
1

Nutr Res Pract. 2024 Feb;18(1):1-18
https://doi.org/10.4162/nrp.2024.18.1.1
pISSN 1976-1457·eISSN 2005-6168

ABSTRACT

BACKGROUND/OBJECTIVES: Endoplasmic reticulum (ER) stress in adipose tissue causes an 
inflammatory response and leads to metabolic diseases. However, the association between 
vitamin D and adipose ER stress remains poorly understood. In this study, we investigated 
whether 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alleviates ER stress in adipocytes.
MATERIALS/METHODS: 3T3-L1 cells were treated with different concentrations (i.e., 10–100 
nM) of 1,25(OH)2D3 after or during differentiation (i.e., on day 0–7, 3–7, or 7). They were then 
incubated with thapsigargin (TG, 500 nM) for an additional 24 h to induce ER stress. Next, we 
measured the mRNA and protein levels of genes involved in unfold protein response (UPR) and 
adipogenesis using real-time polymerase chain reaction and western blotting and quantified 
the secreted protein levels of pro-inflammatory cytokines. Finally, the mRNA levels of UPR 
pathway genes were measured in adipocytes transfected with siRNA-targeting Vdr.
RESULTS: Treatment with 1,25(OH)2D3 during various stages of adipocyte differentiation 
significantly inhibited ER stress induced by TG. In fully differentiated 3T3-L1 adipocytes, 
1,25(OH)2D3 treatment suppressed mRNA levels of Ddit3, sXbp1, and Atf4 and decreased the 
secretion of monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-α. 
However, downregulation of the mRNA levels of Ddit3, sXbp1, and Atf4 following 1,25(OH)2D3 
administration was not observed in Vdr-knockdown adipocytes. In addition, exposure of 3T3-L1 
preadipocytes to 1,25(OH)2D3 inhibited transcription of Ddit3, sXbp1, Atf4, Bip, and Atf6 and 
reduced the p-alpha subunit of translation initiation factor 2 (eIF2α)/eIF2α and p-protein kinase 
RNA-like ER kinase (PERK)/PERK protein ratios. Furthermore, 1,25(OH)2D3 treatment before 
adipocyte differentiation reduced adipogenesis and the mRNA levels of adipogenic genes.
CONCLUSIONS: Our data suggest that 1,25(OH)2D3 prevents TG-induced ER stress and 
inflammatory responses in mature adipocytes by downregulating UPR signaling via binding 
with Vdr. In addition, the inhibition of adipogenesis by vitamin D may contribute to the 
reduction of ER stress in adipocytes.
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INTRODUCTION

Adipose tissue is a metabolically dynamic organ primarily composed of adipocytes. In 
obesity, adipose tissue dysfunction is characterized by adipocyte hypertrophy and chronic 
inflammation induced by macrophage infiltration, leading to lipid accumulation in non-
adipose tissue, known as lipotoxicity, and the development of insulin resistance and type 
2 diabetes [1,2]. While the mechanisms responsible for chronic inflammation and insulin-
resistance in obese adipose tissue are not fully understood, endoplasmic reticulum (ER) 
stress has been implicated in adipose tissue inflammation and in obesity-induced insulin 
resistance in adipocytes [3-5].

The ER is a crucial organelle responsible for integrating multiple metabolic signals and 
maintaining cellular homeostasis, and also plays a role in lipid droplet formation [6]. ER stress 
occurs when unfolded protein responses (UPRs) are activated in response to various cellular 
stress conditions, including lipid accumulation, reactive oxidative stress, inhibition of protein 
glycosylation, imbalance of ER calcium, and the increased or misfolded protein synthesis 
[7]. UPRs are regulated by 3 ER membrane proteins: activating transcription factor (ATF) 
6, inositol-requiring enzyme (IRE) 1, and protein kinase RNA-like ER kinase (PERK). These 
proteins become activated when UPRs accumulate in the ER lumen. In obesity, ER stress is 
induced in adipose tissue via increased PERK activation and phosphorylation of the alpha 
subunit of translation initiation factor 2 (eIF2α) [4,8]. Previous studies have shown that high-
fat diet-induced obese mice and genetically obese (ob/ob) mice both exhibit increased UPR 
markers in their liver and adipose tissue [9]. ER stress leads to suppression of insulin receptor 
signaling (IRS) via hyperactivation of c-Jun N-terminal kinase (JNK) and IRS-1, resulting in 
insulin resistance and type 2 diabetes [9,10]. In adipocytes, ER stress induced by free fatty acid 
causes insulin resistance and inflammation mediated by reduced inhibitor of nuclear factor 
kappa-B (NF-κB) kinase subunit beta and JNK phosphorylation [11]. In addition, ER stress 
in 3T3-L1 adipocytes has been found to lead to upregulation of inflammatory cytokine gene 
expression [8,12]. Therefore, reducing ER stress in adipocytes may contribute to alleviating 
inflammatory responses in adipose tissue and insulin-resistant states [13].

