cost reduction by half every
second year [26]. This cost degression changed in 2008 by a technology switch from Sanger
sequencing to NGS, inducing a knockdown of costs and subsequently allowing for new
applications. The major technical hurdle of large-scale scRNA-seq studies is the cost of
preparing and sufficiently sequencing large numbers of single-cell libraries, hence limiting
its transition into clinical routine diagnostics. ScRNAseq in diagnostic application is likely
to be reserved for rare diseases for which controlled cohort studies can only be carried out
to a very limited extent. Many IMIDs belong to the rare diseases, and therefore this new
diagnostic tool can enable further, significant therapeutic successes in the future.

4. Spatial Sequencing

Despite an increasing number of studies employing scRNA-seq in IMIDs, spatial in-
formation of the tissue context is missing. However, spatial gene expression heterogeneity
does not only play an essential role during organ development but also in various patho-
logical processes of IMIDs. Macrophages are able to protect tissue niches but also cause the
migration of further immune cells to open up the niche for inflammatory responses [27].
Fibroblasts build lining layers surrounding the joint cavitation. Local destruction of this
physiological barrier primes inflammatory processes [28]. Therefore, tissue-specific insights
in IMIDs are of interest in order to select the one with the highest chance of success from the
available therapeutics. Spatial sequencing emerged to address this problem. Early attempts
were based on multiplexed single-molecule fluorescent in situ hybridization (smFISH) via
spectral barcoding. Over the past years, smFISH evolved rapidly from detecting few genes
to the whole transcriptome level (smFISH -> seqFISH, MERFISH -> SeqFISH+) [29]. Despite
these advances, SeqFISH+ could not yet gain broad acceptance due to its high technical
requirements including high-sensitivity single-molecule fluorescence imaging systems. The
technique enables the detection of up to 10,000 different transcripts on a (sub)cellular level
in situ but does not allow for a complete or even de novo sequencing such as NGS. The
transcripts are detected by a pre-defined set of probes, and thus FISH-based spatial gene
expression analysis rather resembles to the micro array technique. Each transcript is hy-
bridized with about 24 primary probes of 28 nt gene-specific hybridization regions binding
to exonic regions. Primary probes contain on 5′ and 3′ binding sites for secondary read-out
probes. Subsequently, rounds of hybridization with shorter read-out probes (15 nt) coupled
to fluorescent dyes, probe stripping, and imaging steps are used to generate a virtual stack
containing 60 pseudo-color channels. From these images, similar to Sanger sequencing, the
color sequence for each pixel reveals the transcript. The major advantage of this approach
is that it is capable of resolving transcripts at subcellular resolution. Other approaches rely
on NGS for transcript detection and need hybridization of spatially encoded barcodes. In
the 10× Genomics Visium assay, those barcodes are spotted on microscopic glass slides
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on 6.5 × 6.5 mm areas in which tissue sections are placed and hybridization of mRNA
takes place. Each area contains 5000 printed barcoded mRNA capture probes in 100 mm
center-to-center distance from one to the other. The system, therefore, achieves a maximum
resolution of 50 µm, which is far away from single-cell level and limited in terms of use for
interactome analyses. Instead of printing regional barcoded RT primers onto a glass slide,
densely barcoded bead arrays have been dispensed on a glass surface in Slide-seqV2 [30].
This technique reaches a resolution of 10 µm, meaning a near to single-cell level and an
almost 100% higher rate of RNA capture efficiency compared to 10× Visium. Seq-Scope is
another tool for high resolution spatial transcriptomics, enabling the visualization of tran-
scriptomic heterogeneity at the cellular/subcellular level. In contrast to Slide-seq V2, which
is based on barcoded beads, seq-scope depends on a solid-phase amplification of randomly
barcoded single-molecule oligonucleotides spotted on a Illumina flow cell [31]. Determinis-
tic barcoding in tissue for spatial omics sequencing (DBiT-seq) is another method that uses
a microfluidic chip with parallel channels on top of a tissue section [32]. For each channel,
oligo-dT-labeled barcodes are streamed across the tissue. After removing the first chip, a
second microfluidic chip is rotated 90◦ to the first and placed on the tissue. Again, barcodes
are streamed through the parallel channels, resulting in a mosaic of 10 µm side rectangles
of barcodes from the first and second streams. The barcodes anneal to mRNAs to initiate in
situ RT, resulting in stripes of barcoded cDNAs inside the tissue. A distance of max. 10
µm between the channels has been established, resulting in a resolution of 20 µm, which is
close to the single-cell level. With regard to IMIDs, Carlberg et al., explored inflammatory
signatures in arthritic joint biopsies with spatial transcriptomics [33]. Direct diagnostic
applications are still missing. However, joint biopsies are frequently very limited of size
and therefore often do not allow the use of scRNAseq. Spatial sequencing could represent a
new opportunity here to obtain transcriptional data from small tissue samples, particularly
when making therapy decisions for IMID patients.