The role of vitamin D in adipose tissue has been investigated due to the presence of the 
vitamin D receptor (VDR) and vitamin D metabolizing enzymes in adipocytes, as well as 
their associations with adipogenesis [14-16]. Vitamin D is a fat-soluble vitamin that can 
be stored in adipose tissue as cholecalciferol (i.e., vitamin D3) and can regulate adipocyte 
differentiation and inflammatory responses in its active form, 1,25-dihydroxyvitamin D3 
(1,25(OH)2D3). Numerous studies have reported that 1,25(OH)2D3 regulates adipocyte cellular 
activity by binding to the nuclear VDR with high affinity and thereafter modulating the 
transcription of genes involved in adipogenesis and inflammation [17]. Moreover, treatment 
with 1,25(OH)2D3 has been shown to inhibit the production of interleukin (IL)-6, monocyte 
chemoattractant protein (MCP)-1, and IL-1β production and inactivate NF-κB by inducing 
IκBα in human adipocytes and 3T3-L1 cells. However, conflicting results have been observed 
regarding increased inflammatory cytokine levels in adipocytes treated with 1,25(OH)2D3 
[18-21]. Furthermore, vitamin D deficiency is associated with obesity and other metabolic 
diseases; for example, observational studies have reported an increased risk of obesity, type 2 
diabetes, and impaired glucose metabolism in individuals with vitamin D deficiency [22-26]. 
Therefore, in addition to regulating inflammatory cytokines, vitamin D may play a pivotal 
role in mediating metabolic diseases, including those related to adipose tissue.
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Although the effects of vitamin D on ER stress have been investigated in epithelial cancer 
cells and macrophages [27,28], its impact on adipocyte ER stress remains unclear, despite the 
crucial role of ER stress in mediating metabolic diseases associated with obesity. Therefore, 
this study aimed to investigate whether 1,25(OH)2D3 can inhibit an ER stress response 
induced by thapsigargin (TG) in 3T3-L1 adipocytes. To test this, we measured the expression 
levels of UPR response markers, adipogenesis, and inflammatory cytokine levels in response 
to vitamin D treatment during or after adipocyte differentiation prior to inducing ER stress.

MATERIALS AND METHODS

Cell culture and vitamin D treatment
3T3-L1 cells were obtained from the American Type Culture Collection (Manassas, VA, USA) 
and cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Waltham, MA, USA) 
containing 10% bovine calf serum (Gibco and 1% antibiotic-antimycotic [Gibco]) in a 95% 
air and 5% CO2 incubator at 37°C. 3T3-L1 cells were then seeded in 6-well plates at a density 
of 3 × 104 cells and grown to reach 100% confluence. Once preadipocytes reached confluence 
(i.e., “day 0”), cells were differentiated by adding 0.5 μM 3-isobutyl-1-methylxanthine, 0.25 
μM dexamethasone, and 1 μg/mL insulin in DMEM containing 10% fetal bovine serum 
(Biowest, Nuaillé, France) for 3 days to induce differentiation. On day 3, insulin (1 μg/
mL) alone was added for 2 more days. On day 5, the medium was replaced with DMEM 
(10% FBS) for 2 days, resulting in a total of 7 days of differentiation. On day 7, adipocytes 
were treated with a vehicle control (i.e., filtered 99.5% ethanol) or 1,25(OH)2D3 (Sigma, St. 
Louis, MO, USA) dissolved in ethanol at various concentrations (i.e., 10, 50, or 100 nM). To 
examine the effect of 1,25(OH)2D3 on ER stress when treated at different stages of adipocyte 
differentiation, the vehicle control (filtered 99.5% ethanol) or 1,25(OH)2D3 was administered 
on day 0 (from day 0 to 7), day 3 (from day 3 to 7), or day 7 of adipocyte differentiation. In 
addition, fully differentiated adipocytes were incubated in serum-free media for 24 h with 
vehicle (control) or TG (500 nM; Sigma) to induce ER stress.

For each in vitro study, 3 different cell cultures per treatment were used, generating 3 technical 
replicate populations of 3T3-L1 preadipocytes. Cells and media were then collected for 
further analysis.

RNA interference of Vdr
3T3-LI adipocytes were first seeded into 6-well plates and fully differentiated. The expression 
of Vdr was then inhibited using siRNA oligonucleotides. To do so, fully differentiated 
adipocytes were transfected with siRNAs targeting Vdr (siVdr; AccuTarget™ Genome-wide 
Predesigned siRNA, No. 22337-1, Bioneer, Daejeon, Korea) or with a non-targeting siRNA 
(AccuTargetTM Negative Control siRNA, SN-1001-CFG, Bioneer) using Lipofectamine 
RNAiMAX reagent (Invitrogen, Waltham, MA, USA), with all procedures performed 
according to the manufacturer’s instructions. After 24 h, cells were treated with vehicle 
or 1,25(OH)2D3 for 24 h, followed by TG for additional 24 h. The efficiency of the gene 
knockdown was determined via quantitative polymerase chain reaction (qPCR).

Total RNA extraction and real-time reverse transcription polymerase chain 
reaction
Total RNA was isolated from differentiated adipocytes using RNAiso Plus (Takara, Shiga, 
Japan), with all protocols following the manufacturer’s instructions. The purity and 
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concentration of RNA were evaluated using a Microvolume Spectrophotometer (DeNovix, 
Wilmington, DE, USA). Total RNA samples were reverse transcribed into cDNA using 
PrimeScript™II First strand cDNA synthesis kit (Takara). RT-qPCR was performed using 
a Roche Lightcycler 96 system (Roche, Basal, Switzerland) and TB green Premix Ex Taq 
(Takara). The relative mRNA expression levels of target genes were normalized to those of 
Gapdh. The primer sequences used to amplify Ddit3, sXbp1, Atf4, Atf6, Bip, Vdr, Pparγ, Cebpα, 
Fabp, Srebp1, Serca2b, Calnexin, Pdia3, and Gapdh are listed in Table 1.

Assessment of pro-inflammatory cytokine secretion by enzyme-linked 
immunosorbent assay (ELISA)
Next, we collected the medium from differentiated adipocytes to evaluate the secretion of 
pro-inflammatory cytokines. MCP-1, IL-6, and tumor necrosis factor (TNF)-α levels of the 
supernatants were determined using mouse ELISA kits (BD Bioscience, San Diego, CA, USA) 
with all procedures following the manufacturer’s instructions. The results were normalized 
by total cell protein content and presented as cytokine protein amount (pg)/total protein 
(µg). Total cell protein contents were measured by bicinchoninic acid assay analysis. Briefly, 
96-well plates were incubated with antibody overnight, then blocked with 200 µL Assay 
Diluent for 1 h. Standards and samples were then added and incubated for 2 h, followed 
by the addition of 100 µL of Working Detector. Finally, 100 µL of the Substrate and Stop 
Solutions were added to each well. The absorbance of each well was measured at 450 nm 
using a microplate spectrophotometer (Epoch, BioTek Instruments, Winooski, VT, USA).

Western blotting
Total proteins were extracted from 3T3-L1 cells using RIPA buffer (Biomax, Seoul, Korea) 
and a protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific, Waltham, 
MA, USA). The cell extract proteins were then separated on sodium dodecyl sulfate–
polyacrylamide gel electrophoresis gels and transferred to polyvinylidene difluoride 
membranes. After blocking with 5% skim milk, the membrane was incubated overnight at 
4°C with one of the following primary antibodies: anti-ATF6 (1:1,000, AB37149, Abcam, 
Cambridge, UK), anti-phospho-PERK (1:1,000, SAB5700521, Sigma), anti-PERK (1:1,000, 
C33E10, Cell Signaling, Danvers, MA, USA), anti-phospho-eIF2α (1:1,000, 9721, Cell 
Signaling), anti-eIF2α (1:1,000, 9722, Cell Signaling), or anti-β-actin (1:2,000, D6A8, Cell 
Signaling). Subsequently, each membrane was washed with TBS with 0.05% Tween-20 
and incubated at room temperature with a horseradish peroxidase-linked rabbit secondary 
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Table 1. Primer sequences used for real-time qPCR analyses
Gene Forward primer (5′-3′) Reverse primer (5′-3′)
Mouse Ddit3 ccaccacacctgaaagcagaa aggtgaaaggcagggactca
Mouse sXbp1 tggaagaagagaaccacaaact cattcccaagcgtgttcttaac
Mouse Atf4 caagaatgtaaagggggcaac aatggatgacctggaaacca
Mouse Atf6 aagcatccgttctcatcacc ggcagtgtggtctttcctgt
Mouse Bip gacaagaaggaggatgtggg gcatcgccaatcagacgctc
Mouse Vdr gggatgatgggtaggttgtg ggaagagggtagagggcaga
Mouse Pparγ cagcaggttgtcttggatgtc agccctttggtgactttctgg
Mouse Cebpα cgcaagagccgagataaagc gtcaactccagcaccttctgttg
Mouse Fabp aagtgggagtgggctttgc tggtgaccaaatccccattt
Mouse Srebp1 gtctccaccacttcgggttt cgactacatccgcttcttgc
Mouse Serca2b aaccaagccaaaacgaaaga acacaaagaccgtggaggag
Mouse Calnexin tcacataggcaccaccacat agcttccaggggataaagga
Mouse Pdia3 gtggcatccatcttggctat tctgaacccatcccagagtc
Mouse Gapdh ggagaaacctgccaagta aagagtgggagttgctgttg
qPCR, quantitative polymerase chain reaction.



antibody (Cell Signaling, 7074) for 1 h. After incubation, membranes were stripped using 
a stripping buffer (Biomax). Fluorescent signals were visualized using West Glow FEMTO 
chemiluminescent substrate (Biomax) and were quantified using ImageJ software.