5. On the Road of Single-Cell Proteomics

On the protein level, mass cytometry has evolved as a valuable high-throughput assay
for single cells and is recently also available for the analysis of tissue sections (imaging mass
cytometry (IMC)). Mass cytometry/IMC is a technique that resembles flow cytometry but
uses rarely abundant metal-coupled antibodies to stain for proteins instead of fluorescent
dyes. Since these metals are usually not present in biological specimens, mass cytometry
usually has a minimal background and a good signal-to-noise ratio. Technically, single
cells are ionized with inductively coupled argon plasma, and then the ions are separated
by mass (TOF mass spectrometry) and quantified. Mass cytometry allows for the gen-
eration of high-throughput data in a very short period of time. In IMC, FFPE or frozen
tissue sections are stained with metal-labeled antibodies. The resolution is about 0.5–1 µm,
allowing for subcellular localization of protein expression. Currently, panels including
about 40 different antibodies are feasible for IMC and mass cytometry. IMC is a powerful
tool to detect proteins in a directed manner but is limited by the availability and applica-
bility of the metal isotopes. Furthermore, other macromolecules such as lipids or small
metabolites cannot be detected. Unbiased approaches are based on mass spectrometry,
e.g., matrix-assisted laser desorption ionization (MALDI) imaging, which takes advantage
by measuring metabolites but does not reach single-cell resolution [34]. Yet, undirected
deconvolution of MALDI spectra to single molecules can be challenging. Single-cell pro-
teomics by mass spectrometry (SCoPE2) is another technique in which cells are sorted
into multi-well plates before performing tandem mass spectrometry combined with liquid
chromatography (LC–MS/MS) analysis, virtually allowing for single cell proteomics [35].
Lastly, proteo-genomics uses DNA barcode-tagged antibodies to detect protein expression
by sequencing; e.g., GeoMx Digital Spatial Profiler technology from NanoString [36] can
easily be combined with RNA in situ hybridization (ISH). As the number of possible DNA
barcodes is virtually unlimited, this technique is mostly limited by the gradually increasing
costs for antibodies/oligonucleotides and sequencing and the relatively low amount of
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cells compared to mass cytometry. Initial successes in the clinical use of mass cytometry
as a diagnostic tool were achieved in the treatment of malignant melanoma. Krieg et al.,
analyzed 40 cryopreserved PBMC samples from the blood of a cohort of 20 patients with
melanoma before and after initiation of anti PD-1 immunotherapy [37]. They identified
CD14+CD16-HLA-DRhigh monocytes as strong predictors of progression-free and overall
survival in response to anti-PD-1 immunotherapy. In psoriatic arthritis, Penkava et al.,
used IMC for measuring clonal expansions of pro-inflammatory synovial CD8 T cells in
synovial fluid [38].

6. New-Generation Microscopy

Non-invasive imaging modalities such as CT, PET, and MRI have been extensively
used in clinical practice and greatly facilitate diagnosis and evaluation of treatment of
autoimmune diseases. However, their imaging lateral resolution is within the range
of 50–100 µm [39]. Therefore, cellular and subcellular changes during the onset and
development of immune diseases are hardly resolved by these techniques. Understanding
these changes will help to design novel therapeutic strategies against autoimmune diseases.
Fluorescence microscopy is a widely used scientific imaging method to image single cells
and subcellular structures with a spatial resolution of tens to hundreds of nanometers.
As with other imaging modalities, many different fluorescence microscopy methods have
been developed for biological imaging. As discussed in this section, confocal microscopy,
two-photon microscopy, light sheet microscopy, and super-resolution microscopy have
been used widely in autoimmune disease related studies.