Oil red O staining
Differentiated 3T3-L1 cells were first washed with cold PBS and fixed in 10% formaldehyde for 
15 min. After removing the cold PBS, the cells were washed with PBS 3 times and incubated 
with 0.1% Oil red O solution (Sigma) for 20 min at room temperature. The cells were then 
immediately washed with distilled water to remove the Oil red O solution. Stained cells 
were visualized by microscopy (Olympus, Ibaraki, Japan). To quantify lipid accumulation, 
the Oil red O in the cells was extracted using isopropanol for 1 min at room temperature to 
quantify lipid accumulation. The absorbance was measured at 510 nm using a microplate 
spectrophotometer (Epoch, BioTek Instruments).

Statistical analyses
All data are represented as mean ± SE. Statistical differences among experimental groups 
were determined by one-way analysis of variance followed by Least Significant Difference 
post hoc tests. Student’s t-tests were used to comparing 2 groups to determine the effect of a 
specific treatment. For all statistical tests, P < 0.05 was used as the threshold of statistical 
significance. All statistical analyses were performed using SPSS version 26.0 (IBM SPSS Inc., 
Chicago, IL, USA).

RESULTS

Effect of 1,25(OH)2D3 on mRNA expression of UPR-related genes in differentiated 
3T3-L1 adipocytes
We first investigated whether 1,25(OH)2D3 can alleviate the upregulation of UPR-related genes 
induced by TG in differentiated 3T3-L1 adipocytes (Fig. 1). To do so, fully differentiated 3T3-L1 
adipocytes were treated with 1,25(OH)2D3 (i.e., 0, 10, or 50 nM) for 24 h, followed by treatment 
with 500 nM TG for an additional 24 h to induce ER stress. 1,25(OH)2D3 ranging from 10 to 
100 nM have demonstrated no inhibitory effect on cell viability in either preadipocytes or 
mature adipocytes and is consistent with the physiological levels observed in humans [29,30]. 
TG significantly increased the mRNA expression levels of UPR-related genes by 2 to 35-fold, 
including for Ddit3, sXbp1, Atf4, Atf6, and Bip. We found that pretreatment with 1,25(OH)2D3 
prior to inducing ER stress significantly ameliorated the mRNA expression levels of Ddit3, 
sXbp1, and Atf4, when compared to only TG-treated adipocytes. For example, treatment with 
10 nM 1,25(OH)2D3 significantly lowered Ddit3 mRNA expression (P < 0.05) and 50 nM of 
1,25(OH)2D3 significantly reduced the mRNA expression levels of Ddit3, sXbp1, and Atf4 (all P < 
0.05, vs TG-treated adipocytes). However, the mRNA expression levels of Atf6 and Bip were not 
significantly affected by 1,25(OH)2D3 pretreatment. Finally, we found that TG downregulated 
the mRNA levels of Vdr by 30% (P < 0.05, t-test), but pretreatment with 1,25(OH)2D3 increased 
Vdr expression by 20 to 58-fold (P < 0.01).

Effect of 1,25(OH)2D3 on pro-inflammatory cytokines secretion in differentiated 
3T3-L1 adipocytes
Next, we investigated the effect of 1,25(OH)2D3 treatment prior to ER stress induction 
on inflammatory cytokine secretion by differentiated 3T3-L1 adipocytes by measuring 
the protein levels of MCP-1, IL-6, and TNF-α in media (Fig. 2). We found that changes in 
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pro-inflammatory cytokine levels induced by ER stressors or vitamin D in adipocytes. TG 
significantly upregulated secreted protein levels of MCP-1 (P < 0.05), IL-6 (P < 0.001), and 
TNF-α (P < 0.001). Treatment with 10 or 50 nM of 1,25(OH)2D3 significantly downregulated 
the secreted protein levels of MCP-1 (P < 0.01, vs TG-treated adipocytes) and 10 nM of 
1,25(OH)2D3 significantly decreased the secreted protein levels of IL-6 and TNF-α (both P < 
0.05, vs TG-treated adipocytes) in 3T3-L1 cells. Additionally, 50 nM of 1,25(OH)2D3 slightly 
tended to reduce the protein level of IL-6 (P = 0.09).

Suppression of TG-induced ER stress by 1,25(OH)2D3 is mediated by Vdr in 
differentiated 3T3-L1 adipocytes
The above results indicate that exposure of differentiated 3T3-L1 adipocytes to vitamin D 
alleviates the activation of ER stress. To identify whether the specific mechanism by which 
vitamin D acts in UPR signaling also involves VDR signaling, we used siRNA oligonucleotides 
targeting Vdr (Fig. 3). Transfection of differentiated 3T3-L1 adipocytes with Vdr-siRNA 
(siVdr-cells) decreased the expression of the target gene by more than 60% compared to 
transfection with non-targeting siRNA (siCon-cells) (Fig. 3A). In siVdr-cells, TG induced the 
upregulation of Ddit3, Atf4, sXbp1, Atf6, and Bip mRNA, but these levels were not affected by 
1,25(OH)2D3 treatment. In contrast, siCon-cells showed a significant 20–25% downregulation 
of Ddit3, Atf4, and sXbp1 expression following 1,25(OH)2D3 treatment (Ddit3 and Atf4: P < 
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0.01, sXbp1: P < 0.05, vs TG-treated siCon-cells, Fig. 3B-D). The mRNA levels of Atf6 and Bip 
remained unaffected by 1,25(OH)2D3 treatment both in siCon and siVdr cells (Fig. 3E and F).

Effect of treatment with 1,25(OH)2D3 at each stage of 3T3-L1 adipocytes 
differentiation on the UPR pathway
Next, we determined whether vitamin D treatment at each stage of adipocyte differentiation 
exhibited an inhibitory effect on UPR markers. To do so, 10 or 100 nM of 1,25(OH)2D3 was 
used to treat preadipocytes (i.e., on day 0: from day 0 to 7), during differentiation (day 3: from 
day 3 to 7), or after differentiation (day 7) prior to inducing ER stress with TG (Figs. 4 and 5). 
Interestingly, treatment with 10 nM of 1,25(OH)2D3 at the preadipocyte stage (day 0) significantly 
and clearly downregulated TG-induced Ddit3, sXbp1, Atf4, Bip, and Atf6 mRNA expression by 
30%–58%, when compared to only TG-treated adipocytes (Fig. 4). In addition to the mRNA 
levels of these UPR markers, we also found that the phosphorylation ratio of PERK and eIF2α 
and the protein level of p-PERK, p-eIF2α, and ATF6 were also significantly reduced by the 10 nM 
1,25(OH)2D3 treatment of preadipocytes (Fig. 5). When 10 nM of 1,25(OH)2D3 was pretreated 
at day 3, the mRNA expression of Ddit3, sXbp1, Atf4, Bip, and Atf6 was significantly reduced 
compared to adipocytes that were only treated with TG (Fig. 4). In addition, the protein level 
of ATF6 was significantly inhibited (P < 0.001) and ratio of p-PERK/PERK was tended to be 
decreased (P = 0.051) by 1,25(OH)2D3 treatment on day 3 (Fig. 5A and C). Treatment with 10 
nM of 1,25(OH)2D3 after adipocyte differentiation only inhibited the mRNA levels of Ddit3(P < 
0.001), sXbp1 (P < 0.05) and Atf4 (P < 0.05) (Fig. 4A-C) and the phosphorylation ratio of eIF-2α (P 
< 0.05) (Fig. 5B). Phosphorylation of PERK and the protein level of ATF6 were not significantly 
decreased in response to 1,25(OH)2D3 treatment in differentiated adipocytes (Fig. 5A and C).

Alteration of chaperone-related gene expression by 1,25(OH)2D3 in ER stress-
induced 3T3 adipocytes
Pdia3 and calnexin are chaperones that modulate the folding of newly synthesized proteins 
under ER stress and are also involved in the regulation of calcium homeostasis through 
their interaction with calcium pump Serca2b [31,32]. We investigated whether treatment with 
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1,25(OH)2D3 prior to inducing ER stress had an impact on the mRNA expression of Pdia3, 
Calnexin, and Serca2b in 3T3-L1 adipocytes during (i.e., day 0: from day 0 to 7, day 3: day 3 to 7) 
and after (day 7) differentiation process (Fig. 6). TG consistently increased the mRNA levels 
of Pdia3, Calnexin, and Serca2b expression by 5 to 13-fold (P < 0.001).
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Treatment with 1,25(OH)2D3 during (day 3) or after (day 7) adipocyte differentiation significantly 
reduced the mRNA levels of Pdia3 (vs TG-treated adipocytes). Furthermore, 1,25(OH)2D3 
downregulated Serca2b mRNA expression only when it was administered before (day 0) or 
during (day 3) adipocyte differentiation (both P < 0.01, vs TG-treated adipocytes). However, the 
upregulation of calnexin mRNA expression by TG was not affected by 1,25(OH)2D3.
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Effect of treatment with 1,25(OH)2D3 at each stage of 3T3-L1 adipocytes 
differentiation on adipogenesis in ER stress-induced 3T3-L1 adipocytes
Next, to examine whether the inhibitory effect of UPR markers by vitamin D is associated 
with the regulation of adipogenesis and lipogenesis, we measured lipid accumulation and the 
mRNA expression of genes involved in adipogenesis (Fig. 7). 3T3-L1 adipocytes were treated 
with 1,25(OH)2D3 at each stage of adipocyte differentiation (i.e., day 0: day 0–7, day 3: day 3–7, 
or day 7) prior to the addition of TG. TG treatment of differentiated adipocytes was found to 
decrease lipid accumulation by 5% (P < 0.05, Fig. 7A and B) and cause the downregulation of 
Pparγ, Cebpα, Fabp, and Srebp1 mRNA levels (Fig. 7C-F).