6.1. Confocal Laser Scanning Microscopy (CLSM)

Confocal microscopes focus a laser beam on a small focal spot that scans through the
sample and detects fluorescent light emitted by the sample. The use of a detection pinhole
permits light only from the focal plane to reach the detector, and therefore enables optical
sectioning. Consecutive imaging at different depths allows for three-dimensional (3D)
volumetric imaging of samples [40]. Under optimal conditions, confocal microscopy could
reach 180 nm high spatial resolution for imaging subcellular or molecular structures [41,42].
With additional multiplex imaging abilities, confocal microscopy has become a very popular
method for biological imaging. Furthermore, in vivo confocal microscopy has become
an essential tool to decipher temporal and spatial information simultaneously for cells
of interest [43–45]. In the research field of autoimmune diseases, confocal microscopy
revealed a number of fundamental understandings of how cellular alterations of immune
cells are linked to the onset or development of diseases. In type 1 diabetes mice, for
example, in vivo confocal microscopy revealed that T cells infiltrate first into the islets
and initiate the autoimmune process [46]. Together, CLSM is a powerful method for 3D
imaging of immune cells at the cellular level. Its imaging depth, however, is limited to tens
of microns due to tissue scattering [47]. Therefore, it is not an ideal method for 3D imaging
of entire thick samples, as sectioning fixed tissue is often required for imaging structures in
deep layers. Furthermore, a confocal microscope illuminates through the specimen with a
double inverted cone of light. Fluorescence dyes within the entire laser illuminated volume
are easily photobleached due to overexposure to the laser light, which further limits 3D
imaging. In the case of long-term live-cell imaging, long exposure to laser light also causes
phototoxicity to imaged cells.

6.2. Multi-Photon Laser Scanning Microscopy (MPLSM)

Some of these imaging disadvantages can be mitigated by multiphoton laser scanning
microscopy (MPLSM), in which a fluorophore absorbs two or three photons emitted by
a pulsed infrared laser source. The infrared excitation light penetrates tissue deeper
than visible light at shorter wavelengths used in confocal microscopy due to less tissue
scattering. In addition, MPLSM restricts the fluorophore excitation in a very small focus
and thus results in optical sectioning without the need of a pinhole used in confocal



Int. J. Mol. Sci. 2021, 22, 7506 7 of 16

microscopy to block the light out of focus. Together, MPLSM enables the deep tissue
penetration depth, the lack of out-of-focus bleaching, and the reduced photo-damage
while maintaining very good spatial and temporal resolution. Two-photon laser scanning
microscopy (TPLSM), the most popular form of MPLSM, is therefore widely used for 3D
imaging and intravital imaging of immune cells in vivo [48]. In experimental autoimmune
encephalomyelitis (EAE), a popular model for multiple sclerosis [49], the detailed processes
of T cell infiltration into the central nervous system (CNS) and their activation were revealed
by intravital imaging via TPLSM [50,51]. Furthermore, TPLSM imaging facilitated direct
evaluation of therapeutic effects of anti-integrin α4 antibody and calcium inhibitor BZ194
in EAE model [51]. Therefore, intravital imaging allows for the direct observation of cell
dynamics in living organs and serves as a powerful tool to evaluate potential therapeutic
treatments for autoimmune disease. As with CLSM, the imaging depth of TPLSM is
largely compromised by the signal-to-background ratio (SBR) of the excitation due to
tissue scattering. Three-photon microscopy laser microscopy (3P-LSM) invented recently
utilizes longer wavelengths (>1300 nm) that decrease excitation light scattering as well
as dramatically reduces the out-of-focus background, improving the SBR by orders of
magnitude when compared to TPLSM [52,53]. 3P-LSM allows for imaging single cells at
2 mm deep inside the tissue.

The generation of a nonlinear optical process, named harmonic generation (HG), is
another advantage of MPLSM imaging. Photons simultaneously interact with biological
materials and convert into one photon in HG. Secondary harmonic generation (SHG; two
photons converted into one photon) and third harmonic generation (THG; three photons
converted into one photon) are the most common forms of HG used for label-free imaging
by MPLSM, as signals come from the optical property and the structure of the material. For
biomedical applications, HG is very useful in the imaging of connective tissue, collagen
fibers, muscle, inflammatory cells, and blood vessels in vivo and in vitro [54]. For instance,
adipocytes, collagen, nerve fibers, blood vessels, and muscle can be visualized simultane-
ously without labeling in the native dermis [55]. The extracellular matrix (ECM) is altered
by cytokines and proteases produced by infiltrated immune cells in many autoimmune
diseases [56]. Therefore, deciphering the mutual interaction of immune cells and ECM
during the onset and development of autoimmune diseases by MPLSM may provide novel
insights to modulate disease progression. Together, deep tissue imaging and HG imaging
conferred by MPLSM will still be versatile techniques for autoimmune disease-related
studies in the future.

6.3. Light-Sheet Fluorescence Microscopy (LSFM)

While CLSM and MPLSM enable imaging with great spatial resolution and penetration
depth, the acquisition speed of both microscopies is limited because the image is built up
one voxel at a time. In order for this limitation to be addressed, light-sheet fluorescence
microscopy (LSFM) was developed. The concept of LSFM was introduced more than
100 years ago [57] and has been advanced in recent years for biological imaging [58]. The
processes of sample illumination and fluorescence detection are decoupled in LSFM, in
which a sample is illuminated with a thin sheet of laser light and fluorescent light emitted
from within the illuminated plane is imaged with a wide-field camera oriented orthogonally
to the light sheet. Light sheets are usually generated by focusing a laser with a cylindrical
lens. Using a camera confers LSFM capability of at least 100x faster high-speed imaging
than point-scanning methods offered by CLSM and MPLSM because all pixels from a single
plane are now imaged simultaneously [59]. Additionally, LSFM enables optical sectioning
via a light sheet confined to the plane of interest for fluorescence excitation while precluding
the illumination of out-of-focus structures. By moving samples up or down through a
fixed light sheet and taking a digital image at each height enables 3D imaging. Combined
with advanced tissue clearing methods (reviewed elsewhere [60]), LSFM has been used
successfully to image individual organs [61], a whole mouse [62], and intact human organs
such as kidney and lung [63,64]. In RA, infiltrating macrophages mediate inflammation
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and contribute to the disease progression. Recent work using LSFM discovered CX3CR1+
tissue resident macrophages, however, providing an anti-inflammatory barrier. These
synovial macrophages are located in dynamic membrane-like structures, which isolate
the joint from the surround tissues [27]. A similar anti-inflammatory function was also
revealed in the dermis resident macrophages [65].

6.4. Super-Resolution Microscopy (SRM)

An inherent drawback of fluorescence microscopy is its spatial resolution, which is
limited by the diffraction of light. The diffraction limit is about 200–300 nm in the lateral
direction and 500–700 nm in the axial direction. Many subcellular structures will be too
small to be resolved under this resolution. The diffraction limit was bypassed by the
invention of several SRM technologies, such as stimulated emission depletion (STED)
microscopy [66,67], structured illumination microscopy (SIM) [68], reversible saturable
optically linear fluorescence transitions (RESOLFTs) [69], saturated structured illumina-
tion microscopy (SSIM) [70], stochastic optical reconstruction microscopy (STORM) [71],
photoactivated localization microscopy (PALM) [72], and fluorescence photoactivation
localization microscopy (FPALM) [73]. These technologies have been used to study the sub-
cellular organization and function of molecules, e.g., T cell receptor forming nanoclusters
together with Linker for activation of T cells [74,75]. Understanding how the sensitivity
of T cell responses is mediated by these molecular organizations will help to develop
the strategies for rendering the immune system less sensitive in the case of autoimmune
diseases. Further developments such as interferometric scattering microscopy (iSCAT)
allow for the visualization of small vesicles and proteins without the need for a fluorescent
label [76]. Brillouin microscopy will take mechanical properties of the tissue into account
for cellular function and disease on a microscopic level [77].

6.5. Limitations in the Direct Translation of Omics Data into Clinical Use

The combination of molecular omics data profiling and improved imaging techniques
provides unique advantages for clinical diagnosis, monitoring, and therapy of IMIDs, which
could lay the basis for the optimized care of patients with IMIDs. However, these high-end
technologies are of limited utility without complementary methods for interpretation of
the collected data to decipher the inherent complexity of the investigated diseases. To
extract detailed information and draw conclusions with wider applicability to biological
processes, datasets have to be integrated and analyzed as a holistic system. For example, the
Standardization of Clinical Testing (Nex-StoCT) and the U.S. Centers for Disease Control
and Prevention (CDC) have collaborated to establish measures to ensure that analytical
approaches of NGS data are valid, and that tests based on NGS meet existing standardized
clinical laboratory requirements [78]. The consortium of the Genetic European Variation
in Disease (GEUVADIS) demonstrated that it was practically possible to reproduce RNA
sequencing experiments across laboratories by sequencing lymphoblastoid cell lines from
465 patients in seven sequencing centers using the same platform [79]. From this study, the
consortium proposed a set of quality checks to address technical biases in RNA sequencing
data, such as GC content, fragment size, transcript length, and percentage of reads mapped
to exons annotated hitherto [79].