The effect of 1,25(OH)2D3 on adipogenesis differed depending on the time point of its 
treatment during differentiation. Treatment of preadipocytes (day 0) with 1,25(OH)2D3 not 
only clearly inhibited 80% of lipid accumulation (Fig. 7A and B) but also significantly reduced 
Pparγ, Cebpα, and Fabp mRNA levels (all P < 0.001, vs TG-treated adipocytes, Fig. 7C-E). 
However, the 10 nM 1,25(OH)2D3 treatment on day 3 or day 7 did not significantly alter lipid 
accumulation (Fig. 7A). The mRNA levels of Cebpα and Fabp were significantly downregulated 
by 1,25(OH)2D3 treatment on both day 3 and day 7 (vs TG-treated adipocytes).
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DISCUSSION

In this study, we demonstrate first that pretreatment with vitamin D can alleviate TG-induced 
ER stress via Vdr signaling in 3T3-L1 adipocytes, leading to reduced inflammatory responses 
(Fig. 8). Vitamin D treatment before adipocyte differentiation further reduced activation and 
expression of UPR-related proteins and Pdia3. ER stress occurring in adipocytes is associated 
with adipose tissue inflammation that is related to the development of insulin resistance and 
metabolic diseases. This study also showed that vitamin D treatment of adipocytes prior to 
inducing ER stress can ameliorate the inflammatory responses by reducing MCP-1, IL-6, and 
TNF-α levels and can inhibit adipogenesis by downregulating Cebpα, Pparγ, and Fabp expression.

TG is the non-competitive inhibitor of sarcoplasmic/ER Ca2+ ATPase (SERCA) that causes ER 
stress by depleting ER calcium stores and activating UPR. Several in vitro studies using 3T3-L1 
cells have used TG to induce ER stress to mimic the effect of physiological cell stimuli related 
to calcium, including cell injury, and cellular aging [33-37]. In this study, TG induced ER stress 
by significantly upregulating proteins associated with the UPR pathway via 3 transmembrane 
receptors in the ER, consistent with previous findings that have shown ER stress induction in 
adipocytes using TG concentration exceeding 500 nM [38-41]. Nevertheless, the use of TG at a 
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***P < 0.001 vs. Control; #P < 0.05, ##P < 0.01, or ###P < 0.001 vs. TG-treated.



concentration of 500 nM in this study surpasses the physiological range, potentially resulting 
in a decline in cell viability. However, a prior study examining the influence of vitamin D on 
TG-induced ER stress in epithelial cells indicated that although ER stress-driven apoptosis 
led to a moderate reduction in cell viability, the substantial escalation in ER stress helped 
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counterbalance any potential biases resulting from the decline in cell viability effects [27]. 
In the current study, treatment with TG in differentiated adipocytes notably increased the 
mRNA expression levels of Ddit3, sXbp1, Atf4, Atf6, and Bip by 2 to 35-fold, along with a rise in 
the protein levels of p-PERK, p-eIF2α, and ATF6 by 1 to 1.8-fold.