Bioinformatics challenges also explain why omics technologies are yet to gain broad
clinical applicability. Taking the context of RNA sequencing, one major challenge includes
the fact that there is currently no harmonized body to lay down standards that will ensure
the analytical quality of RNA sequencing analysis pipelines. Another challenge has to
do with the abundance of software tools and their combinations for the analysis of RNA
sequencing data, and in third place, highly complex pipelines consisting of the chaining
together of tools that are largely independently developed, maintained, updated, and
licensed [80]. Very few of the algorithms developed to analyze NGS data are capable of
producing reliable clinical predictions [81].
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7. Systems Biology Approach to Mine through Complex Omics Data

The advances in gathering omics data that are scaled down to a single cell led to
enormous, to some extent even boundless amounts of information that is impossible to
comprehend without developing dedicated tools and methods. The desire to use this
rich information and uncover new, yet unknown dependencies, regulatory mechanisms,
and patterns greatly influenced the development of the new research field of Systems
Biology. Not pretending for the generality of the definition [82], Systems Biology is a
holistic approach that integrates broad range of available information about living systems
and then uses and develop methods that could simplify their complexity down to compre-
hensible interdependencies and regulatory pathways, ultimately leading to the emerging
understanding of biological functions [83]. Its applications in the field of medicine are
gaining recognition as Systems Medicine [84–86] and are spearheaded by Cancer Systems
Biology [87] and Systems Immunology [88,89].

The initial step of the bottom-up approach of Systems Biology is the collection and
import of datasets on transcriptome, proteome, and metabolome (RNA-Seq, ChIP-seq,
quantitative mass spectrometry, etc.), previously acquired in the contexts relevant to a
concrete problem or medical condition in question, frequently also for multiple species
(i.e., human, mice) [90]. Already, this step requires specialized software to import data, as
well as for accessing and harmonizing data from various existing data repositories, and
finally preparing it for the next conceptual step of generating interactome network. Interac-
tome network is combined of nodes and links representing possible relations between them.
Nodes are quite broadly defined as representing molecules (proteins, mRNA, miRNA,
transcription factors, enzymes, metabolites, etc.), cells and cell types, and biological func-
tions. The links (directed or undirected) between the nodes denote their corresponding
interactions. The typical interaction types include protein–protein, DNA–protein or gene
regulatory interactions of transcription factors, co-factors and genes, mRNA–mirRNA, and
biochemical interactions as in substrate/product/enzyme reactions. Due to advances in al-
gorithms, software, and spreading standardization of data storing, the network assembly is
gradually turning from a largely manual task towards the semi-automated analysis [91,92].
A network size for a typical particular application easily reaches several thousands of
nodes, and for a dedicated, whole-organism analysis, for example, budding yeast, the
number of links is counted in the hundreds of thousands [93]. The core creative discovery
step of the approach occurs during the comprehensive analysis of the network by using
advanced mathematical tools of the network theory [94]. Only with its help does it become
possible to identify network subclusters as linked to a given condition, search and classify
regulatory motifs (i.e., feedback loops, not to be confused with transcription factor binding
sequences), and group nodes according to a specific biological function or a phenotype.
Whenever a distinct and substantially smaller subset of nodes of the full network is iden-
tified according to a certain criterion, it then is redefined as the so-called core network
that could, for example, produce the most significant changes under a certain condition,
or describe a certain phenotypic change. Having a much more observable number of
nodes and links such core networks are amenable to further mathematical analysis. To
this end, a system of differential equations that describe the temporal evolution of nodes
and their interrelations can be set up and studied as a function of parameters and network
topology. A mathematical model, relying on a large body of knowledge of dynamical
systems, can then deliver rigorous predictions on possible attractors of the dynamics and
their stability, existence of periodic patterns, or switching of the regimes and their response
to perturbations [95].

There is a good number of recent studies employing the systems biology approach
in the context of immunology and inflammation. A network of signal transduction path-
ways for inflammatory macrophages, containing 1122 molecule species (nodes) and 2705
reactions (links), was manually constructed and annotated [96]. By considering three lung
infection scenarios, researchers identified a regulatory core of 41 factors, including TNF,
CCL5, CXCL10, IL-18, and IL-12 p40, as well as 140 drugs targeting 16 of them. A com-
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prehensive study [97] used the systems biology approach to analyze an extensive dataset
on six autoimmune diseases of multiple sclerosis, systemic lupus erythematosus, juvenile
rheumatoid arthritis, Crohn’s disease, ulcerative colitis, and type 1 diabetes, focusing on
intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs). It
was shown that chemokines such as CXCL1-3, 5, and 6 and the interleukin IL-8 were
differentially expressed in PBMCs of patients with diseases, and more generally, similar
cellular processes related to cell proliferation, inflammatory response, and apoptosis tend
to be differentially expressed in PBMC. In a very recent effort [98], a fully annotated, expert
validated, state-of-the-art knowledge base for RA in the form of a molecular map was
developed and is available online at ramap.elixir-luxembourg.org. The corresponding net-
work based on 353 publications contains 506 nodes (303 proteins, 61 complexes, 106 genes
and 106 RNAs, 2 ions, and 7 simple molecules), 446 reactions, and 8 phenotypes. This
open-access knowledge base allows for easy navigation and for the search of molecular
pathways implicated in the disease.

Thus, the principal tools and methods of Systems Biology are in place to be applied also
to the problem of inflammatory diseases, while the computational algorithms and database
integration continue rapid development. The major challenges still exist, as for example
in combining different layers of datasets (i.e., omics and imaging data). Importantly, the
experimental validation of network analysis predictions still remains a crucial step within
this approach.

8. Perspectives to Take Advantages of OMICs Technologies in Daily Clinical Practice

The integrated analysis of protein–protein, gene regulation, and coexpression network
models, alongside gene expression data, can lead to the discovery of the most relevant
genes and pathways in IMIDS, as well as causal mechanisms and their topological proper-
ties [99–103]. On the other hand, enrichment analyses can enable the tracing of pathological
mechanisms from the DNA level to the pathophysiological level [99]. For example, assays
such as RNA-seq and Chip-seq, which measure gene expression and regulation of gene ex-
pression, respectively, have been applied to elucidate tissue-specific signatures of genomic
regulation [104]. The clinical application of multi omics data poses major challenges in-
cluding the joint requirement for expertise and advanced facilities in statistics, biology and
computer sciences, as well as the interpretation and therapeutic actionability of molecular
findings. However, the integration of multiple omics data types holds a large amount of
promise, as it can help to provide a holistic picture of diseases with unprecedented details
and guide therapy [99]. Furthermore, DNA and RNA sequencing have been successfully
applied to identify gene signatures in tumor versus normal control sample comparisons,
which guided therapies that lead to tumor regression [105,106]. The same approaches are
likely to yield success if transferred to IMIDs (Figure 2).

Taken together, the synergistic competence in molecular biology, bioinformatics, bio-
statistics, bioethics, computer sciences, mathematics, and medicine might enable the ex-
pansion of our understanding of the underlying disease mechanisms in the clinical fields
of IMIDs and could lead to advancements in inflammation research. Artificial intelligence
(AI) and machine learning (ML) are additional techniques that have the capacity to identify
and uncover clinically relevant patterns and interdependencies amongst the acquired infor-
mation and take confounding factors into account [107,108]. They differ from traditional
statistical methods as they focus on prediction and classification from high-dimensional
data, rather than pure inference on typically univariate data. As successful ML requires
robust and sufficient data, from which it can learn, well established omics/imaging tech-
nologies in combination with comprehensive clinical and outcome information provide an
apt basis for application of ML algorithms. A key challenge for most modern AI methods
is the requirement of large amounts of training data in general and task-agnostic learning
approaches [109]. In medical research, this requirement is often not met. Yet, there is a
broad body of medical domain knowledge in form of molecule interactions, biological
processes, imaging data, and general high-level correlations that is typically not suited



Int. J. Mol. Sci. 2021, 22, 7506 11 of 16

for inclusion in general ML approaches. Large collaborative efforts such as the Human
Cell Atlas (HCA) [110] are currently dealing with the question of how information can be
integrated across different platforms. They underline the importance of computationally
mapping data from different modalities to a reference [111]. In order for us to be able to
integrate data from spatial and non-spatial scRNAseq data, new calculation methods for
the creation of such atlases will be of fundamental importance. The interdisciplinary setup
of biologists, computer scientists, mathematicians, and physicians could ultimately lead to
the implementation of precision medicine concepts and thus clinically meaningful benefits
for the individual patient with IMIDs (Figure 3).
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