Pretreatment of differentiated adipocytes with 1,25(OH)2D3 inhibited ER stress by reducing the 
mRNA expression levels of Ddit3, sXbp1, and Atf4 and suppressing the protein ratio of p-eIF2α/
eIF2α. These results indicate that vitamin D alleviates ER stress by regulating the PERK/eIF2α/
ATF4/C/EBP homologous protein (CHOP, another name of DDIT3) signaling pathway. Previous 
studies using epithelial cells, macrophages, and pancreatic beta cells have investigated the 
inhibitory effect of vitamin D on ER stress, and 1,25(OH)2D3 has been previously found to 
inhibit ER stress by suppressing UPR activation which is consistent with results in this study 
[27,28,42,43]. In human mammary epithelial MCF-7 cells, 100 nM 1,25(OH)2D3 treatments 
have been found to inhibit TG-induced mRNA levels of Atf4, Ddit3, PERK, and sXbp1 [27]. In 
monocytes and macrophages isolated from type 2 diabetic patients, vitamin D has also been 
found to suppress ER stress by downregulating the phosphorylation of PERK and IRE1α and 
the protein level of CHOP [28]. Moreover, Hu et al. [42] reported that 1,25(OH)2D3 can protect 
pancreatic beta cells from H2O2-induced ER stress via inhibition of the PERK/ATF4/CHOP 
pathway. Prolonged ER stress has also been found to induce apoptosis and inflammatory 
responses via CHOP through the activation of the PERK. Furthermore, this has been 
implicated in many chronic diseases including cardiovascular and neurogenerative disorders 
[8,44-46]. In addition, chronic ER stress in adipose tissue can be induced by increased 
demand for protein synthesis under nutrient excess and has been linked to inflammatory 
responses and insulin resistance [8,47]. We also found that protein levels of MCP-1, IL-6, and 
TNF-α were significantly inhibited by 1,25(OH)2D3 pretreatment prior to inducing ER stress. In 
adipocytes or macrophages in microenvironments mimicking obese adipose tissue, vitamin 
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Fig. 8. 1,25(OH)2D3 may prevent TG-induced ER stress in adipocytes. The red arrow indicates regulation by 
1,25(OH)2D3 treatment, while the blue arrow indicates regulation by TG. 
ER, endoplasmic reticulum; TG, thapsigargin; GRP78, glucose-regulated protein 78; IRE1α, inositol-requiring 
enzyme 1α; XBP-1, X-box binding protein-1; 1,25(OH)2D3, 1,25-dihydroxyvitamin D3; VDR, vitamin D receptor; 
VDRE, vitamin D response element; PERK, protein kinase RNA-like ER kinase; eIF2α, alpha subunit of translation 
initiation factor 2; ATF6, activating transcription factor 6; PDIA3, protein disulfide isomerase A3; SERCA, 
sarcoplasmic/ER Ca2+ ATPase; UPR, unfold protein response; MCP-1, monocyte chemoattractant protein-1; IL-6, 
interleukin-6; TNF-α, tumor necrosis factor-α.



D has been reported to reduce the levels of pro-inflammatory cytokines, including MCP-1, 
IL-6, and IL-1β by regulating toll-like receptors and mitogen-activated protein kinase (MAPK) 
signaling [18,48-50]. Further studies are required to investigate the role of vitamin D in the 
mechanism of inflammatory cytokine secretion during ER stress.

Furthermore, using 3T3-L1 cells transfected with Vdr-siRNA, we proved that suppression 
of Ddit3, sXbp1, and Atf4 mRNA levels by vitamin D against TG occurs via Vdr. In Vdr-
knockdown differentiated adipocytes, 1,25(OH)2D3 did not inhibit UPR signaling induced 
by TG. Consistent with these results, measuring secreted alkaline phosphatase activity in 
HUVEC cells showed that the suppression of VDR expression blocks the ER stress inhibition 
effect caused by vitamin D [43]. In another study, macrophages transfected with Vdr-siRNA 
showed upregulated protein levels of p-PERK, CHOP, and IRE1α relative to macrophages 
transfected with control siRNA [28]. Although our results did not show a significant 
difference in UPR-related gene expression between Vdr-siRNA-treated and Con-siRNA-
treated 3T3-L1 adipocytes, the ER stress preventive effect caused by vitamin D present in 
Con-siRNA adipocytes was not observed in Vdr-knockdown adipocytes. In addition, we found 
that TG-induced ER stress can downregulate 30% of 3T3-L1 Vdr mRNA expression, which 
was increased by 1,25(OH)2D3 pretreatment prior to inducing ER stress. This suggests that 
increased 1,25(OH)2D3-VDR interactions can regulate UPR signaling. However, Vdr mRNA 
expression did not differ between 10 or 50 nM of 1,25(OH)2D3 pretreatment. This might 
contribute to the absence of a dose-response effect on several gene expression following 
vitamin D pretreatment.

ER stress was regulated not only by genomic pathway through 1,25(OH)2D3-Vdr interactions 
but also partially by nongenomic pathway involving protein disulfide isomerase A3 (PDIA3). 
PDIA3, located on the cell membrane, mediates 1,25(OH)2D3-dependent membrane signaling 
cascade, exerting nongenomic action. Through these mechanisms, they can modulate MAPK 
pathways and the activity of transcription factors such as NF-κB, STAT3, and p53, which are 
key players in inflammatory pathways [31]. Furthermore, PDIA3, calnexin, and calreticulin 
are chaperones that facilitate protein folding in response to excessive ER stress [51]. In this 
study, we observed that the elevated Pdia3 mRNA expression induced by TG was mitigated by 
pretreatment with 1,25(OH)2D3. In this manner, vitamin D seems to indirectly contribute to 
the suppression of ER stress and inflammatory responses.

Vitamin D treatment of preadipocytes (from day 0 to 7) showed a strong preventive effect 
against ER stress by downregulating all 3 UPR protein branches. In addition to the mRNA 
expression levels of Ddit3, sXbp1, and Atf4 and the protein levels of the p-eIF2α/eIF2α and 
p-PERK/PERK ratios, we also found that vitamin D pretreatment on preadipocytes or in 
the early phase of adipocyte differentiation suppressed Bip mRNA expression and ATF6 
protein and mRNA levels, which were not altered by 1,25(OH)2D3 treatment on differentiated 
adipocytes. In addition, vitamin D treatment of preadipocytes prior to inducing ER stress 
blocked adipogenesis by blocking lipid accumulation and downregulation of mRNA 
expression levels of Pparγ, Cebpα, and Fabp. Peroxisome proliferator-activated receptor-
gamma (PPARγ) and C/EBPα are 2 essential adipogenic transcription factors that promote 
and sustain the differentiation status of adipose cells [33,52]. 1,25(OH)2D3 has been reported 
to regulate adipocyte differentiation via binding with VDR, resulting in the inhibition of 
adipogenesis and lipid droplet formation [53-55]. Moreover, 1,25(OH)2D3 blocks adipogenesis 
especially the early stage of adipocyte differentiation by blocking C/EBPα and PPARγ, and 
this inhibition was less effective 48 h after the initiation of differentiation because mRNA 
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level of Vdr increased to a maximum in early phase of differentiation [14,53]. Previous studies 
have demonstrated adipogenesis of 3T3-L1 cell can upregulate ER stress [12,35]. Therefore, 
the suppression of adipogenesis when preadipocytes were treated with 1,25(OH)2D3 might be 
associated with ER stress inhibition via vitamin D-VDR pathway.

In vitro adipocyte differentiation is accompanied by the induction of ER stress, and obesity 
leads to chronic ER stress [4,12,35]. However, TG treatment of differentiated adipocytes is 
associated with a slight reduction in lipid accumulation (≤ 5%) and downregulation of Pparγ, 
Cebpα, Fabp, and Srebp1 expression. Acute ER stress exceeding physiological levels inhibits 
adipocyte differentiation and negatively affects the functioning of adipose tissue; this 
promotes the development of type 2 diabetes and lipotoxicity [56]. Exogenous ER stressor 
have been reported to attenuate adipogenesis through signaling via CHOP, although this may 
be different from signaling pathway activated by vitamin D-VDR. Forced production of CHOP 
inhibited adipogenesis in 3T3-L1 cells and mice with deletion of Chop-/- gained more fat mass 
than wild-type mice on HFD indicating the role of CHOP in adipogenesis [35]. Therefore, 
while the attenuation of endogenous ER stress by vitamin D might have counteracted the 
effect of TG on the inhibition of adipocyte differentiation, the mechanism underlying 
the early stages of adipogenesis inhibition by vitamin D-VDR could plausibly operate 
independently of the pathway through which TG suppresses adipocyte differentiation. 
Further studies are needed to understand the association between the downregulation of 
adipogenesis and suppression of ER stress both induced by vitamin D during obesity and 
during the development of metabolic diseases.

This study is the first to confirm the suppression of TG-induced ER stress by vitamin D in 
adipocytes. ER stress and UPR signaling in adipocytes are closely linked to obesity-related 
metabolic diseases, including type 2 diabetes [4,9]. Therefore, vitamin D deficiency in 
diabetes and the association between adiposity and vitamin D status that has been observed 
by many clinical studies may be related to effects exerted by vitamin D as it regulates ER 
stress in adipocytes [22-24,26]. However, we only have demonstrated TG to induce ER stress 
in adipocytes, making it challenging to generalize that vitamin D can inhibit all forms of ER 
stress in adipocytes. ER stress induced by TG is associated with a calcium imbalance between 
the cytosol and ER via inhibition of the Ca2+ pump SERCA2b. The uptake of calcium by the 
ER via SERCA2b is regulated by PDIA3 and vitamin D [57]. Our study showed a significant 
increase in Serca2b mRNA expression in response to TG while vitamin D treatment led to 
its downregulation, despite TG’s inhibitory role of SERCA2b protein. This observation 
suggests a potential compensatory mechanism aimed at maintaining calcium homeostasis 
in ER. Further research is required to elucidate the intricate relationship between calcium 
metabolism, ER stress, and vitamin D.

Taken together, our results suggest that 1,25(OH)2D3 treatment can alleviate TG-induced 
ER stress by downregulating UPR markers in differentiated 3T3-L1 adipocytes, and that 
this effect is mediated by 1,25(OH)2D3-VDR signaling. In addition, the inhibitory effect of 
1,25(OH)2D3 on UPR markers is associated with the suppression of inflammatory cytokine 
production, along with the modulation of Pdia3 and adipogenesis in ER stress-induced 
adipocytes, but this depends on the stage of adipocyte differentiation at which the treatment 
is administered.
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